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Preface

This manuscript is a revised version of my Master’s thesis which was originally
written in 1992 and was presented to the Mathematics Department of University
of Tehran. My initial goal was to give, in a language accessible to non-experts,
highlights of the 1978 influential paper of Il’yashenko on singular holomorphic fo-
liations on CP2 [I3], providing short, self-contained proofs. Parts of the exposition
in chapters 1 and 3 were greatly influenced by the beautiful work of Gómez-Mont
and Ortiz-Bobadilla [GO] in Spanish, which contains more material, different from
what we discuss here. It must be noted that much progress has been made in this
area since 1992, especially in local theory (see for instance the collection [I6] and
the references cited there). However, Hilbert’s 16th Problem and the Minimal Set
Problem are still unsolved.

There is a well-known connection between holomorphic foliations in dimension
2 and dynamics of iterations of holomorphic maps in dimension 1, but many believe
that this connection has not been fully exploited. It seems that some experts in
each area keep an eye on progress in the other, but so far there have been rather few
examples of a fruitful interaction. The conference on Laminations and Foliations
held in May 1998 at Stony Brook was a successful attempt to bring both groups
together. As a result, many people in dynamics expressed their interest in learning
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about holomorphic foliations. I hope the present manuscript will give them a flavor
of the subject and will help initiate a stronger link between the young researchers
in both areas.

My special thanks go to S. Shahshahani who encouraged me to study this sub-
ject years ago and supervised my Master’s thesis back in Iran. I gratefully acknowl-
edge the financial support of IPM (Tehran) during preparation of this manuscript.
A series of lectures given by C. Camacho and Yu. Il’yashenko in Trieste, Italy, in
1991 and 1992 were a source of inspiration to me. I am indebted to X. Gómez-
Mont and J. Milnor who read parts of this revised version and made very useful
comments. Finally, I would like to thank the Dynamical Systems group at Stony
Brook, especially A. Epstein, M. Lyubich and J. Milnor. Without the interest they
showed, I would have never found enough motivation to revise what I had written
6 years ago.

Introduction

Consider the differential equation

(∗)


dx

dt
= P (x, y)

dy

dt
= Q(x, y)

in the real plane (x, y) ∈ R2, where P and Q are relatively prime polynomials
with max{degP, degQ} = n. What can be said, Hilbert asked, about the number
and the location of limit cycles of (∗)? In particular, is it true that there are only
finitely many limit cycles for (∗)? If so, does there exist an upper bound H(n),
depending only on n, for the number of limit cycles of an equation of the form (∗)?
Surprisingly, the finiteness problem has been settled only in recent years, and the
existence and a possible value of H(n) is still unknown, even when n = 2!

In an attempt to answer the Hilbert’s question, H. Dulac “proved” the finiteness
theorem in 1926 [D]. Many years later, however, his “proof” turned out to be wrong.
In fact, in 1982 Yu. Il’yashenko found a fundamental mistake in Dulac’s argument
[I2], and gave a correct proof for the finiteness theorem later in 1987 [I4].

The second major attempt along this line was started in 1956 by a seminal
paper of I. Petrovskĭı and E. Landis [PL1]. They had a completely different and
perhaps more radical approach. They considered (∗) as a differential equation in
the complex plane (x, y) ∈ C2, with t now being a complex time parameter. The
integral curves of the vector field are now either singular points which correspond to
the common zeros of P and Q, or complex curves tangent to the vector field which
are holomorphically immersed in C2. This gives rise to a holomorphic foliation by
complex curves with a finite number of singular points. One can easily see that this
foliation extends to the complex projective plane CP2, which is obtained by adding
a line at infinity to the plane C2. The trajectories of (∗) in the real plane are then
the intersection of these complex curves with the plane Im x = Im y = 0.

What makes this approach particularly useful is the possibility of applying
methods of several complex variables and algebraic geometry over an algebraically
closed field, not available in the real case. Intuitively, the complexified equation
provides enough space to go around and observe how the integral curves behave,
whereas the real-plane topology of the trajectories is only the tip of a huge iceberg.
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Viewing (∗) as a complex differential equation, Petrovskĭı and Landis “proved”
that H(2) exists and in fact one can take H(2) = 3 [PL1]. Later on, they “proved”
the estimates

H(n) ≤


6n3 − 7n2 + n + 4

2
if n is even,

6n3 − 7n2 − 11n+ 16
2

if n is odd,

thus answering Hilbert’s question [PL2]. The result was regarded as a great achieve-
ment: Not only did they solve a difficult problem, but they introduced a truly novel
method in the geometric theory of ordinary differential equations. However, it did
not take long until a serious gap was discovered in their proof. Although the esti-
mate on H(n) could not be salvaged anymore, the powerful method of this work
paved the way for further studies in this direction.

In 1978, Il’yashenko made a fundamental contribution to the problem. Fol-
lowing the general idea of Petrovskĭı and Landis, he studied equations (∗) with
complex polynomials P,Q from a topological standpoint without particular atten-
tion to Hilbert’s question. In his famous paper [I3], he showed several peculiar
properties of the integral curves of such equations.

From the point of view of foliation theory, it may seem that foliations induced
by equations like (∗) form a rather tiny class among all holomorphic foliations on
CP2. However, as long as we impose a reasonable condition on the set of singular-
ities, it turns out that every singular holomorphic foliation on CP2 is induced by a
polynomial differential equation of the form (∗) in the affine chart (x, y) ∈ C2. The
condition on singularities is precisely what is needed in several complex variables:
the singular set of the foliation must be an analytic subvariety of codimension > 1,
which is just a finite set in the case of the projective plane.

