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Our categories

Definition
For a countable infinite structure A, the category Iso(A) has as objects
all isomorphic copies of A with domain ω. The morphisms in the
category are the isomorphisms between objects, under composition.

So a functor from Iso(B) to Iso(A) consists of one map G sending each
B̂ ∼= B to some Â = G(B̂) ∼= A, along with a second map H sending
each isomorphism f : B̂ → B̃ to an isomorphism H(f ) : G(B̂)→ G(B̃).

H must respect composition, and must map the identity map on B̂ to
the identity map on G(B̂). (A and B need not have the same
signature.)
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Interpretations

Many functors from Iso(B) to Iso(A) arise as follows. Suppose we
have an interpretation of A in B, given by formulas (no parameters):

Interpretation

α(~x) defines a subset D of Bn in B;
β(~x , ~y) defines an equivalence relation ∼ on D; and
for each m-ary relation Ri on A, γi defines a subset
Ci = {~d ∈ Dm : γi(~d)} of Dm invariant under ∼,

with (D/∼, C0,C1, . . .) ∼= A.

Then, “inside” every B̂ ∈ Iso(A), we have a copy Â of A defined by
these formulas. (Use a fixed order on ωn to identify the domain of Â
with ω.) Moreover, each isomorphism B̂ → B̃ will map the copy Â onto
the copy Ã inside B̃. So the interpretation of A in B yields a functor
from Iso(B) to Iso(A).
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Functors given by interpretations: a mixed bag

Example: we have an interpretation of the algebraic closure Q in the
real closure R of the field Q, viewing elements a + bi of Q as pairs
(a,b) from R. This yields a functor F from Iso(R) to Iso(Q). However,
this functor is not full: among all the automorphisms of (a fixed copy of)
Q, only the identity is in the “range” of F , since R is rigid.

More importantly, not all functors arise from interpretations. For
example, we have a very natural functor F : Iso(Q)→ Iso(Q[X ]), with
isomorphisms between fields extending to isomorphisms between their
polynomial rings. However, there is no interpretation of Q[X ] in the
field Q.
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Solution: infinitary interpretations

We wish to broaden the notion of interpretation to allow the use of Lω1ω

formulas in defining the domain and ∼ and the relations. Notice that,
even if we allow arbitrary Lω1ω formulas, each interpretation of A in B
will still yield a functor from Iso(B) to Iso(A). However, this project
began with effective interpretations.

Definition
An effective interpretation of A in B is an interpretation in which α, β,
and all γi are Σc

1 (i.e., computable infinitary existential) formulas, and in
which (¬β) and every (¬γi) can also be defined by a Σc

1 formula in B.

The domain D can now consist of arbitrary finite tuples: D ⊆ B<ω but
possibly ∀n D 6⊆ Bn. (Formally, this requires α to be a computable
disjunction of Σc

1 formulas αn, each with free variables x1, . . . , xn.)
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Computable infinitary interpretations

With an effective interpretation of A in B, every copy B̂ of B yields an
B̂-computable copy Â of A, in a uniform effective way. So we get a
computable functor from Iso(B) to Iso(A):

G(B̂) = Φ∆(B̂) & H(f ) = Φ
∆(B̂)⊕f⊕∆(B̃)
∗ : G(B̂)→ G(B̃),

where Φ and Φ∗ are Turing functionals (i.e., oracle Turing machines).

Theorem (Harrison-Trainor, Melnikov, M, Montalbán, or HTM3)
Every computable functor arises from an effective interpretation (and
vice versa).
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Basic examples

To interpret Q[X ] in Q, we use as our domain

{nonempty (a0, . . . ,an) ∈ Q<ω
: an = 0 =⇒ n = 0}.

