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Computable Groups

Definitions
A presentation of a countable group G is simply a group isomorphic to
G, whose domain is ω. (That is, the elements are natural numbers – or
at least, are indexed by natural numbers.)
A presentation of G is computable if the group operation · for G is a
Turing-computable function: ω × ω → ω.

Thus, in a computable group, we can compute the product x · y of any
given pair (x , y) ∈ ω2 of elements. Since the domain is ω, we can
effectively find the identity element e ∈ ω of G: this e is unique in
satisfying e · e = e. We can also compute the inversion function on G:
given x ∈ ω, just search for some y ∈ ω such that x · y = e.

It is not so clear, however, whether we can decide if an arbitrary x ∈ G
lies in G2 = {y · y : y ∈ G}, or other questions involving quantifiers.
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A first example

The free divisible abelian group on countably many generators is often
viewed as a vector space over Q, of dimension ω. With an effective
listing {q0,q1, . . .} of Q, we can readily list out the set Vω of all finite
tuples (qi1 , . . . ,qin ) ∈ Q<ω with qin 6= 0. Treating such a tuple as
(qi1 , . . . ,qin ,0,0, . . .) makes Vω a computable presentation of this
group, under componentwise addition.

Moreover, in this presentation Vω, there is a computable basis B0,
namely {(0, . . . ,0,1) ∈ Qn+1 : n ∈ ω}.

Indeed, for every set S ⊆ ω, we also have a basis BS ≡T S:

BS = {(0, . . . ,0,1) ∈ Qn+1 : n /∈ S} ∪ {(0, . . . ,0,2) ∈ Qn+1 : n ∈ S}.
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Complications
There are other computable presentations of the free divisible abelian
group in which no basis is computable. We now describe one:

Start building U just like Vω above, one element at a time.
Simultaneously enumerate all c.e. sets We. When/if any We,s has
enumerated 2e + 2 elements, check whether We,s is linearly
independent in the group Us built so far. If not, then keep going. If so,
then (dropping the current identification with Q<ω) we decree that in
Us+1, one of these elements is a large rational multiple of another one.

Doing this forever gives a computable presentation U of a group which
is still abelian, divisible, and free of dimension ω, yet no infinite c.e. set
We can be linearly independent in U. So U has no c.e. basis, let alone
any computable basis.

(Fact: in a computable free structure, all c.e. bases are computable.)
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A reasonable resolution

Proposition
Every computable presentation U of the free divisible abelian group
Q<ω has a Π0

1 basis, which may be taken to be of the same Turing
degree as the dependence relation on U:

DU = {(x1, . . . , xn) ∈ U<ω : ~x is linearly dependent in U}.

Moreover, the Turing degrees of bases of U form exactly the upper
cone containing all degrees ≥T deg(DU).

The canonical basis for U (using the domain ω) is ∪sBs, where B0 = ∅
and

Bs+1 =

{
Bs ∪ {s}, if this is linearly independent;

Bs, if not.

This canonical basis is always Π0
1 and Turing-equivalent to DU .

McCoy & Miller (UP & CUNY) Free Groups and Fields Rutgers Logic Seminar 5 / 18



Free abelian groups

The free abelian group on a generating set L is just the set of all finite
reduced alphabetized words in the letters from L and their inverses,
under concatenation. (A word is reduced if it does not contain any
substring xx−1 or x−1x .)

Once again, there is a nice computable presentation Aω of this group.
In fact, we can just take it to be the subgroup of Vω containing those
tuples in Z<ω. (Since this is a computable subset of Vω, we can index
its elements by ω.) The same basis B0 from Vω is now computable
within Aω.

Now we must decide: does “basis” refer to a maximal independent set
within Aω, or to an independent set which generates Aω (as an abelian
group)? Is 2B0 a basis for Aω or not?
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Results for free abelian groups
Proposition

Every computable presentation C of the free abelian group Z<ω has a
Π0

1 maximal independent set, which may be taken to be of the same
Turing degree as the dependence relation on C:

DC = {(x1, . . . , xn) ∈ C<ω : ~x is Z-dependent in C}.

Moreover, the Turing degrees of maximal independent subsets of C
form exactly the upper cone containing all degrees ≥T deg(DC).

Every such C also has a Π0
1 independent generating set,

Turing-equivalent to the extendibility relation on C:

EC = {(x1, . . . , xn) ∈ C<ω : ~x extends to an indep. generating set}.

