Genericity, Infinitary Interpretations, and Automorphism Groups of Structures

Russell Miller

Queens College & CUNY Graduate Center

Southeastern Logic Symposium University of Florida 5 March 2017

(Joint work with Matthew Harrison-Trainor, and Antonio Montalbán, and in part with Alexander Melnikov.)

Russell Miller (CUNY)

Genericity and Interpretations

Our categories

Definition

For a countable infinite structure A, the category Iso(A) has as objects all isomorphic copies of A with domain ω . The morphisms in the category are the isomorphisms between objects, under composition.

So a *functor* from $Iso(\mathcal{B})$ to $Iso(\mathcal{A})$ consists of one map G sending each $\widehat{\mathcal{B}} \cong \mathcal{B}$ to some $\widehat{\mathcal{A}} = G(\widehat{\mathcal{B}}) \cong \mathcal{A}$, along with a second map H sending each isomorphism $f : \widehat{\mathcal{B}} \to \widetilde{\mathcal{B}}$ to an isomorphism $H(f) : G(\widehat{\mathcal{B}}) \to G(\widetilde{\mathcal{B}})$.

H must respect composition, and must map the identity map on $\hat{\mathcal{B}}$ to the identity map on $G(\hat{\mathcal{B}})$. (\mathcal{A} and \mathcal{B} need not have the same signature.)

Interpretations

Many functors from Iso(B) to Iso(A) arise as follows. Suppose we have an *interpretation* of A in B, given by formulas (no parameters):

Interpretation

- $\alpha(\vec{x})$ defines a subset *D* of B^n in \mathcal{B} ;
- $\beta(\vec{x}, \vec{y})$ defines an equivalence relation \sim on *D*; and
- for each *m*-ary relation R_i on A, γ_i defines a subset $C_i = \{\vec{d} \in D^m : \gamma_i(\vec{d})\}$ of D^m invariant under \sim ,

with $(D/\sim, C_0, C_1, \ldots) \cong \mathcal{A}$.

Then, "inside" every $\widehat{\mathcal{B}} \in \mathsf{Iso}(\mathcal{A})$, we have a copy $\widehat{\mathcal{A}}$ of \mathcal{A} defined by these formulas. (Use a fixed order on ω^n to identify the domain of $\widehat{\mathcal{A}}$ with ω .) Moreover, each isomorphism $\widehat{\mathcal{B}} \to \widetilde{\mathcal{B}}$ will map the copy $\widehat{\mathcal{A}}$ onto the copy $\widetilde{\mathcal{A}}$ inside $\widetilde{\mathcal{B}}$. So the interpretation of \mathcal{A} in \mathcal{B} yields a functor from $\mathsf{Iso}(\mathcal{B})$ to $\mathsf{Iso}(\mathcal{A})$.

Functors given by interpretations: a mixed bag

Example: we have an interpretation of the algebraic closure $\overline{\mathbb{Q}}$ in the real closure R of the field \mathbb{Q} , viewing elements a + bi of $\overline{\mathbb{Q}}$ as pairs (a, b) from R. This yields a functor F from Iso(R) to $Iso(\overline{\mathbb{Q}})$. However, this functor is not *full*: among all the automorphisms of (a fixed copy of) $\overline{\mathbb{Q}}$, only the identity is in the "range" of F, since R is rigid.

More importantly, not all functors arise from interpretations. For example, we have a very natural functor $F : Iso(\overline{\mathbb{Q}}) \to Iso(\overline{\mathbb{Q}}[X])$, with isomorphisms between fields extending to isomorphisms between their polynomial rings. However, there is no interpretation of $\overline{\mathbb{Q}}[X]$ in the field $\overline{\mathbb{Q}}$.

Solution: infinitary interpretations

We wish to broaden the notion of interpretation to allow the use of $L_{\omega_1\omega}$ formulas in defining the domain and \sim and the relations. Notice that, even if we allow arbitrary $L_{\omega_1\omega}$ formulas, each interpretation of \mathcal{A} in \mathcal{B} will still yield a functor from Iso(\mathcal{B}) to Iso(\mathcal{A}). However, this project began with *effective interpretations*.