Another example: for a computable structure A, every B has a
computable constant functor into Iso(A), with G(B̂) = A and
H(f ) = idA. By the theorem, A must have an effective interpretation in
each B. In particular, the domain is B<ω, and ∼ identifies tuples of the
same length, so that n ∈ A can be represented by the ∼-class of
tuples of length n. A relation Ri on A is represented by∨∨

(b1,...,bm)∈RAi

(|~d1| = b1 & · · ·& |~dm| = bm).

Since RAi is computable, both this and its negation are Σc
1 formulas.
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Given a computable functor, find the interpretation
We know that Φ

∆(B̂)⊕id⊕∆(B̂)
∗ is the identity map on Φ∆(B̂).

Whenever we see σ, n, and i for which Φ
σ⊕(id�n)⊕σ
∗ (i)↓= i , we know that

σ, viewed as a possible initial segment of some ∆(B̂), is “enough
information” for Φ∗ to have recognized i . Now σ codes a particular
configuration ζσ of elements 0,1, . . . ,n of B̂ (including i). So we define
the domain D ⊆ B<ω × ω to be the set of pairs (~b, i) with

Φ
∆(~b)⊕(id�|~b|)⊕∆(~b)
∗ (i)↓= i .

and define (~b, i) ∼ (~c, j) if ~b ∪ ~c can be extended to a finite tuple ~d for
which some permutation τ of ~d has τ(bi) = ci and τ(~c − ~b) = (~b − ~c)
and

Φ
∆(~d)⊕τ⊕∆(τ(~d))
∗ (i)↓= j & Φ

∆(τ(~d))⊕τ−1⊕∆(~d)
∗ (j)↓= i .
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Finishing the interpretation

Finally, for a unary relation R, we define (~b, i) ∈ D to satisfy R iff there
is some (~c, j) ∼ (~b, i) for which Φ∆(~c) halts and outputs 1 when we run
it on (the code number of) the atomic formula R(j).

All the formulas defining this interpretation are Σc
1, so the interpretation

is effective.
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Beyond effective interpretations

Question: what about more complicated interpretations?

Intepretations using Σc
2 formulas can readily be viewed as functors into

the jump. This continues to hold for Σc
α formulas, for α < ωCK

1 .

Defn. (various researchers), roughly stated

The jump B′ of a countable structure B has the same domain as B and
includes the same predicates, but also has a predicate for every Σc

1
formula (with free variables v1, . . . , vn) in the language of B. That
predicate holds of ~b in B′ iff the formula holds of ~b in B.

This includes predicates such as “the length of ~b lies in ∅′,” which are
not truly structural. We know Spec(B′) = {d ′ : d ∈ Spec(B)}.
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What about noncomputable infinitary formulas?

Now we allow interpretations using arbitrary Lω1ω formulas (and still
using arbitrarily long finite tuples). It remains true that every such
interpretation I of A in B yields a functor FI from Iso(B) into Iso(A). If
the formulas are Σ∞1 (but noncomputable), then the functor can still be
expressed using Turing functionals, with G(B̂) = ΦS⊕∆(B̂) and

H(f ) = Φ
S⊕∆(B̂)⊕f⊕∆(B̃)
∗ , where S is a fixed oracle capable of

enumerating those formulas. If the formulas are Σ∞α , then we need to
use jumps of the structures.

Notice that with an extra oracle allowed, we could define α-th jumps
even for countable ordinals ≥ ωCK

1 : just fix an oracle which can
compute the ordinal you need!
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Main theorem on infinitary interpretation

Theorem (HTM2)
For each Baire-measurable functor F : Iso(B)→ Iso(A), there is an
infinitary interpretation I of A within B such that F is naturally
isomorphic to the functor FI . If F is ∆0

α (in the lightface Borel
hierarchy), then the interpretation can be done using ∆c

α formulas, and
the isomorphism between F and FI can be taken to be ∆0

α.