Consider a closed orbit γ of a smooth vector field in the real plane. To describe
the behavior of trajectories near γ, one has the simple and useful concept of the
Poincaré first return map: Choose a small transversal Σ at some point p ∈ γ,
choose a point q ∈ Σ near p, and look at the first point of intersection with Σ of
the trajectory passing through q. In this way, one obtains the germ of a smooth
diffeomorphism of Σ fixing p. The iterative dynamics of this self-map of Σ reflects
the global behavior of the trajectories near γ.

For a singular holomorphic foliation on CP2 induced by an equation of the
form (∗), a similar notion, called the monodromy mapping, had already been used
by Petrovskĭı and Landis, and extensively utilized by Il’yashenko. A closed orbit
should now be replaced by a non-trivial loop γ on the leaf passing through a given
point p, small transversal Σ is a 2-disk, and the result of traveling over γ on the
leaf passing through a point on Σ near p gives the germ of a biholomorphism of Σ
fixing p, called the monodromy mapping associated with γ. Note that all points in
the orbit of a given point on Σ under this biholomorphism lie in the same leaf. In
this way, to each non-trivial loop in the fundamental group of the leaf we associate
a self-map of Σ reflecting the behavior of nearby leaves as one goes around the
loop. It is easily checked that composition of loops corresponds to superposition of
monodromy mappings, so the fundamental group of the leaf maps homomorphically
to a subgroup of the group of germs of biholomorphisms of Σ fixing p; the latter
subgroup will be called the monodromy group of the leaf. Thus a global problem
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can be reduced to a large extent to the study of germs of biholomorphisms of C
fixing (say) the origin. The group of all these germs is denoted by Bih0(C).

Now here is the crucial observation: For “almost every” equation of the form
(∗), the line at infinity of CP2 with finitely many singular points deleted is a leaf
of the extended foliation. On the other hand, no leaf can be bounded in C2 (this
is in fact more than just the Maximum Principle), so every leaf has a point of
accumulation on the line at infinity. Therefore, the monodromy group of the leaf
at infinity, which is finitely-generated since the leaf is homeomorphic to a finitely-
punctured Riemann sphere, gives us much information about the global behavior
of all leaves.

What Il’yashenko observed was the fact that almost all the dynamical proper-
ties of leaves have a discrete interpretation in terms of finitely-generated subgroups
of Bih0(C), the role of which is played by the monodromy group of the leaf at
infinity. Therefore, he proceeded to study these subgroups and deduced theorems
about the behavior of leaves of singular holomorphic foliations. The density and
ergodicity theorems for these foliations are direct consequences of the correspond-
ing results for subgroups of Bih0(C). The density theorem asserts that for “almost
every” equation (∗), every leaf other than the leaf at infinity is dense in CP2. The
ergodicity theorem says that “almost every” foliation induced by an equation of the
form (∗) is ergodic, which means that every measurable saturated subset of CP2

has zero or full measure.
Yet another advantage of the reduction to the discrete case is the possibility

of studying consequences of equivalence between two such foliations. Two singular
holomorphic foliations on CP2 are said to be equivalent if there exists a homeomor-
phism of CP2 which sends each leaf of the first foliation to a leaf of the second one.
Such an equivalence implies the equivalence between the monodromy groups of the
corresponding leaves at infinity. The latter equivalence has the following meaning:
G,G′ ⊂ Bih0(C) are equivalent if there exists a homeomorphism h of some neigh-
borhood of 0 ∈ C, with h(0) = 0, such that h◦f ◦h−1 ∈ G′ if and only if f ∈ G. The
correspondence f 7→ h ◦ f ◦h−1 is clearly a group isomorphism. Under typical con-
ditions, one can show that the equivalence between two subgroups of Bih0(C) must
in fact be holomorphic. This gives some invariants of the equivalence classes, and
reveals a rigidity phenomenon. Applying these results to the monodromy groups
of the leaves at infinity, one can show the existence of moduli of stability and the
phenomenon of absolute rigidity for these foliations.

All the above results are proved under typical conditions on the differential
equations. After all, the existence of the leaf at infinity (an algebraic leaf) plays a
substantial role in all these arguments. Naturally, one would like to study foliations
which do not satisfy these conditions, in particular, those which do not admit any
algebraic leaf. From this point of view, the dynamics of these foliations is far from
being understood. The major contributions along this line have been made by the
Brazilian and French schools. In their interesting paper [CLS1], C. Camacho, A.
Lins Neto and P. Sad study non-trivial minimal sets of these foliations and show
several properties of the leaves within a non-trivial minimal set. A minimal set
of a foliation on CP2 is a compact, saturated, non-empty subset of CP2 which
is minimal with respect to these three properties. A non-trivial minimal set is
one which is not a singular point. It follows that the existence of a non-trivial
minimal set is equivalent to the existence of a leaf which does not accumulate on
any singular point. The fact that non-trivial minimal sets do not exist when the
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foliation admits an algebraic leaf makes the problem much more challenging. The
major open problem in this context is the most primitive one: “Does there exist a
singular holomorphic foliation on CP2 having a non-trivial minimal set?”

