Degrees of Categoricity of Algebraic Fields

Russell Miller

Queens College & CUNY Graduate Center New York, NY

Penn State Logic Seminar

20 March 2012

Slides available at

qc.edu/~rmiller/slides.html

Russell Miller (CUNY)

Degrees of Categoricity of Fields

Definition

A computable structure \mathcal{A} is *computably categorical* if for each computable $\mathcal{B} \cong \mathcal{A}$ there is a computable isomorphism from \mathcal{A} to \mathcal{B} .

Examples: (Dzgoev, Goncharov; Remmel; Lempp, McCoy, M., Solomon)

- A linear order is computably categorical iff it has only finitely many adjacencies.
- A Boolean algebra is computably categorical iff it has only finitely many atoms.
- An ordered Abelian group is computably categorical iff it has finite rank (≡ basis as Z-module).
- For trees (viewed as partial orders), the known criterion is recursive in the height and not easily stated!

Definition

For any Turing degree d, a computable structure A is d-computably categorical if for each computable $\mathcal{B} \cong A$ there is a d-computable isomorphism from A to \mathcal{B} .

Example

 $(\omega, <)$ is **0**'-computably categorical, although not computably categorical.

Definition

For any Turing degree d, a computable structure A is d-computably categorical if for each computable $\mathcal{B} \cong A$ there is a d-computable isomorphism from A to \mathcal{B} .

Example

 $(\omega, <)$ is **0**'-computably categorical, although not computably categorical.

Definition

The *categoricity spectrum* of A is the set of all **d** such that A is **d**-computably categorical. The least such degree (if any) is the *degree* of categoricity of A.

Fields

Definition

The *splitting set* of a field *F* is

 $\{p(X) \in F[X] : \exists \text{ nonconstant } q_0, q_1 \in F[X](q_0 \cdot q_1 = p)\}.$

Facts:

1. The splitting set is Turing-equivalent to the root set

$$\{p(X)\in F[X]: (\exists a\in F)p(a)=0\}.$$

2. For computable algebraic fields $F_0 \cong F_1$, the splitting sets are Turing-equivalent.

Proofs of these facts use **Rabin's Theorem**: A computable field F has a splitting algorithm iff F has a computable embedding with computable image in a computable presentation of \overline{F} .

Negative Results

Theorem

There exists a computable algebraic field F which is not computably categorical, yet has computable splitting set.

First idea: Build computable fields $F \cong \tilde{F}$ with both square roots of each prime p_e . If $\varphi_{e,s}(\sqrt{p_e}) \downarrow = y$ with $y^2 = \tilde{p}_e$ in \tilde{F} , we adjoin a *p*-th root of $\sqrt{p_e}$ in F and a *p*-th root of the square root $\neq y$ in \tilde{F} .

- Choose *p* > *s* to ensure that *F* has computable splitting set.
- Always use distinct primes p > 3: adjoining a p-th root cannot cause any extraneous q-th roots to appear, for prime q ≠ p.

Negative Results

Theorem

There exists a computable algebraic field F which is not computably categorical, yet has computable splitting set.

First idea: Build computable fields $F \cong \tilde{F}$ with both square roots of each prime p_e . If $\varphi_{e,s}(\sqrt{p_e}) \downarrow = y$ with $y^2 = \tilde{p}_e$ in \tilde{F} , we adjoin a *p*-th root of $\sqrt{p_e}$ in F and a *p*-th root of the square root $\neq y$ in \tilde{F} .

- Choose *p* > *s* to ensure that *F* has computable splitting set.
- Always use distinct primes p > 3: adjoining a p-th root cannot cause any extraneous q-th roots to appear, for prime q ≠ p.

Problem: Adding a *p*-th root of $\sqrt{p_e}$ puts a *p*-th root of the other square root of p_e into *F* as well.

Solution to the Problem

Proposition

Let *p* and *d* be odd primes, with $F = \mathbb{Q}[\sqrt{p}]$, and let $\sigma(\sqrt{p}) = -\sqrt{p}$. Then there exists a polynomial $h(X) \in F[X]$ of degree *d*, with image $h^{-}(X) \in F[X]$ under σ , such that:

- each of the splitting fields K and K⁻ of h and h⁻ over F has Galois group S_d over F; and
- the splitting field of *h* over K⁻ also has Galois group S_d, as does the splitting field of h⁻ over K.

