Genericity, Infinitary Interpretations, and Automorphism Groups of Structures

Russell Miller

Queens College \& CUNY Graduate Center

Southeastern Logic Symposium University of Florida
 5 March 2017

(Joint work with Matthew Harrison-Trainor, and Antonio Montalbán, and in part with Alexander Melnikov.)

Our categories

Definition

For a countable infinite structure \mathcal{A}, the category $\operatorname{Iso}(\mathcal{A})$ has as objects all isomorphic copies of \mathcal{A} with domain ω. The morphisms in the category are the isomorphisms between objects, under composition.

So a functor from $\operatorname{Iso}(\mathcal{B})$ to Iso (\mathcal{A}) consists of one map G sending each $\widehat{\mathcal{B}} \cong \mathcal{B}$ to some $\widehat{\mathcal{A}}=\mathcal{G}(\widehat{\mathcal{B}}) \cong \mathcal{A}$, along with a second map H sending each isomorphism $f: \widehat{\mathcal{B}} \rightarrow \widetilde{\mathcal{B}}$ to an isomorphism $H(f): G(\widehat{\mathcal{B}}) \rightarrow G(\widetilde{\mathcal{B}})$.

H must respect composition, and must map the identity map on $\widehat{\mathcal{B}}$ to the identity map on $\mathcal{G}(\widehat{\mathcal{B}})$. (\mathcal{A} and \mathcal{B} need not have the same signature.)

Interpretations

Many functors from $\operatorname{Iso}(\mathcal{B})$ to Iso (\mathcal{A}) arise as follows. Suppose we have an interpretation of \mathcal{A} in \mathcal{B}, given by formulas (no parameters):

Interpretation

- $\alpha(\vec{x})$ defines a subset D of B^{n} in \mathcal{B};
- $\beta(\vec{x}, \vec{y})$ defines an equivalence relation \sim on D; and
- for each m-ary relation R_{i} on \mathcal{A}, γ_{i} defines a subset $C_{i}=\left\{\vec{d} \in D^{m}: \gamma_{i}(\vec{d})\right\}$ of D^{m} invariant under \sim,
with $\left(D / \sim, C_{0}, C_{1}, \ldots\right) \cong \mathcal{A}$.
Then, "inside" every $\widehat{\mathcal{B}} \in \operatorname{Iso}(\mathcal{A})$, we have a copy $\widehat{\mathcal{A}}$ of \mathcal{A} defined by these formulas. (Use a fixed order on ω^{n} to identify the domain of $\widehat{\mathcal{A}}$ with ω.) Moreover, each isomorphism $\widehat{\mathcal{B}} \rightarrow \widetilde{\mathcal{B}}$ will map the copy $\widehat{\mathcal{A}}$ onto the copy $\widetilde{\mathcal{A}}$ inside $\widetilde{\mathcal{B}}$. So the interpretation of \mathcal{A} in \mathcal{B} yields a functor from $\operatorname{Iso}(\mathcal{B})$ to $\operatorname{Iso}(\mathcal{A})$.

Functors given by interpretations: a mixed bag

Example: we have an interpretation of the algebraic closure $\overline{\mathbb{Q}}$ in the real closure R of the field \mathbb{Q}, viewing elements $a+b i$ of $\overline{\mathbb{Q}}$ as pairs (a, b) from R. This yields a functor F from $\operatorname{Iso}(R)$ to $\operatorname{lso}(\overline{\mathbb{Q}})$. However, this functor is not full: among all the automorphisms of (a fixed copy of) $\overline{\mathbb{Q}}$, only the identity is in the "range" of F, since R is rigid.

More importantly, not all functors arise from interpretations. For example, we have a very natural functor $F: \operatorname{Iso}(\overline{\mathbb{Q}}) \rightarrow \operatorname{Iso}(\overline{\mathbb{Q}}[X])$, with isomorphisms between fields extending to isomorphisms between their polynomial rings. However, there is no interpretation of $\overline{\mathbb{Q}}[X]$ in the field $\overline{\mathbb{Q}}$.

Solution: infinitary interpretations

We wish to broaden the notion of interpretation to allow the use of $L_{\omega_{1} \omega}$ formulas in defining the domain and \sim and the relations. Notice that, even if we allow arbitrary $L_{\omega_{1} \omega}$ formulas, each interpretation of \mathcal{A} in \mathcal{B} will still yield a functor from $\operatorname{Iso}(\mathcal{B})$ to Iso (\mathcal{A}). However, this project began with effective interpretations.