An intimately connected question is about limit sets of the leaves of these
foliations. The classical theorem of Poincaré−Bendixson classifies all possible limit
sets for foliations on the 2-sphere: Given a smooth vector field on the 2-sphere with
a finite number of singular points, the ω- (or α-) limit set of any point is either a
singular point or a closed orbit or a chain of singular points and trajectories starting
from one of these singular points ending at another. This enables us to understand
the asymptotic behavior of all trajectories. Naturally, one is interested in proving
a complex version of the Poincaré−Bendixson Theorem for foliations on CP2. Now
the concept of the limit set is defined as follows: Take a leaf L and let K1 ⊂ K2 ⊂
· · · ⊂ Kn ⊂ · · · be a sequence of compact subsets of L, with

⋃
n≥1Kn = L. Then

the limit set of L is by definition the intersection
⋂
n≥1 LrKn. Incidentally, the

limit set of every non-singular leaf is non-vacuous, since it can be shown that no
non-singular leaf can be compact. Despite some results in this direction (see e.g.
[CLS2]), the problem of classifying possible limit sets is almost untouched.

Finally, it should be mentioned how Hilbert’s question for a real equation (∗) is
interpreted in the complex language. It is easy to prove that a limit cycle of a real
equation (∗) is a homotopically non-trivial loop on the corresponding leaf of the
complexified equation. So any piece of information about the fundamental groups
of leaves could be a step toward understanding the limit cycles. A non-trivial loop
on a leaf of a complex equation (∗) is said to be a (complex) limit cycle if the
germ of its associated monodromy is not the identity map. Il’yashenko has shown
that “almost every” equation (∗) has a countably infinite number of homologically
independent (complex) limit cycles; nevertheless this result does not have a direct
bearing on Hilbert’s question. A complex version of the finiteness problem may
be the following: Can the fundamental group of a (typical) leaf of such foliations
be infinitely-generated? If not, does there exist an upper bound, depending only
on the degree of P and Q in (∗), for the number of generators of the fundamental
groups? Such questions, as far as I know, have not yet been answered.

1. Singular Holomorphic Foliations by Curves

This chapter introduces the concept of a singular holomorphic foliation by
(complex) curves on a complex manifold, which will be quite essential in subsequent
chapters. We will assume that the dimension of the singular set is small enough
to allow easy application of several complex variables techniques. Moreover, when
the underlying manifold is CP2 (2-dimensional complex projective space), the very
special geometry of the space allows us to apply some standard algebraic geometry
to show that all such foliations are induced by polynomial 1-forms ω on CP2, the
leaves being the solutions of ω = 0. The main tools here are extension theorems of
several complex variables and the rigidity properties of holomorphic line bundles
on projective spaces.

1.1. Holomorphic Foliations on Complex Manifolds. Let us start with
the most basic definition in this subject.

Definition 1.1. Let M be a complex manifold of dimension n and 0 < m < n.
A (non-singular) holomorphic foliation F of codimension m on M is an analytic
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atlas A = {(Ui, ϕi)}i∈I for M which is maximal with respect to the following
properties:

(i) For each i ∈ I, ϕi is a biholomorphism Ui → Ai ×Bi, where Ai and Bi are
open polydisks in Cn−m and Cm, respectively.

(ii) If (Ui, ϕi) and (Uj , ϕj) are in A with Ui ∩ Uj 6= ∅, then ϕij := ϕi ◦ ϕ−1
j :

ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) has the form

ϕij(z, w) = (ψij(z, w), ηij(w)),(1.1)

where (z, w) ∈ Cn−m×Cm, and ψij and ηij are holomorphic mappings into
Cn−m and Cm, respectively.

Condition (ii) may also be expressed in the following way: Using the coordinates
(z1, . . . , zn) for Cn, the mapping ϕij : (z1, . . . , zn) 7→ (ϕ1

ij, . . . , ϕ
n
ij) is required to

satisfy ∂ϕkij/∂zl = 0 for n−m+ 1 ≤ k ≤ n and 1 ≤ l ≤ n−m.
Each (Ui, ϕi) ∈ A is called a foliation chart (or a flow box) for F . Given any

foliation chart (Ui, ϕi), the sets ϕ−1
i (Ai × {w}), w ∈ Bi, are called plaques of F

in Ui. Evidently, the plaques form a partition of the Ui into connected pieces of
complex submanifolds of dimension n−m. Each p ∈M lies in at least one plaque.
Two points p and q are called equivalent if there exists a sequence P1, . . . , Pk of
plaques such that p ∈ P1, q ∈ Pk, and Pi ∩ Pi+1 6= ∅, 1 ≤ i ≤ k − 1. The leaf of F
through p, denoted by Lp, is the equivalence class of p under this relation. Each
leaf has a natural structure of a connected (n −m)-dimensional complex manifold
which is holomorphically immersed in M. Two leaves are disjoint or else identical.

Remark 1.2. A holomorphic foliation of codimension (n − 1) on a complex
manifold M of dimension n is also called a holomorphic foliation by curves. Its
leaves are immersed Riemann surfaces. As we will discuss later, the field of complex
lines tangent to the leaves of such a foliation determines a holomorphic line bundle
on M .

Remark 1.3. It can be easily checked that the above definition is equivalent to
the following, which is more natural from the geometric viewpoint: A holomorphic
foliation F of codimension m on an n-dimensional complex manifold M is a parti-
tion of M into disjoint connected subsets {Lα} (called the leaves of F) such that for
each p ∈M there exists a chart (U, ϕ) around p and open polydisks A ⊂ Cn−m and
B ⊂ Cm with the property that ϕ : U → A × B maps the connected components
of Lα ∩U to the level sets A × {w}, w ∈ B.