Moreover, the Turing degrees of independent generating sets of C
form exactly the upper cone containing all degrees ≥T deg(EC).
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Distinguishing the two notions

Theorem

For every two Π0
1 Turing degrees d ≤T c, there exists a computable

presentation of Aω in which the dependence relation is of degree d
and the extendibility relation is of degree c.
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More free structures

Definition
The free group Fω on countably many generators gi is the set of
all (finite) reduced words in the alphabet g0,g1, . . . and their
inverses, under the operation of concatenation. Fω is sometimes
denoted by 〈g0,g1, . . .〉.
The “free field” Kω (of characteristic 0) is the purely transcendental
extension of Q by a countable, algebraically independent set
{b0,b1, . . .}. Elements of Kω are just rational functions of these bi
with coefficients in Q. Kω is sometimes denoted Q(b0,b1, . . .).

In both cases, the generating sets are independent: there are no
algebraic relations on them except those dictated by the axioms for
groups and for fields. Both of these structures can be computably
presented with the generating set also computable.
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Bases for these structures

Kω = Q(b0,b1, . . .) Free group Fω = 〈g0,g1, . . .〉

{b0,b1, . . .} is a Group theorists call {g0,g1, . . .}
pure transcendence basis: an a basis: an independent set
independent set generating Kω. generating Fω.

{b2
0,b

2
1, . . .} is a {g2

0 ,g
2
1 , . . .} is a. . .

transcendence basis: . . .
a maximal independent set in Kω. maximal independent set in Fω.
Field theorists call this a basis. Group theorists don’t call this

anything.

Why the difference? What can computable model theory tell us about
the analogies here?

McCoy & Miller (UP & CUNY) Free Groups and Fields Rutgers Logic Seminar 10 / 18



Bases for these structures

Kω = Q(b0,b1, . . .) Free group Fω = 〈g0,g1, . . .〉

{b0,b1, . . .} is a Group theorists call {g0,g1, . . .}
pure transcendence basis: an a basis: an independent set
independent set generating Kω. generating Fω.

{b2
0,b

2
1, . . .} is a {g2

0 ,g
2
1 , . . .} is a. . .

transcendence basis: . . .
a maximal independent set in Kω.

maximal independent set in Fω.
Field theorists call this a basis. Group theorists don’t call this

anything.

Why the difference? What can computable model theory tell us about
the analogies here?

McCoy & Miller (UP & CUNY) Free Groups and Fields Rutgers Logic Seminar 10 / 18



Bases for these structures

Kω = Q(b0,b1, . . .) Free group Fω = 〈g0,g1, . . .〉

{b0,b1, . . .} is a Group theorists call {g0,g1, . . .}
pure transcendence basis: an a basis: an independent set
independent set generating Kω. generating Fω.

{b2
0,b

2
1, . . .} is a {g2

0 ,g
2
1 , . . .} is a. . .

transcendence basis: . . .
a maximal independent set in Kω. maximal independent set in Fω.
Field theorists call this a basis. Group theorists don’t call this

anything.

Why the difference? What can computable model theory tell us about
the analogies here?

McCoy & Miller (UP & CUNY) Free Groups and Fields Rutgers Logic Seminar 10 / 18



Transcendence bases for Kω are nice

Facts about transcendence bases B for computable fields K

K always has a Π0
1 transcendence basis.

K may fail to have a Σ0
1 basis (including K ∼= Kω).

Every transcendence basis for K computes the dependence set

DK = {S ∈ K<ω : S is algebraically dependent over Q}.

For S to be dependent over Q is Σ0
1. Conversely,

S = {x1, . . . , xn} ∈ DK iff there exist b1, . . . ,bm ∈ B and
xn+1, . . . , xm ∈ K s.t. every bi (j ≤ m) is algebraic over {x1, . . . , xm}.

Spectrum of degrees of bases for K
For computable fields K of infinite transcendence degree,
{deg(B) : B is a basis for K} is just the upper cone above deg(DK ).
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Bases for Fω are somewhat nice

Facts about bases B for computable free groups G ∼= Fω

G always has a Π0
2 basis (CHKLMMQSW, TAMS 2012).

G may fail to have a Σ0
2 basis (McCoy-Wallbaum, TAMS 2012).

Every basis B for G computes the set

EG = {S ∈ G<ω : S extends to a basis for G}.

The proof that EG ≤T B uses the Nielsen transformations, which
require a basis for G as an oracle. We also use the fact that
Fm ∼= Fn =⇒ m = n.