Definition

An effective interpretation of \mathcal{A} in \mathcal{B} is an interpretation in which α, β, and all γ_{i} are Σ_{1}^{c} (i.e., computable infinitary existential) formulas, and in which $(\neg \beta)$ and every $\left(\neg \gamma_{i}\right)$ can also be defined by a Σ_{1}^{c} formula in \mathcal{B}.

The domain D can now consist of arbitrary finite tuples: $D \subseteq B^{<\omega}$ but possibly $\forall n D \nsubseteq B^{n}$. (Formally, this requires α to be a computable disjunction of Σ_{1}^{c} formulas α_{n}, each with free variables x_{1}, \ldots, x_{n}.)

Computable infinitary interpretations

With an effective interpretation of \mathcal{A} in \mathcal{B}, every copy $\widehat{\mathcal{B}}$ of \mathcal{B} yields an $\widehat{\mathcal{B}}$-computable copy $\widehat{\mathcal{A}}$ of \mathcal{A}, in a uniform effective way. So we get a computable functor from Iso (\mathcal{B}) to Iso (\mathcal{A}) :
where Φ and Φ_{*} are Turing functionals (i.e., oracle Turing machines).

Computable infinitary interpretations

With an effective interpretation of \mathcal{A} in \mathcal{B}, every copy $\widehat{\mathcal{B}}$ of \mathcal{B} yields an $\widehat{\mathcal{B}}$-computable copy $\widehat{\mathcal{A}}$ of \mathcal{A}, in a uniform effective way. So we get a computable functor from Iso (\mathcal{B}) to Iso (\mathcal{A}) :

$$
G(\widehat{\mathcal{B}})=\Phi^{\Delta(\widehat{\mathcal{B}})} \quad \& \quad H(f)=\Phi_{*}^{\Delta(\widehat{\mathcal{B}}) \oplus f \oplus \Delta(\widetilde{\mathcal{B}})}: G(\widehat{\mathcal{B}}) \rightarrow G(\widetilde{\mathcal{B}}),
$$

where Φ and Φ_{*} are Turing functionals (i.e., oracle Turing machines).

Theorem (Harrison-Trainor, Melnikov, M, Montalbán, or HTM ${ }^{3}$)

Every computable functor arises from an effective interpretation (and vice versa).

Basic examples

To interpret $\overline{\mathbb{Q}}[X]$ in $\overline{\mathbb{Q}}$, we use as our domain

$$
\left\{\text { nonempty }\left(a_{0}, \ldots, a_{n}\right) \in \overline{\mathbb{Q}}^{<\omega}: a_{n}=0 \Longrightarrow n=0\right\}
$$

Another example: for a computable structure \mathcal{A}, every \mathcal{B} has a computable constant functor into Iso (\mathcal{A}), with $G(\widehat{\mathcal{B}})=\mathcal{A}$ and $H(f)=\mathrm{id}_{\mathcal{A}}$. By the theorem, \mathcal{A} must have an effective interpretation in each \mathcal{B}. In particular, the domain is $\mathcal{B}^{<\omega}$, and \sim identifies tuples of the same length, so that $n \in \mathcal{A}$ can be represented by the \sim-class of tuples of length n. A relation R_{i} on \mathcal{A} is represented by

$$
W_{\left(b_{1}, \ldots, b_{m}\right) \in R_{i}^{\mathcal{A}}}\left(\left|\vec{d}_{1}\right|=b_{1} \& \cdots \&\left|\vec{d}_{m}\right|=b_{m}\right)
$$

Since $R_{i}^{\mathcal{A}}$ is computable, both this and its negation are Σ_{1}^{c} formulas.

Given a computable functor, find the interpretation

We know that $\Phi_{*}^{\Delta(\widehat{\mathcal{B}}) \oplus i d \oplus \Delta(\widehat{\mathcal{B}})}$ is the identity map on $\Phi^{\Delta(\widehat{\mathcal{B}})}$.
Whenever we see σ, n, and i for which $\Phi_{*}^{\sigma \oplus(i d i n) \oplus \sigma}(i) \downarrow=i$, we know that σ, viewed as a possible initial segment of some $\Delta(\widehat{\mathcal{B}})$, is "enough information" for Φ_{*} to have recognized i. Now σ codes a particular configuration ζ_{σ} of elements $0,1, \ldots, n$ of $\widehat{\mathcal{B}}$ (including i). So we define the domain $D \subseteq B^{<\omega} \times \omega$ to be the set of pairs (\vec{b}, i) with