1.2. Singular Holomorphic Foliations by Curves. Now we study those
foliations which are allowed to have some “tame” singularities. Recall that a subset
E of a complex manifold M is called an analytic subvariety if each p ∈ M has a
neighborhood U on which there are holomorphic functions fj : U → C, 1 ≤ j ≤ k,
such that E ∩ U = {x ∈ U : fj(x) = 0, 1 ≤ j ≤ k}. Evidently, every analytic
subvariety of M is closed, hence M r E is itself a complex manifold of the same
dimension as M .

Definition 1.4. Let M be a complex manifold. A singular holomorphic fo-
liation by curves F on M is a holomorphic foliation by curves on M r E, where
E is an analytic subvariety of M of codimension > 1. A point p ∈ E is called a
removable singularity of F if there exists a chart (U, ϕ) around p, compatible with
the atlas A of F restricted to M rE, in the sense that ϕ ◦ ϕ−1

i and ϕi ◦ ϕ−1 have
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Figure 1. Straightening a holomorphic vector field near a non-
singular point.

the form (1.1) for all (Ui, ϕi) ∈ A with U ∩ Ui 6= ∅. The set of all non-removable
singularities of F in E is called the singular set of F , and is denoted by sing(F).

Naturally, as in the case of real 1-dimensional singular foliations on real surfaces,
the most important examples of singular holomorphic foliations are provided by
vector fields.

Example 1.5. Let X =
∑n
i=1 fi ∂/∂zi be a holomorphic vector field on a

domain U ⊂ Cn. We further assume that the Jacobian (∂fi/∂zj)1≤i,j≤n has rank
> 1 throughout the domain U . Then X vanishes on the analytic variety {z :
f1(z) = · · · = fn(z) = 0} which has codimension > 1 (possibly the empty set).
By definition, a solution of the differential equation

·
z= X(z) with initial condition

p ∈ U is a holomorphic mapping η : D(0, r) → U such that η(0) = p and for
every T ∈ D(0, r), dη(T )/dT = X(η(T )). The image η(D(0, r)) is called a local
integral curve passing through p. By the theorem of existence and uniqueness for
the solutions of holomorphic differential equations [IY], each p has such a local
integral curve passing through it, and two local integral curves through p coincide
in some neighborhood of p. It follows that if X(p) = 0, then its integral curve
will be the point p itself. If X(p) 6= 0, a local integral curve through p is a disk
holomorphically embedded in U .

Now suppose that X(p) 6= 0. By the Straightening Theorem for holomorphic
vector fields [IY], there exist neighborhoods Up ⊂ U of p and V ⊂ Cn of 0 and a
biholomorphism ϕ : Up → V such that ϕ(p) = 0 and ϕ∗(X|Up) = ∂/∂z1 (Fig. 1).
Thus the connected components of the intersection of the local integral curves with
Up are mapped by ϕ to “horizontal” lines {z2 = const., . . . , zn = const.}. In other
words, X induces a singular holomorphic foliation by curves on U , denoted by FX ,
with sing(FX) = {X = 0}, whose plaques are local integral curves of X.

Conversely, every singular holomorphic foliation by curves is locally induced by
a holomorphic vector field (compare Proposition 1.11 below).

Here is one property of foliations which is quite elementary and will be fre-
quently used in subsequent arguments:
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Proposition 1.6. Let F be a singular holomorphic foliation by curves on M.
Suppose that p ∈ Lq. Then Lp ⊂ Lq.

Proof. There is nothing to prove if p ∈ sing(F), so let p be non-singular. Let
p′ ∈ Lp and join p to p′ by a continuous path γ : [0, 1]→ Lp (thus avoiding sing(F))
such that γ(0) = p and γ(1) = p′. Choose a partition 0 = t0 < t1 < · · · < tn = 1
of [0,1] and foliation charts (Ui, ϕi), 0 ≤ i ≤ n − 1, such that γ[ti, ti+1] ⊂ Ui. It
follows from the local picture of plaques in ϕi(Ui) that γ(t1) ∈ Lq, so by repeating
this argument, p′ ∈ Lq. Since p′ was arbitrary, we have Lp ⊂ Lq.

Example 1.7. Example 1.5 has a counterpart in the context of differential
forms defined on domains in Cn. Our main example which will be seen to be quite
general is the following. Let ω = P (x, y)dy −Q(x, y)dx be a holomorphic 1-form
on C2, where P and Q are relatively prime polynomials. By definition, the singular
foliation induced by ω, Fω : {ω = 0}, is the one induced on C2 by the vector
field X(x, y) = P (x, y)∂/∂x +Q(x, y)∂/∂y as in Example 1.5. In the language of
1-forms its leaves are obtained as follows: Take any p ∈ C2 at which P and Q are
not simultaneously zero, and let η : T 7→ (x(T ), y(T )) be a holomorphic mapping
on some disk D(0, r) which satisfies η(0) = p and

P (x(T ), y(T )) y′(T ) −Q(x(T ), y(T ))x′(T ) = 0(1.2)

for all T ∈ D(0, r). The plaque through p is the image under η of some possibly
smaller neighborhood of 0. Note that sing(Fω) is a finite set by Bezout’s Theorem.
Observe that

Fω = Ffω(1.3)

for all holomorphic functions f : C2 → C which are nowhere zero. It is exactly this
property which allows us to extend the foliation from C2 to the complex projective
plane CP2.

