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Lown Boolean Algebras

Let A be a Boolean algebra, with domain ω. The Turing degree of A is
the join of the degrees of the operations ∧ and ∨ on A (equivalently,
the join of the degrees of ∧ and complementation on A).

Theorems
Every low Boolean algebra is isomorphic to a computable one.
(Downey-Jockusch.)
Every low2 Boolean algebra is isomorphic to a computable one.
(Thurber.)
Every low3 and low4 Boolean algebra is isomorphic to a
computable one. (Knight-Stob.)

It remains open whether this holds for low5 Boolean algebras. By work
of Harris and Montalbán, this problem is quantifiably more difficult.
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Reframing the Question

Defns.
The spectrum of a countable structureM is the set

Spec(M) = {deg(N ) : N ∼=M & dom(N ) = ω}.

So the question asks whether the spectrum of a Boolean algebra B
can contain a low5 degree without also containing the degree 0.
Boolean algebras are the only everyday class of structures for which it
is known that the spectrum cannot contain a low4 degree without also
containing 0.
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Spectra of Linear Orders

For linear orders, several questions about spectra are also open.

Question
Do there exist linear orders L0 and/or L1 with

Spec(L0) = {d : d > 0}?
Spec(L1) = {d : d ′ > 0′}?

That is, the spectrum of L1 should contain exactly the nonlow degrees.
For each n > 1, there does exist a linear order Ln whose spectrum
contains precisely the nonlown degrees d (those with d (n) > 0(n)).
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An Approach for Linear Orders

For the linear order questions, we do have a result using a related
notion of spectrum.

Defn.
Let R be a relation on a computable structureM. The spectrum of R
(as a relation onM) is the set

DgSpM(R) = {deg(S) : ∃ computable N with (N ,S) ∼= (M,R)}.

This measures the amount of information which can/must be coded
into the relation R onM. By restricting to computable structures N ,
we mean to measure only the complexity intrinsic to R, without letting
the complexity of the underlying structure confuse the issue.
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Theorems on Linear Orders

The computable dense linear order Q is of interest since it is
computably ultrahomogeneous and universal for countable linear
orders: every countable LO embeds into Q. Indeed, we have:

Theorem (Harizanov & M. 2007)
For every linear order A, there exists an embedding f : A ↪→ Q with
DgSpQ(f (A)) = Spec(A).

They also asked whether, for every unary R on Q, there exists a linear
order L with Spec(L) = DgSpQ(R).

Theorems (FHKKM 2011)
There exist relations R and U on Q such that DgSpQ(R) is not the
spectrum of any linear order, and DgSpQ(U) = {d : d ′ > 0′}.

It is unknown whether {d : d ′ > 0′} can be the spectrum of a LO.
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Construction for the FHKKM Thm.

By a result of Wehner, for each set C ⊆ ω, there exists a family F of
finite sets such that for all D:

F has an enumeration uniformly computable in D ⇐⇒ D >T C.

For a single finite set F = {n1,n2, . . . ,nk}, we code F into a relation
U = UF ,a,b on the interval [a,b] of Q:

-�ea eb
U doubly

dense︸ ︷︷ ︸ U doubly
dense︸ ︷︷ ︸uu0 v0u uu1 v1u uu2 · · · uuk vkuq q q q︸ ︷︷ ︸

n1

q q q q q︸ ︷︷ ︸
n2

q q q︸ ︷︷ ︸
nk

“Doubly dense” means that both U and its complement are dense in
that subinterval.
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Enumerating F from a U ′ Oracle

-�ea ebuu0 v0u uu1 v1u uu2 · · · uuk vkuq q q q︸ ︷︷ ︸
n1

q q q q q︸ ︷︷ ︸
n2

q q q︸ ︷︷ ︸
nk

With a U ′ oracle, but without knowing a or b, we can:
Recognize an open interval with end points in U and interior ⊆ U;
Decide whether each end point is some ui or vi , or whether it is
one of the ni points inside (vi−1,ui);
Eventually determine ni and enumerate it into F ;
Having found ui , identify vi , provided i < k ; and
Having found vi−1, identify ui−1, provided i > 1.

We will not ever be able to identify u0 or vk , nor will we ever compute k .
But the above is sufficient for us to enumerate F from our U ′-oracle.

And for ([a,b],U) ∼= ([ã, b̃], Ũ), a Ũ ′-oracle will also enumerate F .
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The Entire Relation U

The relation U on Q consists of the union of intervals of this form
UFi ,a,b, over densely many disjoint intervals [a,b] whose union is Q.
For each Fi , we consider each possible order of its (finitely many)
elements, and make sure that densely many intervals [a,b] have
UFi ,a,b, with that order on Fi , attached to them.