$$
\Phi_{*}^{\Delta(\vec{b}) \oplus(\mathrm{id}| | \vec{b} \mid) \oplus \Delta(\vec{b})}(i) \downarrow=i .
$$

and define $(\vec{b}, i) \sim(\vec{c}, j)$ if $\vec{b} \cup \vec{c}$ can be extended to a finite tuple \vec{d} for which some permutation τ of \vec{d} has $\tau\left(b_{i}\right)=c_{i}$ and $\tau(\vec{c}-\vec{b})=(\vec{b}-\vec{c})$ and

$$
\Phi_{*}^{\Delta(\vec{d}) \oplus \tau \oplus \Delta(\tau(\vec{d}))}(i) \downarrow=j \quad \& \quad \Phi_{*}^{\Delta(\tau(\vec{d})) \oplus \tau^{-1} \oplus \Delta(\vec{d})}(j) \downarrow=i .
$$

Finishing the interpretation

Finally, for a unary relation R, we define $(\vec{b}, i) \in D$ to satisfy R iff there is some $(\vec{c}, j) \sim(\vec{b}, i)$ for which $\phi^{\Delta(\vec{c})}$ halts and outputs 1 when we run it on (the code number of) the atomic formula $R(j)$.

All the formulas defining this interpretation are Σ_{1}^{c}, so the interpretation is effective.

Beyond effective interpretations

Question: what about more complicated interpretations?
Intepretations using Σ_{2}^{c} formulas can readily be viewed as functors into the jump. This continues to hold for Σ_{α}^{c} formulas, for $\alpha<\omega_{1}^{C K}$.

Defn. (various researchers), roughly stated

The jump \mathcal{B}^{\prime} of a countable structure \mathcal{B} has the same domain as \mathcal{B} and includes the same predicates, but also has a predicate for every Σ_{1}^{c} formula (with free variables v_{1}, \ldots, v_{n}) in the language of \mathcal{B}. That predicate holds of \vec{b} in \mathcal{B}^{\prime} iff the formula holds of \vec{b} in \mathcal{B}.

This includes predicates such as "the length of \vec{b} lies in \emptyset^{\prime}," which are not truly structural. We know $\operatorname{Spec}\left(\mathcal{B}^{\prime}\right)=\left\{\boldsymbol{d}^{\prime}: \boldsymbol{d} \in \operatorname{Spec}(\mathcal{B})\right\}$.

What about noncomputable infinitary formulas?

Now we allow interpretations using arbitrary $L_{\omega_{1} \omega}$ formulas (and still using arbitrarily long finite tuples). It remains true that every such interpretation \mathcal{I} of \mathcal{A} in \mathcal{B} yields a functor $F_{\mathcal{I}}$ from $\operatorname{Iso}(\mathcal{B})$ into Iso (\mathcal{A}). If the formulas are Σ_{1}^{∞} (but noncomputable), then the functor can still be expressed using Turing functionals, with $G(\widehat{\mathcal{B}})=\Phi^{S \oplus \Delta(\widehat{\mathcal{B}})}$ and $H(f)=\Phi_{*}^{S \oplus \Delta(\widehat{\mathcal{B}}) \oplus f \oplus \Delta(\widehat{\mathcal{B}})}$, where S is a fixed oracle capable of enumerating those formulas. If the formulas are Σ_{α}^{∞}, then we need to use jumps of the structures.

Notice that with an extra oracle allowed, we could define α-th jumps even for countable ordinals $\geq \omega_{1}^{C K}$: just fix an oracle which can compute the ordinal you need!

Main theorem on infinitary interpretation

Theorem (HTM ${ }^{2}$)

For each Baire-measurable functor $F: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})$, there is an infinitary interpretation \mathcal{I} of \mathcal{A} within \mathcal{B} such that F is naturally isomorphic to the functor $F_{\mathcal{I}}$. If F is Δ_{α}^{0} (in the lightface Borel hierarchy), then the interpretation can be done using Δ_{α}^{c} formulas, and the isomorphism between F and $F_{\mathcal{I}}$ can be taken to be Δ_{α}^{0}.

The proof uses a forcing notion, with $\mathcal{B}^{*}=\{$ finite 1-1 tuples from $\mathcal{B}\}$, so that generics are bijections (by genericity) from ω onto \mathcal{B}. We want to build several mutually generic structures (and examine how F acts on the maps between them), so we use product forcing with $\left(\mathcal{B}^{*}\right)^{k}$. The forcing notion will be definable in \mathcal{B} (at least, for a restricted sublanguage L^{\prime}), yielding the formulas for the interpretation.