The proof uses a forcing notion, with B∗ = {finite 1-1 tuples from B},
so that generics are bijections (by genericity) from ω onto B. We want
to build several mutually generic structures (and examine how F acts
on the maps between them), so we use product forcing with (B∗)k . The
forcing notion will be definable in B (at least, for a restricted
sublanguage L′), yielding the formulas for the interpretation.
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Forcing language
We want to force statements of the form F (Bg1 ,g

−1
2 ◦ g1,Bg2)(i) = j .

(Here Bg is the pullback of B to the domain ω along g : ω → B.)

Finitary formulas in the forcing language L and its restriction L′:
ġ−1

i ◦ ġj(m) = n and its negation;

RBġi (a1, . . . ,an) and its negation, for ~a ∈ ωn and R an n-ary
relation in the language of B;
finite conjunctions and disjunctions;
ġi(m) = n and its negation. (These are not in L′!)

We then build L and L′ by taking infinitary conjunctions and
disjunctions.
Now F is a Borel functional, so F (Bg) computes its atomic diagram
using infinitary conjunctions and disjunctions of statements from
∆(Bg). So, for P in the signature of A, F (Bg) |= P(~j) is expressible in
L′, as is F (Bg1 ,g

−1
2 ◦ g1,Bg2)(i) = j , preserving complexities.
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Definition of forcing

Let p = (b1, . . . ,bk ) ∈ (B∗)k .

ϕ p (B∗)k ϕ iff...

ġ−1
i ◦ ġj(m) = n bi(n)↓= bj(m)↓.

ġ−1
i ◦ ġj(m) 6= n bi(n)↓6= bj(m)↓ or ∃m′ 6= m bi(n)↓= bj(m′)↓

or ∃n′ 6= n bi(n′)↓= bj(m)↓.
RBġi (~a) B |= R(bi(a1)↓, . . . ,bi(an)↓).
¬RBġi (~a) B |= ¬R(bi(a1)↓, . . . ,bi(an)↓).
ġi(m) = n bi(m)↓= n.
ġi(m) 6= n bi(m)↓6= n or ∃m′ 6= m bi(m′)↓= n.

finite disjunction p forces some disjunct.
finite conjunction p forces all conjuncts.∨

n ψn ∃n for which p (B∗)k ψn.∧
n ψn (∀n)(∀q ⊇ p)(∃r ⊇ q) r (B∗)k ψn.
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Forcing Lemma

Say that g = (g1, . . . ,gk ) ∈ (B∗)k is S-generic if the gi are mutually
(S ⊕ B)-hyperarithmetically generic functions ω → B. We say that ϕ[g]
holds if ϕ becomes true when each gi in g is substituted for ġi in ϕ.

Lemma

Let ϕ be an S-computable sentence of the forcing language for (B∗)k .
1 For S-generic g, ϕ[g] holds iff, for some p ⊂ g, p (B∗)k ϕ.
2 If ϕ starts with

∧
, then p (B∗)k ϕ iff, for every S-generic g ⊃ p,

ϕ[g] holds.

The induction is mostly straightforward. Suppose ϕ is ∧nψn and some
p ⊂ g forces ϕ. Now for each n, some q ⊂ g decides ψn. WLOG
p ⊆ q, so some r ⊇ q has r (B∗)k ψn, and so does q (since q decides
ψn). By induction, then ψn[g] holds, and since this works for all n, ϕ[g]
also holds.
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The interpretation

We still need to produce our interpretation of A in B. Its domain D
contains those (b, i) ∈ B∗ × ω for which

(b,b) (B∗)2 F (Bġ1
, ġ−1

2 ◦ ġ1,Bġ2
)(i) = i .

We define (b, i) ∼ (c, j) iff:

(b, c) (B∗)2 F (Bġ1
, ġ−1

2 ◦ ġ1,Bġ2
)(i) = j .