So, when $\varphi_e(\sqrt{p_e}) \downarrow = \sqrt{\tilde{p}_e}$, we can adjoin a root of h(X) in F and a root of $\tilde{h}^-(X)$ in \tilde{F} .

Solution to the Problem

Proposition

Let *p* and *d* be odd primes, with $F = \mathbb{Q}[\sqrt{p}]$, and let $\sigma(\sqrt{p}) = -\sqrt{p}$. Then there exists a polynomial $h(X) \in F[X]$ of degree *d*, with image $h^{-}(X) \in F[X]$ under σ , such that:

- each of the splitting fields K and K⁻ of h and h⁻ over F has Galois group S_d over F; and
- the splitting field of *h* over K⁻ also has Galois group S_d, as does the splitting field of h⁻ over K.

So, when $\varphi_e(\sqrt{p_e}) \downarrow = \sqrt{\tilde{p}_e}$, we can adjoin a root of h(X) in F and a root of $\tilde{h}^-(X)$ in \tilde{F} . In fact, this gives us more power.

Theorem

There exists a computable algebraic field *F* which is not even \emptyset' -computably categorical.

A field *F* which is not 0'-categorical

Build computable fields $F \cong \tilde{F}$ so that $(\forall e)$

 $f(x) = \lim_{s} \varphi_{e}(x, s)$ is not an isomorphism.

Basic module for φ_e : Adjoin $\pm \sqrt{p_e}$ to F and \tilde{F} .

- While $\varphi_e(\sqrt{p_e}, s) \neq \pm \sqrt{\tilde{p}_e}$, do nothing.
- If φ_e(√p_e, s) = √p̃_e, then adjoin a root of an h(X) to F, and a root of h̃[−](X) to F̃.
- If later $\varphi_e(\sqrt{p_e}, s') = -\sqrt{\tilde{p}_e}$, then adjoin a root of $h^-(X)$ to F, and a root of $\tilde{h}(X)$ to \tilde{F} . Find a new h(X) for $\sqrt{p_e}$, and do the reverse.

So if $\lim_{s} \varphi_{e}(\sqrt{p_{e}}, s)$ converges, then it chooses the wrong value.

And if $\lim_{s} \varphi_{e}(\sqrt{p_{e}}, s)$ diverges, then we satisfy the requirement and still have $F \cong \tilde{F}$.

Isomorphisms as Paths

Let $F = \{x_0, x_1, \ldots\}$. Find the minimal polynomial $q_i(X_i)$ of x_i over $\mathbb{Q}[x_0, \ldots, x_{i-1}]$. Write $p_i(x_0, \ldots, x_{i-1}, X_i) = q(X_i)$ with $p_i \in \mathbb{Q}[\vec{X}]$.

Definition

The *isomorphism tree* $I_{F,\tilde{F}}$ is

$$\{\sigma \in \tilde{F}^n : (\forall i < n)p_{i-1}(\sigma(0), \dots, \sigma(i-1)) = 0\}.$$

So each $\sigma \in I_{F,\tilde{F}}$ defines a partial isomorphism $F \to \tilde{F}$. Paths through $I_{F,\tilde{F}}$ correspond to (total) isomorphisms.

Low Basis Theorem

Theorem (Jockusch-Soare)

If T is a computable subset of $\omega^{<\omega}$ which forms a finite-branching infinite subtree, and

 $s(\sigma) = |\{\text{immediate successors of } \sigma \text{ in } T\}|$

has degree \boldsymbol{s} , then there is a path f through T with $f' \leq_T \boldsymbol{s}'$. (Such a path f is said to be *low relative to* \boldsymbol{s} .)

Indeed, for any fixed *s*, Jockusch and Soare produced a single degree *t* with $t' \leq_T s'$ which computes a path through *every* such tree.

Recall: from the splitting set of F, we can compute the number of roots of $p_i(\sigma(0), \ldots, \sigma(i-1), X_i)$ in \tilde{F} .