Forcing language

We want to force statements of the form $F\left(\mathcal{B}_{g_{1}}, g_{2}^{-1} \circ g_{1}, \mathcal{B}_{g_{2}}\right)(i)=j$. (Here \mathcal{B}_{g} is the pullback of \mathcal{B} to the domain ω along $g: \omega \rightarrow \mathcal{B}$.)

Finitary formulas in the forcing language L and its restriction L^{\prime} :

- $\dot{g}_{i}^{-1} \circ \dot{g}_{j}(m)=n$ and its negation;
- $R^{\mathcal{B}_{g_{i}}}\left(a_{1}, \ldots, a_{n}\right)$ and its negation, for $\vec{a} \in \omega^{n}$ and R an n-ary relation in the language of \mathcal{B};
- finite conjunctions and disjunctions;
- $\dot{g}_{i}(m)=n$ and its negation. (These are not in L^{\prime} !)

We then build L and L^{\prime} by taking infinitary conjunctions and disjunctions.
Now F is a Borel functional, so $F\left(\mathcal{B}_{g}\right)$ computes its atomic diagram using infinitary conjunctions and disjunctions of statements from $\Delta\left(\mathcal{B}_{g}\right)$. So, for P in the signature of $\mathcal{A}, F\left(\mathcal{B}_{g}\right) \models P(\vec{j})$ is expressible in L^{\prime}, as is $F\left(\mathcal{B}_{g_{1}}, g_{2}^{-1} \circ g_{1}, \mathcal{B}_{g_{2}}\right)(i)=j$, preserving complexities.

Definition of forcing

$$
\begin{aligned}
& \text { Let } p=\left(\bar{b}_{1}, \ldots, \bar{b}_{k}\right) \in\left(\mathcal{B}^{*}\right)^{k} \text {. } \\
& \text { or } \exists n^{\prime} \neq n \bar{b}_{i}\left(n^{\prime}\right) \downarrow=\bar{b}_{j}(m) \downarrow \text {. } \\
& R^{k_{\sigma_{i}}}(\vec{a}) \quad \mathcal{B}=R\left(\bar{b}_{i}\left(a_{1}\right) \downarrow, \ldots, \bar{b}_{i}\left(a_{n}\right) \downarrow\right) . \\
& \neg R^{k_{g_{i}}}(\vec{a}) \quad \mathcal{B} \models \neg R\left(\bar{b}_{i}\left(a_{1}\right) \downarrow, \ldots, \bar{b}_{i}\left(a_{n}\right) \downarrow\right) . \\
& \dot{g}_{i}(m)=n \quad \bar{b}_{i}(m) \downarrow=n . \\
& \dot{g}_{i}(m) \neq n \quad \bar{b}_{i}(m) \downarrow \neq n \text { or } \exists m^{\prime} \neq m \bar{b}_{i}\left(m^{\prime}\right) \downarrow=n . \\
& \text { finite disjunction } p \text { forces some disjunct. } \\
& \text { finite conjunction } p \text { forces all conjuncts. } \\
& V_{n} \psi_{n} \quad \exists n \text { for which } p \Vdash_{\left(\mathcal{B}^{*}\right)^{k}} \psi_{n} . \\
& \bigwedge_{n} \psi_{n} \quad(\forall n)(\forall q \supseteq p)(\exists r \supseteq q) r \Vdash_{\left(\mathcal{B}^{*}\right)^{k}} \psi_{n} .
\end{aligned}
$$

Forcing Lemma

Say that $\mathbf{g}=\left(g_{1}, \ldots, g_{k}\right) \in\left(\mathcal{B}^{*}\right)^{k}$ is S-generic if the g_{i} are mutually $(\mathcal{S} \oplus \mathcal{B})$-hyperarithmetically generic functions $\omega \rightarrow \mathcal{B}$. We say that $\varphi[\mathbf{g}]$ holds if φ becomes true when each g_{i} in \mathbf{g} is substituted for \dot{g}_{i} in φ.