Convention 1.8. For the rest of the manuscript, the term “Singular Holo-
morphic Foliation by Curves” will be abbreviated as “SHFC”.

Now we make a digression to study polynomial SHFC’s on CP2 which are
obtained by extending an Fω induced by a polynomial 1-form ω on C2.

1.3. Geometry of CP2. Consider C3 r {(0, 0, 0)} with the action of C∗ de-
fined by λ · (x0, x1, x2) = (λx0, λx1, λx2). The orbit of (x0, x1, x2) is denoted by
[x0, x1, x2]. The quotient of C3 r {(0, 0, 0)} modulo this action (with the quotient
topology) is called the complex projective plane CP2, and the natural projection
C3 r {(0, 0, 0)} → CP2 is denoted by π. CP2 can be made into a compact complex
2-manifold in the following way: Cover CP2 by three open sets

Ui := {[x0, x1, x2] : xi 6= 0}, i = 0, 1, 2(1.4)

and define homeomorphisms φi : C2 → Ui by

φ0(x, y) = [1, x, y]
φ1(u, v) = [u, 1, v]
φ2(r, s) = [r, s, 1].

(1.5)
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[0,0,1]

L

L

[1,0,0]

[0,1,0]

L1 2

0

Figure 2. Geometry of CP2.

The change of coordinates φij = φ−1
j ◦ φi are given by

φ01(x, y) = φ−1
1 ◦ φ0(x, y) =

(
1
x
,
y

x

)
φ12(u, v) = φ−1

2 ◦ φ1(u, v) =
(
u

v
,

1
v

)
φ20(r, s) = φ−1

0 ◦ φ2(r, s) =
(
s

r
,

1
r

)
.

(1.6)

These being holomorphic, the atlas {(Ui, φ−1
i ), i = 0, 1, 2} determines a unique

complex structure on CP2 for which the φi are biholomorphisms. Intuitively, CP2

is a one-line compactification of C2 for the following reason: Each (Ui, φ−1
i ) is

called an affine chart of CP2. Each Li := CP2 r Ui has a natural structure of the
Riemann sphere; for example L0 = {[0, x, y] : (x, y) ∈ C2} can be identified with
{[x, y] : (x, y) ∈ C2} ' CP1 under the restriction to C2 of the action of C∗. Each Li
is called the line at infinity with respect to the affine chart (Ui, φ−1

i ). Fig. 2 shows
the relative position of the lines Li.

It is easy to check that given any projective line L in CP2, i.e., the projection
under π of any plane ax0 + bx1 + cx2 = 0 in C3, one can choose a biholomorphism
φ : C2 → CP2rL. In this way, L may be viewed as the line at infinity with respect
to some affine chart.

1.4. Algebraic Curves in CP2. Suppose that P = P (x, y) =
∑
aij x

iyj is a
polynomial of degree k on (x, y) ∈ C2. Using (1.6), we write P in two other affine
charts as

P ◦ φ10(u, v) = P

(
1
u
,
v

u

)
= u−k

∑
aij u

k−(i+j)vj

P ◦ φ20(r, s) = P

(
s

r
,

1
r

)
= r−k

∑
aij r

k−(i+j)si.

Set P ′(u, v) =
∑
aij u

k−(i+j)vj and P ′′(r, s) =
∑
aij r

k−(i+j)si. Then the algebraic
curve SP in CP2 is defined as the compact set

φ0{(x, y) : P (x, y) = 0} ∪ φ1{(u, v) : P ′(u, v) = 0} ∪ φ2{(r, s) : P ′′(r, s) = 0}.
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Another way of viewing this curve is by introducing the homogeneous polynomial
P̃ of degree k in C3 as

P̃ (x0, x1, x2) := xk0 P

(
x1

x0
,
x2

x0

)
=
∑

aij x
i
1x
j
2x
k−(i+j)
0 .

It is then easily verified that SP = π{(x0, x1, x2) : P̃ (x0, x1, x2) = 0}. A projective
line is an algebraic curve SP for a polynomial P of degree 1.

1.5. Extending Polynomial 1-froms on CP2. Consider a polynomial 1-
from ω = Pdy −Qdx on C2 and its corresponding SHFC Fω, as in Example 1.7.
Using the coordinate map φ0 in (1.5) one can transport Fω to U0. To complete
this picture to all of CP2 we have to define the foliation on L0. This can be done
as follows. First transport Fω to the affine chart (u, v). To this end, write

ω̃(u, v) := (φ∗10ω)(u, v)

= P

(
1
u
,
v

u

)
d
( v
u

)
−Q

(
1
u
,
v

u

)
d

(
1
u

)
= u−1P

(
1
u
,
v

u

)
dv − u−2

{
vP

(
1
u
,
v

u

)
−Q

(
1
u
,
v

u

)}
du.

Set R(x, y) := yP (x, y) − xQ(x, y). Then

ω̃(u, v) = u−1P

(
1
u
,
v

u

)
dv − u−1R

(
1
u
,
v

u

)
du.