Definition

An *effective interpretation* of \mathcal{A} in \mathcal{B} is an interpretation in which α , β , and all γ_i are Σ_1^c (i.e., computable infinitary existential) formulas, and in which $(\neg \beta)$ and every $(\neg \gamma_i)$ can also be defined by a Σ_1^c formula in \mathcal{B} .

The domain *D* can now consist of arbitrary finite tuples: $D \subseteq B^{<\omega}$ but possibly $\forall n D \not\subseteq B^n$. (Formally, this requires α to be a computable disjunction of Σ_1^c formulas α_n , each with free variables x_1, \ldots, x_n .)

Computable infinitary interpretations

With an effective interpretation of \mathcal{A} in \mathcal{B} , every copy $\widehat{\mathcal{B}}$ of \mathcal{B} yields an $\widehat{\mathcal{B}}$ -computable copy $\widehat{\mathcal{A}}$ of \mathcal{A} , in a uniform effective way. So we get a *computable functor* from Iso(\mathcal{B}) to Iso(\mathcal{A}):

$$G(\widehat{\mathcal{B}}) = \Phi^{\Delta(\widehat{\mathcal{B}})} \quad \& \quad H(f) = \Phi^{\Delta(\widehat{\mathcal{B}}) \oplus f \oplus \Delta(\widetilde{\mathcal{B}})}_* : G(\widehat{\mathcal{B}}) o G(\widetilde{\mathcal{B}}),$$

where Φ and Φ_* are Turing functionals (i.e., oracle Turing machines).

Computable infinitary interpretations

With an effective interpretation of \mathcal{A} in \mathcal{B} , every copy $\widehat{\mathcal{B}}$ of \mathcal{B} yields an $\widehat{\mathcal{B}}$ -computable copy $\widehat{\mathcal{A}}$ of \mathcal{A} , in a uniform effective way. So we get a *computable functor* from Iso(\mathcal{B}) to Iso(\mathcal{A}):

$$G(\widehat{\mathcal{B}}) = \Phi^{\Delta(\widehat{\mathcal{B}})} \quad \& \quad H(f) = \Phi^{\Delta(\widehat{\mathcal{B}}) \oplus f \oplus \Delta(\widetilde{\mathcal{B}})}_* : G(\widehat{\mathcal{B}}) \to G(\widetilde{\mathcal{B}}),$$

where Φ and Φ_* are Turing functionals (i.e., oracle Turing machines).

Theorem (Harrison-Trainor, Melnikov, M, Montalbán, or HTM³) Every computable functor arises from an effective interpretation (and vice versa).

Basic examples

To interpret $\overline{\mathbb{Q}}[X]$ in $\overline{\mathbb{Q}}$, we use as our domain

{nonempty
$$(a_0, \ldots, a_n) \in \overline{\mathbb{Q}}^{<\omega} : a_n = 0 \implies n = 0$$
}.

Another example: for a computable structure \mathcal{A} , *every* \mathcal{B} has a computable constant functor into $Iso(\mathcal{A})$, with $G(\widehat{\mathcal{B}}) = \mathcal{A}$ and $H(f) = id_{\mathcal{A}}$. By the theorem, \mathcal{A} must have an effective interpretation in each \mathcal{B} . In particular, the domain is $\mathcal{B}^{<\omega}$, and \sim identifies tuples of the same length, so that $n \in \mathcal{A}$ can be represented by the \sim -class of tuples of length n. A relation R_i on \mathcal{A} is represented by

$$\bigvee_{(b_1,\ldots,b_m)\in R_i^{\mathcal{A}}} (|\vec{d}_1|=b_1 \And \cdots \And |\vec{d}_m|=b_m).$$

Since R_i^A is computable, both this and its negation are Σ_1^c formulas.

Given a computable functor, find the interpretation

We know that $\Phi^{\Delta(\widehat{\beta})\oplus id\oplus\Delta(\widehat{\beta})}_*$ is the identity map on $\Phi^{\Delta(\widehat{\beta})}$.