Then, for any (Q̃, Ũ) ∼= (Q,R), we can enumerate F uniformly in an
oracle for Ũ ′. Hence Ũ ′ >T C. If C = ∅′, this means that Ũ is nonlow,
so that DgSpQ(U) contains only nonlow degrees.
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All Nonlow Degrees Lie in DgSpQ(U)

Conversely, if D has D′ >T ∅′, then D′ can enumerate F. So with a
D-oracle, we use a D-computable approximation of D′ to try to
enumerate F and use it to build Ũ on Q.

If the approximation changes, we can always take the finitely much of
Ũ and its complement so far built and blend them into a future
construction.

When eventually the approximation has converged on enough of D′ to
give an enumeration of some Fi ∈ F which never changes again, we
wind up building the corresponding UFi ,a,b on densely many [a,b] ⊆ Q.
Using the density, we see that this Ũ has deg(Ũ) ∈ DgSpQ(U) and
also Ũ ≤T D. An easy coding makes D ≤T Ũ too, and this completes
the proof.
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Back to Boolean Algebras

The key to the FHKKM theorem was the ambient structure Q, and the
notion of double density: both U and its complement can be dense in
the same interval in Q. We used this to divide up Q so as to enumerate
F below U ′. If we only had U itself, as a linear order, the doubly dense
intervals [a,u0] and vk ,b] would blend into [u0, v0] and [uk , vk ], so U ′

would not enumerate F.

-�ea ebuu0 v0u uu1 v1u uu2 · · · uuk vkuq q q q︸ ︷︷ ︸
n1

q q q q q︸ ︷︷ ︸
n2

q q q︸ ︷︷ ︸
nk

Question
For Boolean algebras, with the computable atomless BA B as the
ambient structure, can we get a Boolean subalgebra A ⊆ B for which
DgSpB(A) contains a lown degree, but not 0?
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Facts about Boolean Algebras

The computable atomless Boolean algebra B is often represented
as the BA of (finite unions of) intervals [a,b) in Q under ∪ and ∩.
(We allow a = −∞ and/or b = +∞.)
This B is spectrally universal for BA’s, just as Q is for linear orders.
(Csima, Harizanov, M., Montalbán.)
Using results of Jockusch & Soare, H&M showed that there exists
a unary relation R on B whose spectrum contains a low degree,
but not 0. However, this R is not a Boolean subalgebra. Montalbán
asked whether the same can be done for a Boolean subalgebra.
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Double Density and A-atoms for Boolean Algebras

Defn.
Let A be a Boolean subalgebra of B. A is doubly dense within B if, for
every finite Boolean subalgebra B0 ⊆ B, (B,A) realizes every possible
finite extension of (B0,A ∩ B0) to a larger Boolean algebra and
Boolean subalgebra.

For a nonempty x ∈ B, we say that A is doubly dense within x if x ∈ A
and Ax = {a ∈ A : a ⊆ x} is doubly dense within the induced atomless
Boolean algebra Bx = {y ∈ B : y ⊆ x}.

Defn.
An x ∈ B is an A-atom if x ∈ A and x 6= ∅ and Ax = {∅, x}.

It is ΠA1 whether a given x ∈ B is an A-atom, and ΠA2 whether A is
doubly dense within a given x ∈ B.
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Coding a Fourth Jump C(4) into A

Now we build a specific Boolean subalgebra A of B.
Let C(4) = {n0 < n1 < n2 < · · · }. We first code n0 into A as follows:

Subdivide [0,1) into subintervals [0, 1
2), [1

2 ,
3
4), . . ., and put all these

subintervals (but not [0,1) itself) into A.
Do the same with [1,2), then [2,3), up to [2n0 − 1,2n0).
Put [0,2n0) into A.
Make A doubly dense within [2n0 ,2n0 + 1).
Go on to n1, putting [2n0 + 1,2n0 + 1 + 2n1) into A, etc.

We also make A doubly dense within (−∞,0), and close A under
complements and finite unions, so that A is a Boolean subalgebra of B.
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A-suprema

Defn.
An element x ∈ B is an A-supremum if x is the least upper bound in B
of an infinite set of A-atoms.
Such an x is a single A-supremum if x is not the union of two disjoint
A-suprema.
Finally, x ∈ B is a k-fold A-supremum if x is the union of k disjoint
single A-suprema.