Spectrum of degrees of bases for G

For computable groups G ∼= Fω, {deg(B) : B is a basis for G} is just
the upper cone above deg(EG).
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Upper cone results

To show that the spectrum of Turing degrees of bases is the upper
cone above d , one needs a coding argument for oracles C above d .
The argument is the same for computable groups G ∼= Fω (with
d = deg(EG)) as for computable fields K ∼= Kω (with d = deg(DK )).

For computable free groups G, one builds a canonical transcendence
basis B0 ≡T EG, putting x into B0 iff {x} ∪ (B0�x) extends to a basis for
G. Every oracle C ≥T EG computes B0 = {b0 < b1 < · · · }, and C is
Turing-equivalent to the basis

B = {b0} ∪ {bi+1 : i ∈ C} ∪ {b0bi+1 : i /∈ C}.
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Maximal independent subsets of G ∼= Fω

Let DG = {S ∈ G<ω : S is dependent in G}. Clearly DG computes a Π0
1

maximal independent set.

Natural conjecture: the degrees of maximal independent sets in G
comprise the upper cone above deg(DG), just as with EG (for groups)
and as with DF (for maximal independent subsets of the free field Kω).

Theorem (McCoy-Miller)
There exists a computable group G ∼= Fω with DG noncomputable,
such that G contains a computable maximal independent subset.

So the natural conjecture is false! This gives a quantitative distinction
between free groups and free fields.
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A computable group G with DG 6≤T ∅. . .

We ensure that no c.e. set We can equal DG in our G. G will be
generated by {a} ∪ {be, ce,de : e ∈ ω}. All these elements will be
independent, except for those de used to diagonalize against We; then
we have de ∈ 〈be, ce〉. Thus G ∼= Fω.

Wait for We to enumerate the set {be, ce,de}. If it does, we apply:

Lemma
Let n ≥ 0, and fix any finite subset Y0 of the free group F3 on the
letters {b, c,d}, such that Y0 does not contain the identity element.
Then there exists a group homomorphism h : F3 → F2 = 〈b, c〉 with
h(b) = b, h(c) = c, and Y0 ∩ ker(h) = ∅. Indeed, we can simply map
d 7→ cmbc−m for a sufficiently large m.

So {be, ce,de} ∈ DG iff {be, ce,de} ∈We, forcing We 6= DG.
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. . . with a computable maximal independent subset
The group G built above has a basis consisting of a, all be and ce, and
certain de. The following set is maximal independent in G:

J = {waw−1 : w ∈ 〈be, ce,de : e ∈ ω〉}.

Our diagonalizations leave the subgroup H = 〈be, ce,de : e ∈ ω〉
fixed, so J is computable. Also, every word u ∈ G differs by a single
element w ∈ H from a word in 〈J〉. Example:

u = b1d3 · a · c2 · a−1 · d2

= (b1d3 · a · d−1
3 b−1

1 ) · (b1d3c2 · a−1 · c−1
2 d−1

3 b−1
1 ) · (b1d3c2d2)

v0 ∈ J v1 ∈ J−1 w ∈ H

So (v−1
1 )(v−1

0 ) · u · (w−1aw)u−1(v0)(v1) = a

and we have a nontrivial relation on u and elements of J.
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Further results and questions on free groups

Theorem (McCoy-Miller)
There exists a computable group G ∼= Fω in which no maximal
independent set is c.e. (so DG is noncomputable, hence not c.e.).

The proof adapts the techniques of the previous argument.

The previous theorem showed that deg(DG) need not be the least
degree in the spectrum of degrees of maximal independent subsets of
G. Must a least degree exist?

Conjecture
There exists a computable group G ∼= Fω in which no maximal
independent set is c.e., yet some two maximal independent sets I and
J have infimum 0. It would follow that in this G, there is no maximal
independent set of least degree.
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The remaining quadrant

What about pure transcendence bases for the “free field” Kω? All
questions about this topic are wide open. We have disproven the
obvious conjecture:

Theorem (Kramer & others)
There exists a finite independent subset S ⊆ Kω which does not
extend to a pure transcendence basis, yet every element of Kω which
is algebraic over S is generated by S.

Fix a computable K ∼= Kω with a computable PTB. Let EK be the set of
finite subsets of K which extend to PTBs for K . As of now, EK is known
to be somewhere between Π0

1 and Σ1
1.
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