Whenever we see σ , n, and i for which $\Phi_*^{\sigma \oplus (id|n) \oplus \sigma}(i) \downarrow = i$, we know that σ , viewed as a possible initial segment of some $\Delta(\widehat{B})$, is "enough information" for Φ_* to have recognized i. Now σ codes a particular configuration ζ_{σ} of elements $0, 1, \ldots, n$ of $\widehat{\mathcal{B}}$ (including i). So we define the domain $D \subseteq B^{<\omega} \times \omega$ to be the set of pairs (\vec{b}, i) with

$$\Phi^{\Delta(ec{b})\oplus(\mathsf{id}\!\upharpoonright\!ec{b}\!ec{)})\oplus\Delta(ec{b})}_*(i)\!\downarrow=i$$

and define $(\vec{b}, i) \sim (\vec{c}, j)$ if $\vec{b} \cup \vec{c}$ can be extended to a finite tuple \vec{d} for which some permutation τ of \vec{d} has $\tau(b_i) = c_i$ and $\tau(\vec{c} - \vec{b}) = (\vec{b} - \vec{c})$ and

$$\Phi_*^{\Delta(\vec{d})\oplus\tau\oplus\Delta(\tau(\vec{d}))}(i) \downarrow = j \quad \& \quad \Phi_*^{\Delta(\tau(\vec{d}))\oplus\tau^{-1}\oplus\Delta(\vec{d})}(j) \downarrow = i.$$

Finishing the interpretation

Finally, for a unary relation R, we define $(\vec{b}, i) \in D$ to satisfy R iff there is some $(\vec{c}, j) \sim (\vec{b}, i)$ for which $\Phi^{\Delta(\vec{c})}$ halts and outputs 1 when we run it on (the code number of) the atomic formula R(j).

All the formulas defining this interpretation are Σ_1^c , so the interpretation is effective.

Beyond effective interpretations

Question: what about more complicated interpretations?

Interpretations using Σ_2^c formulas can readily be viewed as functors into the *jump*. This continues to hold for Σ_{α}^c formulas, for $\alpha < \omega_1^{CK}$.

Defn. (various researchers), roughly stated

The jump \mathcal{B}' of a countable structure \mathcal{B} has the same domain as \mathcal{B} and includes the same predicates, but also has a predicate for every Σ_1^c formula (with free variables v_1, \ldots, v_n) in the language of \mathcal{B} . That predicate holds of \vec{b} in \mathcal{B}' iff the formula holds of \vec{b} in \mathcal{B} .

This includes predicates such as "the length of \vec{b} lies in \emptyset '," which are not truly structural. We know $\text{Spec}(\mathcal{B}') = \{ \mathbf{d}' : \mathbf{d} \in \text{Spec}(\mathcal{B}) \}.$

What about noncomputable infinitary formulas?

Now we allow interpretations using arbitrary $L_{\omega_1\omega}$ formulas (and still using arbitrarily long finite tuples). It remains true that every such interpretation \mathcal{I} of \mathcal{A} in \mathcal{B} yields a functor $F_{\mathcal{I}}$ from Iso(\mathcal{B}) into Iso(\mathcal{A}). If the formulas are Σ_1^{∞} (but noncomputable), then the functor can still be expressed using Turing functionals, with $G(\widehat{\mathcal{B}}) = \Phi^{S \oplus \Delta(\widehat{\mathcal{B}})}$ and $H(f) = \Phi_*^{S \oplus \Delta(\widehat{\mathcal{B}}) \oplus f \oplus \Delta(\widehat{\mathcal{B}})}$, where *S* is a fixed oracle capable of enumerating those formulas. If the formulas are Σ_{α}^{∞} , then we need to use jumps of the structures.

Notice that with an extra oracle allowed, we could define α -th jumps even for countable ordinals $\geq \omega_1^{CK}$: just fix an oracle which can compute the ordinal you need!

Main theorem on infinitary interpretation

Theorem (HTM²)

For each Baire-measurable functor $F : Iso(\mathcal{B}) \to Iso(\mathcal{A})$, there is an infinitary interpretation \mathcal{I} of \mathcal{A} within \mathcal{B} such that F is naturally isomorphic to the functor $F_{\mathcal{I}}$. If F is Δ^0_{α} (in the lightface Borel hierarchy), then the interpretation can be done using Δ^c_{α} formulas, and the isomorphism between F and $F_{\mathcal{I}}$ can be taken to be Δ^0_{α} .