Let k be the least positive integer such that ω′ := uk+1ω̃ is a polynomial 1-form on
(u, v) ∈ C2. Two foliations Fω′ and Fω̃ are then identical on {(u, v) ∈ C2 : u 6= 0}
by (1.3); however, Fω′ which is defined on all of (u, v) ∈ C2 is a well-defined
extension of Fω̃. Now transport Fω′ by φ1 to U1. It is easily checked that the
foliation induced by (Fω, φ0) coincides with that of (Fω′ , φ1) on U0 ∩ U1.

In a similar way, Fω can be transported to the affine chart (r, s) by φ20 to
obtain a foliation Fω′′ induced by a polynomial 1-form ω′′ on (r, s) ∈ C2. Then
Fω′′ is transported to U2 by φ2.

We still denote the extended foliation on CP2 by Fω and frequently identify
Fω,Fω′,Fω′′ with their transported companions on CP2. Thus, without saying
explicitly, the affine charts (x, y), (u, v), and (r, s) are considered as subsets of CP2

by identifying them with U0, U1 and U2, respectively.
It follows from the above construction that in each affine chart, Fω is given by

the integral curves of the following vector fields:

In (x, y) ∈ U0, X0 = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

In (u, v) ∈ U1, X1 = ukP

(
1
u
,
v

u

)
∂

∂u
+ ukR

(
1
u
,
v

u

)
∂

∂v

In (r, s) ∈ U2, X2 = −rlQ
(
s

r
,
1
r

)
∂

∂r
+ rlR

(
s

r
,
1
r

)
∂

∂s
,

(1.7)

where k and l are the least positive integers making the above into polynomial vector
fields. This shows that Fω is an SHFC on CP2 with sing(Fω) = SP ∩ SQ ∩ SR.
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1.6. Holomorphic Vector Fields on CP2. So far it should seem to be that
leaves of the SHFC’s Fω constructed on CP2 are realized as integral curves of
holomorphic line fields on CP2 rather than vector fields. This distinction should
have been observed when we multiplied ω̃ by a power of u to cancel the pole at
u = 0 (compare §1.5). In fact, the special geometry of the projective plane puts
a severe restriction on holomorphic vector fields on CP2. As a result, very few
SHFC’s on CP2 can be globally described by a single holomorphic vector field.

The following proposition describes all holomorphic vector fields on CP2. The
same characterization is true for CPn, as can be shown by a coordinate-free argu-
ment [CKP], but here we present a very elementary proof for CP2.

Proposition 1.9. Every holomorphic vector field on CP2 lifts to a linear vector
field on C3.

Proof. Let X be a holomorphic vector field on CP2, which has the following
expressions in the three affine charts U0, U1, and U2:

In (x, y) ∈ U0 : X0 = f0
∂

∂x
+ g0

∂

∂y

In (u, v) ∈ U1 : X1 = f1
∂

∂u
+ g1

∂

∂v

In (r, s) ∈ U2 : X2 = f2
∂

∂r
+ g2

∂

∂s
.

Since (φ01)∗X0 = X1 and (φ02)∗X0 = X2, we obtain

f1(u, v) = −u2f0

(
1
u
,
v

u

)
(1.8)

g1(u, v) = −uv f0

(
1
u
,
v

u

)
+ u g0

(
1
u
,
v

u

)
,(1.9)

and

f2(r, s) = −r2g0

(
s

r
,
1
r

)
(1.10)

g2(r, s) = rf0

(
s

r
,
1
r

)
− rs g0

(
s

r
,

1
r

)
.(1.11)

Consider the power series expansions

f0(x, y) =
∑
i,j≥0

aij x
iyj and g0(x, y) =

∑
i,j≥0

bij x
iyj .

Since f1, g1, f2, g2 are holomorphic on C2, we have the following:

aij = 0 if i+ j ≥ 3 (by(1.8))

bij = 0 if i+ j ≥ 3 (by(1.9))

a02 = b20 = 0 a20 = b11 b02 = a11 (by(1.9))
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and (1.10) and (1.11) give no new relations. Now it can be easily checked that X
lifts to the linear vector field

X̃ = (x0 − a20x1 − a11x2)
∂

∂x0

+(a00x0 + (a10 + 1)x1 + a01x2)
∂

∂x1

+(b00x0 + b10x1 + (b01 + 1)x2)
∂

∂x2

on C3. Conversely, every linear vector field on C3 descends to a holomorphic vector
field on CP2, and we are done.

As a result, every holomorphic vector field on CP2 is seen in the affine chart
(x, y) as X0 = f0 ∂/∂x+ g0 ∂/∂y, where

f0(x, y) = a1 + a2x+ a3y + x(Ax+ By)
g0(x, y) = b1 + b2x+ b3y + y(Ax +By),(1.12)

for some complex constants ai, bi, A, B.

Our next goal is to give in detail the proof of the remarkable fact that every
SHFC on CP2 is of the form Fω for some polynomial 1-form ω (equivalently, a
polynomial vector field) on C2. The same proof works for every CPn, n ≥ 2, with
only minor modifications. We refer the reader to [GO] for a more general set up.
Another proof for this fact can be given by methods of algebraic geometry (see
[I3]).

The proof goes along the following lines: First we associate to each SHFC on
a complex manifold M a (holomorphic) line bundle B′ ↪→ TM over M r E (E
is an analytic subvariety of M , as in Definition 1.3). Then we show that B′ may
be extended to a tangent line bundle B over M (Theorem 1.12). This establishes
a natural relationship between SHFC’s on M and holomorphic “bundle maps”
β : B → TM . Rigidity of line bundles in the case M = CP2 will then be applied
to show that each bundle map β : B → TCP2 is induced by a polynomial 1-form
on C2 (Corollary 1.17). The foundational material on holomorphic line bundles on
complex manifolds used here can be found in [GH] or [Kod].