Theorem

If *F* is a computable algebraic field with splitting set *S*, then *F* is *d*-computably categorical for some Turing degree *d* with $d' \leq_T S'$.

Recall: from the splitting set of F, we can compute the number of roots of $p_i(\sigma(0), \ldots, \sigma(i-1), X_i)$ in \tilde{F} .

Theorem

If *F* is a computable algebraic field with splitting set *S*, then *F* is *d*-computably categorical for some Turing degree *d* with $d' \leq_T S'$.

Corollary

Every computable algebraic field with computable splitting set is *d*-computably categorical for some low Turing degree *d*, indeed for any PA-degree. (A *PA-degree* is the degree of a complete extension of Peano arithmetic.)

Recall: from the splitting set of F, we can compute the number of roots of $p_i(\sigma(0), \ldots, \sigma(i-1), X_i)$ in \tilde{F} .

Theorem

If *F* is a computable algebraic field with splitting set *S*, then *F* is *d*-computably categorical for some Turing degree *d* with $d' \leq_T S'$.

Corollary

Every computable algebraic field with computable splitting set is *d*-computably categorical for some low Turing degree *d*, indeed for any PA-degree. (A *PA-degree* is the degree of a complete extension of Peano arithmetic.)

Corollary

Every computable algebraic field is *d*-computably categorical for some Turing degree *d* with $d' \leq_T 0''$, indeed for any PA-degree relative to 0'.

Degrees of Categoricity

Fact (Jockusch-Soare)

Every nonempty Π_1^0 -class contains paths of degrees \boldsymbol{c} , \boldsymbol{d} with $\boldsymbol{c} \wedge \boldsymbol{d} = \boldsymbol{0}$.

Proposition

A computable algebraic field with splitting set *S* can only have degree of categoricity $\leq_T \deg(S)$.

Corollary

A computable algebraic field with computable splitting set cannot have nonzero degree of categoricity.

More about Degrees of Categoricity

Theorem

For c.e. degrees c and d, we have $c \leq_T d$ iff there exists a computable algebraic field F with degree of categoricity c and splitting set of degree d.

Proof: Code a c.e. set $C \in \boldsymbol{c}$ into all isomorphisms between F and \tilde{F} , by forcing $\sqrt{p_{2e}} \mapsto \sqrt{\tilde{p}_{2e}}$ iff $e \in C$. Code $D \in \boldsymbol{d}$ into the splitting set by adjoining the square roots of p_{2e+1} when/if e enters D.

Extending the Results

Theorem

All *d*-computable categoricities so far are *uniform*. The same holds for computable fields of characteristic *p* algebraic over F_p .

- When the field has positive finite transcendence degree over \mathbb{Q} , the results still hold, but uniformity fails.
- In characteristic p, the results hold (non-uniformly) for separable algebraic extensions of F_p(X₁,...,X_n).
- For non-separable algebraic extensions of F_p(X₁,..., X_n), these questions remain open.

Isomorphism trees can be applied to other computable algebraic structures. Cf. work of Rebecca Steiner on finite-branching trees (under predecessor) and finite-valence connected graphs; also Hirschfeldt-Khoussainov-Soare on such graphs.

References on Computable Fields

- A. Frohlich & J.C. Shepherdson; Effective procedures in field theory, *Phil. Trans. Royal Soc. London, Series A* **248** (1956) 950, 407-432.
- M. Rabin; Computable algebra, general theory, and theory of computable fields, *Transactions of the American Mathematical Society* **95** (1960), 341-360.
- V. Stoltenberg-Hansen & J.V. Tucker; Computable rings and fields, in *Handbook of Computability Theory*, ed. E.R. Griffor (Amsterdam: Elsevier, 1999), 363-447.
- R. Miller; *d*-Computable categoricity for algebraic fields, *Journal of Symbolic Logic* **74** (2009) 4, 1325-1351.
- E. Fokina, I. Kalimullin & R. Miller; Degrees of categoricity of computable structures, *Archive for Mathematical Logic* 49 (2010) 1, 51-67.
- R. Steiner; Effective algebraicity, submitted for publication.