The proof uses a forcing notion, with $\mathcal{B}^* = \{\text{finite 1-1 tuples from } \mathcal{B}\},\$ so that generics are bijections (by genericity) from ω onto \mathcal{B} . We want to build several mutually generic structures (and examine how *F* acts on the maps between them), so we use product forcing with $(\mathcal{B}^*)^k$. The forcing notion will be definable in \mathcal{B} (at least, for a restricted sublanguage L'), yielding the formulas for the interpretation.

Forcing language

We want to force statements of the form $F(\mathcal{B}_{g_1}, g_2^{-1} \circ g_1, \mathcal{B}_{g_2})(i) = j$. (Here \mathcal{B}_g is the pullback of \mathcal{B} to the domain ω along $g : \omega \to \mathcal{B}$.)

Finitary formulas in the forcing language L and its restriction L':

- $\dot{g}_{j}^{-1} \circ \dot{g}_{j}(m) = n$ and its negation;
- $R^{\mathcal{B}_{g_i}}(a_1, \ldots, a_n)$ and its negation, for $\vec{a} \in \omega^n$ and R an *n*-ary relation in the language of \mathcal{B} ;
- finite conjunctions and disjunctions;
- $\dot{g}_i(m) = n$ and its negation. (These are *not* in L'!)

We then build L and L' by taking infinitary conjunctions and disjunctions.

Now *F* is a Borel functional, so $F(\mathcal{B}_g)$ computes its atomic diagram using infinitary conjunctions and disjunctions of statements from $\Delta(\mathcal{B}_g)$. So, for *P* in the signature of \mathcal{A} , $F(\mathcal{B}_g) \models P(\vec{j})$ is expressible in *L'*, as is $F(\mathcal{B}_{g_1}, g_2^{-1} \circ g_1, \mathcal{B}_{g_2})(i) = j$, preserving complexities.

Definition of forcing

Let $\rho = (\overline{b}_1, \dots, \overline{b}_k) \in (\mathcal{B}^*)^k$.	
φ	$p \Vdash_{(\mathcal{B}^*)^k} \varphi$ iff
$g_i^{-1} \circ g_j(m) = n$	$\overline{b}_i(n) \downarrow = \overline{b}_j(m) \downarrow.$
$\dot{g}_i^{-1} \circ \dot{g}_j(m) \neq n$	$\overline{b}_i(n) \downarrow \neq \overline{b}_j(m) \downarrow$ or $\exists m' \neq m \ \overline{b}_i(n) \downarrow = \overline{b}_j(m') \downarrow$
	or $\exists n' \neq n \ \overline{b}_i(n') \downarrow = \overline{b}_j(m) \downarrow$.
$R^{\mathcal{B}_{\dot{g}_i}}(ec{a})$	$\mathcal{B} \models R(\overline{b}_i(a_1)\downarrow,\ldots,\overline{b}_i(a_n)\downarrow).$
$ eg R^{\mathcal{B}_{\dot{g}_i}}(ec{a})$	$\mathcal{B} \models \neg \mathcal{R}(\overline{b}_i(a_1) \downarrow, \dots, \overline{b}_i(a_n) \downarrow).$
$\dot{g}_i(m) = n$	$\overline{b}_i(m) \downarrow = n.$
$\dot{g}_i(m) \neq n$	$\overline{b}_i(m) \downarrow \neq n \text{ or } \exists m' \neq m \overline{b}_i(m') \downarrow = n.$
finite disjunction	<i>p</i> forces some disjunct.
finite conjunction	<i>p</i> forces all conjuncts.
$\bigvee_{n} \psi_{n}$	$\exists n \text{ for which } p \Vdash_{(\mathcal{B}^*)^k} \psi_n.$
$\bigwedge_n \psi_n$	$(\forall n)(\forall q \supseteq p)(\exists r \supseteq q) r \Vdash_{(\mathcal{B}^*)^k} \psi_n.$

Forcing Lemma

Say that $\mathbf{g} = (g_1, \ldots, g_k) \in (\mathcal{B}^*)^k$ is *S*-generic if the g_i are mutually $(S \oplus \mathcal{B})$ -hyperarithmetically generic functions $\omega \to \mathcal{B}$. We say that $\varphi[\mathbf{g}]$ holds if φ becomes true when each g_i in \mathbf{g} is substituted for \dot{g}_i in φ .