1.7. SHFC’s and Line Bundles. Let F be an SHFC on a complex manifold
M . Let {(Ui, ϕi)}i∈I be the collection of foliation charts on M ′ := M r E. By
(1.1) the transition functions ϕij = ϕi ◦ ϕ−1

j = (ϕ1
ij, . . . , ϕ

n
ij) satisfy ∂ϕkij/∂z1 = 0

for 2 ≤ k ≤ n. Applying the chain rule to ϕ1
ij = ϕ1

ik ◦ ϕ1
kj, we obtain

∂ϕ1
ij

∂z1
(p) =

∂ϕ1
ik

∂z1
(ϕkj(p))

∂ϕ1
kj

∂z1
(p)(1.13)

for every p ∈ ϕj(Ui ∩ Uj ∩ Uk). Define ξij : Ui ∩ Uj → C∗ by

ξij(p) :=
∂ϕ1

ij

∂z1
(ϕj(p)).(1.14)

The cocycle relation ξij = ξik · ξkj on Ui ∩ Uj ∩ Uk follows from (1.13). Let B′ be
the holomorphic line bundle on M ′ defined by this cocycle. This line bundle has a
natural holomorphic injection into TM in such a way that the image of the fiber
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over p under this injection coincides with the tangent line to Lp at p. To see this,
observe that

B′ =
⋃
i∈I

(Ui ×C)/ ∼,

where (p, t) ∈ Ui × C is identified under ∼ with (q, t′) ∈ Uj × C if and only if
p = q and t = ξij(p)t′. For p ∈ M ′, let B′p be the fiber of B′ over p and define
β′i : Ui × C→ TM |Ui by

β′i(p, t) := t((ϕ−1
i )∗

∂

∂z1
)(p).(1.15)

It follows then from (1.14) that if p ∈ Ui ∩ Uj and (p, t) ∼ (p, t′), then β′i(p, t) =
β′j(p, t′). Therefore, the β′i give rise to a holomorphic bundle map β′ : B′ → TM
which is injective and β′(B′p) is the tangent line to Lp at p, a subspace of TpM .

Can B′ be extended to a line bundle over all of M? The crucial point for the
answer, which is affirmative, is the condition that the codimension of E is > 1.
Recall the following classical theorem of F. Hartogs (see for example [W] for a
proof):

Theorem 1.10. Let U ⊂ Cn be a domain and E ⊂ U be an analytic subvariety
of U of codimension > 1. Then every holomorphic (resp. meromorphic) function
on U r E can be extended to a holomorphic (resp. meromorphic) function on U.

Using this theorem one can extend line bundles induced by SHFC’s. To this
end, we have to prove the following simple but remarkable proposition (compare
[GO]). The letter E will denote an analytic subvariety of the ambient space which
satisfies Definition 1.4.

Proposition 1.11. Let U ⊂ Cn be a domain and F be an SHFC on U . Then
for each p ∈ U there exists a holomorphic vector field X on some neighborhood Up
of p such that X is non-vanishing on Up r E and is tangent to the leaves of F .
This X is unique up to multiplication by a holomorphic function which is non-zero
in a neighborhood of p. Moreover, q ∈ Up ∩ E is a removable singularity of F if
and only if X(q) 6= 0.

Proof. There is nothing to prove if p 6∈ E, so let p ∈ E and let Up be a
connected neighborhood of p in U . Then U ′p := Up r E is open and connected.
Each q ∈ U ′p has a small connected neighborhood Uq ⊂ U ′p on which there is a
holomorphic vector field representing F on Uq . Without loss of generality we may
assume that the first component of these vector fields is not identically zero over U ′p.
If (Y1, . . . , Yn) is the vector field representing F on Uq , then (1, Y2/Y1, . . . , Yn/Y1)
is a meromorphic vector field on Uq representing F on Uq r {zeros of Y1}. Repeat-
ing this argument for each q ∈ U ′p, and noting that away from E the vector field
representing F is uniquely determined up to multiplication by a non-vanishing holo-
morphic function, one concludes that there are meromorphic functions F2, . . . , Fn
defined on U ′p such that (1, F2, . . . , Fn) represents F on U ′p r {poles of the Fi in
U ′p}. By Theorem 1.10, each function Fi can be extended to a meromorphic func-
tion on Up (still denoted by Fi) since the codimension of Up∩E is > 1. The germ of
Fi can be uniquely written as Fi = fi/gi by choosing Up small enough, where fi and
gi are relatively prime holomorphic functions on Up. Then X := (g, gF2, . . . , gFn)
is a holomorphic vector field on Up representing F on U ′p r {zeros of g}, where g
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is the least common multiple of the gi. Note that codim {z : X(z) = 0} > 1 (the
components of X are relatively prime).

Now let q ∈ U ′p, and (U, ϕ) be a foliation chart around q. The vector field ϕ∗X
has the form h ∂/∂z1 since it is tangent to the horizontal lines {z2 = const., . . . , zn =
const.} away from zeros of g ◦ ϕ−1. Since the zero set of h either is empty or has
codimension 1, while the zero set of ϕ∗X has codimension >1, it follows that h is
nowhere zero and X(q) 6= 0. Thus X(q) is tangent to Lq at q.