Lemma

Let φ be an S-computable sentence of the forcing language for $\left(\mathcal{B}^{*}\right)^{k}$.
(1) For S-generic $\mathbf{g}, \varphi[\mathbf{g}]$ holds iff, for some $p \subset \mathbf{g}, p \Vdash_{\left(\mathcal{B}^{*}\right)^{k}} \varphi$.
(2) If φ starts with Λ, then $p \Vdash_{\left(\mathcal{B}^{*}\right)^{k}} \varphi$ iff, for every S-generic $\mathbf{g} \supset p$, $\varphi[\mathbf{g}]$ holds.

The induction is mostly straightforward. Suppose φ is $\wedge_{n} \psi_{n}$ and some $p \subset \mathbf{g}$ forces φ. Now for each n, some $q \subset \mathbf{g}$ decides ψ_{n}. WLOG $p \subseteq q$, so some $r \supseteq q$ has $r \Vdash_{\left(\mathcal{B}^{*}\right)^{k}} \psi_{n}$, and so does q (since q decides $\left.\psi_{n}\right)$. By induction, then $\psi_{n}[\mathbf{g}]$ holds, and since this works for all $n, \varphi[\mathbf{g}]$ also holds.

The interpretation

We still need to produce our interpretation of \mathcal{A} in \mathcal{B}. Its domain D contains those $(\bar{b}, i) \in \mathcal{B}^{*} \times \omega$ for which

$$
(\bar{b}, \bar{b}) \Vdash_{\left(\mathcal{B}^{*}\right)^{2}} F\left(\mathcal{B}_{\dot{g}_{1}}, \dot{g}_{2}^{-1} \circ \dot{g}_{1}, \mathcal{B}_{\dot{g}_{2}}\right)(i)=i .
$$

We define $(\bar{b}, i) \sim(\bar{c}, j)$ iff:

$$
(\bar{b}, \bar{c}) \Vdash_{\left(\mathcal{B}^{*}\right)^{2}} F\left(\mathcal{B}_{\dot{g}_{1}}, \dot{g}_{2}^{-1} \circ \dot{g}_{1}, \mathcal{B}_{\dot{g}_{2}}\right)(i)=j
$$

If P (in the language of \mathcal{A}) has arity p, define the corresponding R in the interpretation to hold of $\left(\left(\bar{b}_{1}, i_{1}\right), \ldots,\left(\bar{b}_{p}, i_{p}\right)\right) \in D^{p}$ iff:

$$
\left(\exists \bar{c} \in \mathcal{B}^{*}\right)\left(\exists \vec{j} \in \omega^{p}\right)\left[\left(\bigwedge_{s \leq p}\left(\bar{b}_{s}, i_{s}\right) \sim\left(\bar{c}, j_{s}\right)\right) \&\left(\bar{c} \Vdash_{\left(\mathcal{B}^{*}\right)^{1}} \vec{j} \in P^{F\left(\mathcal{B}_{\dot{g}}\right)}\right)\right]
$$

Definability

To see that the formulas for the interpretation are $L_{\omega_{1} \omega}$ in the language of \mathcal{B}, one shows by induction that for each Σ_{α}^{c} formula φ in L^{\prime}, $\left\{p \in\left(\mathcal{B}^{*}\right)^{k}: p \Vdash_{\left(\mathcal{B}^{*}\right)^{k}} \varphi\right\}$ is Σ_{α}^{c}-definable in \mathcal{B}, and likewise for Π_{α}. (This relativizes easily to S-computable formulas.)

For finitary formulas, notice that $\{(\bar{b}, \bar{c}): \bar{b}(n)=\bar{c}(m)\}$ is definable by atomic formulas in \mathcal{B}, as is $\left\{\bar{b}: \mathcal{B} \models R\left(\bar{b}\left(a_{1}\right), \ldots, \bar{b}\left(a_{n}\right)\right)\right\}$.

If φ is $\bigvee_{n} \psi_{n}$, then $p \Vdash_{\left(\mathcal{B}^{*}\right)^{k}} \varphi$ iff some n has $p \Vdash_{\left(\mathcal{B}^{*}\right)^{k}} \psi_{n}$, which by induction is Π_{β}^{C}-definable in \mathcal{B} with $\beta<\alpha$.

For $\bigwedge_{n} \psi_{n}$, one needs to know that for every p and φ, some $q \supseteq p$ decides φ, and that p cannot force both φ and $(\neg \varphi)$.

Now, if φ is $\bigwedge_{n} \psi_{n}$, then $p \Vdash_{\left(\mathcal{B}^{*}\right)^{k}} \varphi$ iff, for all $q \supseteq p, q \Vdash_{\left(\mathcal{B}^{*}\right)^{k}}\left(\neg \psi_{n}\right)$. This is Σ_{β}^{C}-definable in \mathcal{B} for some $\beta<\alpha$, so $p \Vdash_{\left(\mathcal{B}^{*}\right)^{k}} \varphi$ is Π_{α}^{C}-definable.