Lemma

Let φ be an *S*-computable sentence of the forcing language for $(\mathcal{B}^*)^k$.

- For *S*-generic \mathbf{g} , $\varphi[\mathbf{g}]$ holds iff, for some $p \subset \mathbf{g}$, $p \Vdash_{(\mathcal{B}^*)^k} \varphi$.
- 2 If φ starts with \bigwedge , then $p \Vdash_{(\mathcal{B}^*)^k} \varphi$ iff, for every *S*-generic $\mathbf{g} \supset p$, $\varphi[\mathbf{g}]$ holds.

The induction is mostly straightforward. Suppose φ is $\wedge_n \psi_n$ and some $p \subset \mathbf{g}$ forces φ . Now for each *n*, some $q \subset \mathbf{g}$ decides ψ_n . WLOG $p \subseteq q$, so some $r \supseteq q$ has $r \Vdash_{(\mathcal{B}^*)^k} \psi_n$, and so does *q* (since *q* decides ψ_n). By induction, then $\psi_n[\mathbf{g}]$ holds, and since this works for all n, $\varphi[\mathbf{g}]$ also holds.

The interpretation

We still need to produce our interpretation of A in B. Its domain D contains those $(\overline{b}, i) \in B^* \times \omega$ for which

$$(\overline{b},\overline{b})\Vdash_{(\mathcal{B}^*)^2} F(\mathcal{B}_{\dot{g}_1},\dot{g}_2^{-1}\circ\dot{g}_1,\mathcal{B}_{\dot{g}_2})(i)=i.$$

We define $(\overline{b}, i) \sim (\overline{c}, j)$ iff:

$$(\overline{b},\overline{c})\Vdash_{(\mathcal{B}^*)^2} F(\mathcal{B}_{\dot{g}_1},\dot{g}_2^{-1}\circ\dot{g}_1,\mathcal{B}_{\dot{g}_2})(i)=j.$$

If *P* (in the language of A) has arity *p*, define the corresponding *R* in the interpretation to hold of $((\overline{b}_1, i_1), \dots, (\overline{b}_p, i_p)) \in D^p$ iff:

$$(\exists \overline{c} \in \mathcal{B}^*)(\exists \overline{j} \in \omega^p) \left[\left(\bigwedge_{s \leq \rho} (\overline{b}_s, i_s) \sim (\overline{c}, j_s) \right) \& \left(\overline{c} \Vdash_{(\mathcal{B}^*)^1} \overline{j} \in \mathcal{P}^{\mathcal{F}(\mathcal{B}_{\hat{g}})} \right) \right]$$

Definability

To see that the formulas for the interpretation are $L_{\omega_1\omega}$ in the language of \mathcal{B} , one shows by induction that for each Σ^c_{α} formula φ in L', $\{p \in (\mathcal{B}^*)^k : p \Vdash_{(\mathcal{B}^*)^k} \varphi\}$ is Σ^c_{α} -definable in \mathcal{B} , and likewise for Π_{α} . (This relativizes easily to *S*-computable formulas.)

For finitary formulas, notice that $\{(\overline{b}, \overline{c}) : \overline{b}(n) = \overline{c}(m)\}$ is definable by atomic formulas in \mathcal{B} , as is $\{\overline{b} : \mathcal{B} \models R(\overline{b}(a_1), \dots, \overline{b}(a_n))\}$.

If φ is $\bigvee_n \psi_n$, then $p \Vdash_{(\mathcal{B}^*)^k} \varphi$ iff some *n* has $p \Vdash_{(\mathcal{B}^*)^k} \psi_n$, which by induction is \prod_{β}^c -definable in \mathcal{B} with $\beta < \alpha$.

For $\bigwedge_n \psi_n$, one needs to know that for every p and φ , some $q \supseteq p$ decides φ , and that p cannot force both φ and $(\neg \varphi)$.