If P (in the language of A) has arity p, define the corresponding R in
the interpretation to hold of ((b1, i1), . . . , (bp, ip)) ∈ Dp iff:

(∃c ∈ B∗)(∃~j ∈ ωp)

∧
s≤p

(bs, is) ∼ (c, js)

&
(

c (B∗)1 ~j ∈ PF (Bġ)
) .
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Definability
To see that the formulas for the interpretation are Lω1ω in the language
of B, one shows by induction that for each Σc

α formula ϕ in L′,
{p ∈ (B∗)k : p (B∗)k ϕ} is Σc

α-definable in B, and likewise for Πα. (This
relativizes easily to S-computable formulas.)

For finitary formulas, notice that {(b, c) : b(n) = c(m)} is definable by
atomic formulas in B, as is {b : B |= R(b(a1), . . . ,b(an))}.

If ϕ is
∨

n ψn, then p (B∗)k ϕ iff some n has p (B∗)k ψn, which by
induction is Πc

β-definable in B with β < α.

For
∧

n ψn, one needs to know that for every p and ϕ, some q ⊇ p
decides ϕ, and that p cannot force both ϕ and (¬ϕ).

Now, if ϕ is
∧

n ψn, then p (B∗)k ϕ iff, for all q ⊇ p, q 6(B∗)k (¬ψn). This
is Σc

β-definable in B for some β < α, so p (B∗)k ϕ is Πc
α-definable.
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A ∼= (D/∼,R0,R1, . . .)

We wish to define an isomorphism π : A → D/∼ (where A = F (B)).
For this we use a generic g : ω → B, which yields a map
πg : F (Bg)→ D/∼. The value πg(i) is the least tuple (c, i) ∈ D with
c ⊂ g (which exists, by genericity). Then compose πg with
F (B,g−1,Bg), which maps A = F (B) to F (Bg), since g−1 : B → Bg :

A −→ F (Bg) −→ D.

Of course, F (B,g−1,Bg) is known to be an isomorphism. The work
here is to prove that πg is an isomorphism, and the genericity of g is
used heavily.

Finally, one shows that the composition πg ◦ F (B,g−1,Bg) is
independent of the choice of the generic g.
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Corollaries: automorphism groups
One can prove that, for every continuous homomorphism
h : Aut(B)→ Aut(A), there is a Borel functor G : Iso(B)→ Iso(A) with
G(B) = A, whose restriction to Aut(B) equals h.

Corollary (HTM2)
Every continuous homomorphism h : Aut(B)→ Aut(A) is induced by
an infinitary interpretation of A in B.

There do exist discontinuous homomorphisms h, which clearly cannot
arise from interpretations. (Cf. Evans-Hewitt, 1990.) However, every
Baire-measurable homomorphism from Aut(B) into Aut(A) is
continuous, hence induced by an interpretation.

Corollary (HTM2)
Every continuous isomorphism h : Aut(B)→ Aut(A) arises from a
Borel adjoint equivalence between the categories Iso(A) and Iso(B),
and every such equivalence is induced by an infinitary bi-interpretation
between A and B.

Russell Miller (CUNY) Genericity and Interpretations SEALS 19 / 21



Corollaries: indiscernibles

Theorem (HTM2)
Let A be countable. Then TFAE:

1 There is a continuous homomorphism from Aut(A) onto Sω (the
permutation group of ω).

2 There is an n, an Lω1ω-definable D ⊆ An, and an Lω1ω-definable
equivalence relation E ⊆ D2 with infinitely many equivalence
classes, such that these E-classes are absolutely indiscernible
(i.e., every permutation of the E-classes extends to an
automorphism of A).

In addition, a continuous isomorphism between Aut(A) and Sω exists
iff every element of A is definable from the set of E-classes above.
(That is, if we add one unary relation symbol to name each E-class,
every element becomes Lω1ω-definable.)
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Corollaries: order-indiscernibles

Analogous theorems hold for order-indiscernibles, with Sω replaced by
Aut(Q, <). A is not assumed to possess an order relation; the theorem
proves the existence of an Lω1ω-definable dense order on the
E-classes under which they are order-indiscernible.
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