The property of being a single A-supremum is ΠA3 : it holds iff:
A is not doubly dense within any y ⊆ x ; and
x contains infinitely many A-atoms; and
every A-atom a has either a ⊆ x or a ∩ x = ∅; and
(∀y ∈ B)[either x ∩ y or x − y is contained in a finite union of
A-atoms].

So the property of being a k -fold A-supremum is ΣA4 , uniformly in k .
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Decoding C(4) from A

The idea is that n ∈ C(4) iff A contains a 2n-fold A-supremum. This
property is ΣA4 . Therefore, if C is not low4, then C(4) 6≤ ∅(4), and there
can be no computable Ã ⊆ B with (B, Ã) ∼= (B,A).

We claim that, for every C, the process above builds a Boolean
subalgebra A such that deg(C) ∈ DgSpB(A). By taking C to be low5
but not low4, this will prove:

Theorem (M., 2011)
There exists a Boolean subalgebra A of the computable atomless BA
B such that DgSpB(A) contains a low5 degree, but not 0.
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Translating C for Coding

To show deg(C) ∈ DgSpB(A), we build a Boolean subalgebra D ≡T C
with (B,D) ∼= (B,A). To begin with, we choose a computable function f
such that

∀n
[
n ∈ C(4) ⇐⇒ (∃a∀b)f (n,a,b) ∈ FinC

]
.

and for which ∀n∃≤1a∀b f (n,a,b) ∈ FinC .

For each n and a, we choose a distinct interval In,a within [0,+∞) in B.
These are all separate, going out to +∞, and between one I-interval
and the next, we make D doubly dense. Every I-interval is placed into
D. Also, (−∞,0) is placed into D, and we make D doubly dense there.
(An easy coding on this part, using our C-oracle, also ensures that
C ≤T D.)
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Building the Subalgebra D ≤T C

In,a is partitioned into 2n distinct intervals, each of which stays out of D
and is further partitioned into ω-many intervals J0, J1, . . .. Every Ji in
each one goes into D.
Whenever f (n,a,b) “gets a chip,” we satisfy the next requirement for
double-density of D within Jb ∪ Jb+1 ∪ · · · , in each of the 2n-many
distinct intervals within In,a.

If n ∈ C(4), then ∃!a∀b f (n,a,b) ∈ FinC . For that a, each of the 2n

intervals is a single D-supremum (not in D), and their union, which
lies in D, is a 2n-fold D-supremum. For each other a, some b has
f (n,a,b) /∈ FinC , and all double-density requirements are satisfied
for the union of cofinitely many of the D-atoms in In,a.

Likewise, if n /∈ C(4), then for all a, some b has f (n,a,b) /∈ FinC ,
and again, In,a is the union of finitely many D-atoms and one
interval in which D is doubly dense.
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Getting (B,D) ∼= (B,A)

From the above, it is clear that D contains k -fold D-suprema for exactly
the same k for which A contained k -fold A-suprema, namely those
k = 2n with n ∈ C(4). So these A-suprema and D-suprema may be
paired up, for all n ∈ C(4) and also for all other k . we do make sure to
leave over an infinite supply of nonadjacent A-atoms.

Those n /∈ C(4) each left finitely many D-atoms in their In,a-intervals.
We pair these with the leftover A-atoms above.

We pair up (−∞,0) with itself, since it is both A-doubly dense and
D-doubly dense.

There remain infinitely many nonadjacent intervals in which A is
doubly dense, and infinitely many in which D is. Pairing these up
completes our isomorphism.
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A as a Boolean Algebra

Just as with linear orders, this construction used the ambient structure
B in an essential way. If we regard A as a BA in its own right, then all
k -fold A-suprema turn into single A-suprema, and the coding of C(4)

vanishes. Indeed, this A has a computable copy. So the question
remains:

Question
Does there exist a Boolean algebra whose spectrum contains a low5
degree, but does not contain 0?
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Further Questions

Another question is the subject of current work by R. Steiner:

Question
Do all Boolean subalgebras A ⊆ B for which DgSpB(A) contains a
low4 degree also have computable copies? If not, then how about
low3, low2, and low?

A negative answer to either question would give an example of a set of
Turing degrees which is the spectrum of a Boolean subalgebra of B,
but not of any Boolean algebra (as a structure), and would thus prove
that for BA’s, the ambient structure does enable extra information
content. For BA’s, it remains open whether this is possible. For LO’s,
the ambient structure Q does allow extra information to be coded, but
for graphs, the random graph as ambient structure does not allow any
information which could not already have been coded into some
countable graph.
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