Now, if φ is $\bigwedge_n \psi_n$, then $p \Vdash_{(\mathcal{B}^*)^k} \varphi$ iff, for all $q \supseteq p$, $q \nvDash_{(\mathcal{B}^*)^k} (\neg \psi_n)$. This is Σ_{β}^c -definable in \mathcal{B} for some $\beta < \alpha$, so $p \Vdash_{(\mathcal{B}^*)^k} \varphi$ is Π_{α}^c -definable.

$\mathcal{A}\cong (\textit{D}/\!\sim,\textit{R}_0,\textit{R}_1,\ldots)$

We wish to define an isomorphism $\pi : \mathcal{A} \to D/\sim$ (where $\mathcal{A} = F(\mathcal{B})$). For this we use a generic $g : \omega \to \mathcal{B}$, which yields a map $\pi_g : F(\mathcal{B}_g) \to D/\sim$. The value $\pi_g(i)$ is the least tuple $(\overline{c}, i) \in D$ with $\overline{c} \subset g$ (which exists, by genericity). Then compose π_g with $F(\mathcal{B}, g^{-1}, \mathcal{B}_g)$, which maps $\mathcal{A} = F(\mathcal{B})$ to $F(\mathcal{B}_g)$, since $g^{-1} : \mathcal{B} \to \mathcal{B}_g$:

 $\mathcal{A} \longrightarrow \mathcal{F}(\mathcal{B}_g) \longrightarrow \mathcal{D}.$

Of course, $F(\mathcal{B}, g^{-1}, \mathcal{B}_g)$ is known to be an isomorphism. The work here is to prove that π_g is an isomorphism, and the genericity of g is used heavily.

Finally, one shows that the composition $\pi_g \circ F(\mathcal{B}, g^{-1}, \mathcal{B}_g)$ is independent of the choice of the generic *g*.

Corollaries: automorphism groups

One can prove that, for every continuous homomorphism $h : \operatorname{Aut}(\mathcal{B}) \to \operatorname{Aut}(\mathcal{A})$, there is a Borel functor $G : \operatorname{Iso}(\mathcal{B}) \to \operatorname{Iso}(\mathcal{A})$ with $G(\mathcal{B}) = \mathcal{A}$, whose restriction to $\operatorname{Aut}(\mathcal{B})$ equals *h*.

Corollary (HTM²)

Every continuous homomorphism $h : Aut(\mathcal{B}) \to Aut(\mathcal{A})$ is induced by an infinitary interpretation of \mathcal{A} in \mathcal{B} .

There do exist discontinuous homomorphisms *h*, which clearly cannot arise from interpretations. (Cf. Evans-Hewitt, 1990.) However, every Baire-measurable homomorphism from $Aut(\mathcal{B})$ into $Aut(\mathcal{A})$ is continuous, hence induced by an interpretation.

Corollary (HTM²)

Every continuous isomorphism $h : \operatorname{Aut}(\mathcal{B}) \to \operatorname{Aut}(\mathcal{A})$ arises from a Borel adjoint equivalence between the categories $\operatorname{Iso}(\mathcal{A})$ and $\operatorname{Iso}(\mathcal{B})$, and every such equivalence is induced by an infinitary bi-interpretation between \mathcal{A} and \mathcal{B} .

Corollaries: indiscernibles

Theorem (HTM²)

Let \mathcal{A} be countable. Then TFAE:

• There is a continuous homomorphism from Aut(A) onto S_{ω} (the permutation group of ω).

² There is an *n*, an $L_{\omega_1\omega}$ -definable *D* ⊆ *A*^{*n*}, and an $L_{\omega_1\omega}$ -definable equivalence relation *E* ⊆ *D*² with infinitely many equivalence classes, such that these *E*-classes are absolutely indiscernible (i.e., every permutation of the *E*-classes extends to an automorphism of *A*).

In addition, a continuous isomorphism between Aut(A) and S_{ω} exists iff every element of A is definable from the set of E-classes above. (That is, if we add one unary relation symbol to name each E-class, every element becomes $L_{\omega_1\omega}$ -definable.)

Corollaries: order-indiscernibles

Analogous theorems hold for order-indiscernibles, with S_{ω} replaced by Aut($\mathbb{Q}, <$). \mathcal{A} is not assumed to possess an order relation; the theorem proves the existence of an $L_{\omega_1\omega}$ -definable dense order on the *E*-classes under which they are order-indiscernible.