$\mathcal{A} \cong\left(D / \sim, R_{0}, R_{1}, \ldots\right)$

We wish to define an isomorphism $\pi: \mathcal{A} \rightarrow D / \sim($ where $\mathcal{A}=F(\mathcal{B})$). For this we use a generic $g: \omega \rightarrow \mathcal{B}$, which yields a map $\pi_{g}: F\left(\mathcal{B}_{g}\right) \rightarrow D / \sim$. The value $\pi_{g}(i)$ is the least tuple $(\bar{c}, i) \in D$ with $\bar{C} \subset g$ (which exists, by genericity). Then compose π_{g} with $F\left(\mathcal{B}, g^{-1}, \mathcal{B}_{g}\right)$, which maps $\mathcal{A}=F(\mathcal{B})$ to $F\left(\mathcal{B}_{g}\right)$, since $g^{-1}: \mathcal{B} \rightarrow \mathcal{B}_{g}$:

$$
\mathcal{A} \longrightarrow F\left(\mathcal{B}_{g}\right) \longrightarrow D
$$

Of course, $F\left(\mathcal{B}, g^{-1}, \mathcal{B}_{g}\right)$ is known to be an isomorphism. The work here is to prove that π_{g} is an isomorphism, and the genericity of g is used heavily.

Finally, one shows that the composition $\pi_{g} \circ F\left(\mathcal{B}, g^{-1}, \mathcal{B}_{g}\right)$ is independent of the choice of the generic g.

Corollaries: automorphism groups

One can prove that, for every continuous homomorphism $h: \operatorname{Aut}(\mathcal{B}) \rightarrow \operatorname{Aut}(\mathcal{A})$, there is a Borel functor $G: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})$ with $G(\mathcal{B})=\mathcal{A}$, whose restriction to $\operatorname{Aut}(\mathcal{B})$ equals h.

Corollary (HTM ${ }^{2}$)

Every continuous homomorphism $h: \operatorname{Aut}(\mathcal{B}) \rightarrow \operatorname{Aut}(\mathcal{A})$ is induced by an infinitary interpretation of \mathcal{A} in \mathcal{B}.

There do exist discontinuous homomorphisms h, which clearly cannot arise from interpretations. (Cf. Evans-Hewitt, 1990.) However, every Baire-measurable homomorphism from $\operatorname{Aut}(\mathcal{B})$ into $\operatorname{Aut}(\mathcal{A})$ is continuous, hence induced by an interpretation.

Corollary (HTM ${ }^{2}$)

Every continuous isomorphism $h: \operatorname{Aut}(\mathcal{B}) \rightarrow \operatorname{Aut}(\mathcal{A})$ arises from a Borel adjoint equivalence between the categories Iso (\mathcal{A}) and $\operatorname{Iso}(\mathcal{B})$, and every such equivalence is induced by an infinitary bi-interpretation between \mathcal{A} and \mathcal{B}.

Corollaries: indiscernibles

Theorem (HTM ${ }^{2}$)

Let \mathcal{A} be countable. Then TFAE:
(1) There is a continuous homomorphism from $\operatorname{Aut}(\mathcal{A})$ onto S_{ω} (the permutation group of ω).
(2) There is an n, an $L_{\omega_{1} \omega}$-definable $D \subseteq A^{n}$, and an $L_{\omega_{1} \omega}$-definable equivalence relation $E \subseteq D^{2}$ with infinitely many equivalence classes, such that these E-classes are absolutely indiscernible (i.e., every permutation of the E-classes extends to an automorphism of \mathcal{A}).

In addition, a continuous isomorphism between $\operatorname{Aut}(\mathcal{A})$ and S_{ω} exists iff every element of \mathcal{A} is definable from the set of E-classes above. (That is, if we add one unary relation symbol to name each E-class, every element becomes $L_{\omega_{1} \omega}$-definable.)

Corollaries: order-indiscernibles

Analogous theorems hold for order-indiscernibles, with S_{ω} replaced by $\operatorname{Aut}(\mathbb{Q},<) . \mathcal{A}$ is not assumed to possess an order relation; the theorem proves the existence of an $L_{\omega_{1} \omega}$-definable dense order on the E-classes under which they are order-indiscernible.