For the uniqueness part, let X̃ be another such vector field. Then X̃ = ξX on
U ′p, where ξ : U ′p → C∗ is holomorphic. Extend ξ over Up by Theorem 1.10. This
new ξ is nowhere vanishing, since its zero set, if non-empty, would have codimension
1.

Finally, let q ∈ Up ∩E be a removable singularity of F . Choose a compatible
chart (U, ϕ) around q (compare Definition 1.4) and let X̃ = ϕ−1

∗ (∂/∂z1). Then
X̃ describes F on U , so by the above uniqueness we have X̃ = ξX, with ξ being
a holomorphic non-vanishing function on some neighborhood of q. Thus X(q) 6=
0. Conversely, suppose that X(q) 6= 0, and let (U, ϕ) be a local chart around q
straightening the integral curves of X, i.e., ϕ∗(X|U ) = ∂/∂z1. Then it is evident
that (U, ϕ) is compatible with every foliation chart of F in U ′p.

Now let F be an SHFC onM and β′ : B′ → TM be the bundle map constructed
in (1.15). According to Proposition 1.11, each p ∈ M has a neighborhood Ui and
a holomorphic vector field Xi defined on Ui representing F on Ui r E. By the
uniqueness part of Proposition 1.11, whenever Ui ∩ Uj 6= ∅, we have Xj = ξijXi
on Ui ∩ Uj , where ξij : Ui ∩ Uj → C∗ is holomorphic. Let B be the line bundle
over M defined by the cocycle {ξij}. As in the construction of β′ in (1.15), define
βi : Ui × C→ TM |Ui by

βi(p, t) := tXi(p).(1.16)

The definition of B shows that the βi patch together to yield a well-defined bundle
map β : B → TM for which β(Bp) is the tangent line to Lp at p if p 6∈ E. Note
that B is an extension of B′ since β−1 ◦ β′ : B′ → B|M ′ is an isomorphism of line
bundles. If η : B → TM is another bundle map which represents F away from
E, then η : Ui × C → TM |Ui satisfies η(p, t) = tλi(p)Xi(p) for p ∈ Ui r E, where
λi : Ui r E → C is non-vanishing. Extend λi to Ui by Theorem 1.10. Note that
the action of η on Bp is well-defined, so that λi(p) = λj(p) if p ∈ Ui ∩Uj . Defining
λ : M → C by λ|Ui := λi, we see that η = λ · β. Furthermore, λ can only vanish
on E, but its zero set, if non-empty, would have to have codimension 1. Therefore,
λ does not vanish at all. Finally, the last part of Proposition 1.11 and (1.16) show
that p ∈ E is a removable singularity of F if and only if β(Bp) 6= 0.

Summarizing the above argument, we obtain

Theorem 1.12. The line bundle B′ over M rE associated to an SHFC F on
M can be extended to a line bundle B over M. There exists a holomorphic bundle
map β : B → TM for which β(Bp) is the tangent line to Lp at p if p /∈ E. This β
is unique up to multiplication by a nowhere vanishing holomorphic function on M.
A point p ∈ E is a removable singularity of F if and only if β(Bp) 6= 0.

Remark 1.13. It follows from the last part of Theorem 1.12 that sing(F) is
precisely {p ∈ M : β(Bp) = 0}; in particular, after removing all the possible
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removable singularities of F in E, sing(F) turns out to be an analytic subvariety
of M of codimension > 1.

Remark 1.14. If M is a compact complex manifold (in particular, if M =
CP2), then every two bundle maps β, β′ : B → TM representing F differ by a
non-zero multiplicative constant.

Remark 1.15. The bundle map constructed in the above theorem is unique
in the sense that two bundle maps β : B → TM and β̃ : B̃ → TM represent
the same SHFC if and only if there exists a bundle isomorphism ψ : B → B̃ with
β = β̃ ◦ ψ. To see this, first assume that both bundle maps represent F . By the
construction, we may assume that B (resp. B̃) is defined by ({Ui}, {ξij}) (resp.
({Vk}, {ηkl})) and there are holomorphic vector fields Xi on Ui (resp. Yk on Vk)
satisfying Xj = ξijXi on Ui∩Uj (resp. Yl = ηklYk on Vk∩Vl) and βi(p, t) := tXi(p)
(resp. β̃k(p, t) := tYk(p)). Since B and B̃ both represent F , for every i, k with
Ui ∩ Vk 6= ∅, there is a nowhere vanishing holomorphic function λik such that
Xi(p) = λik(p)Yk(p) for all p ∈ (Ui ∩ Vk) r sing(F). By Theorem 1.10, λik can
be extended to Ui ∩ Vk. Note that the extended function cannot vanish at all,
since its only possible zero set is Ui ∩ Vk ∩ sing(F) which has codimension >1.
Now define ψ : B → B̃ by mapping the class of (p, t) ∈ Ui × C to the class of
(p, tλik(p)) ∈ Vk × C. It is quite easy to see that ψ defines an isomorphism of line
bundles with β = β̃ ◦ ψ.

Conversely, let β : B → TM represent F . If B̃ is any line bundle over M
isomorphic to B by ψ : B → B̃, and if β̃ = β ◦ ψ−1, then β̃ : B̃ → TM also
represents F .

1.8. Line Bundles and H1(M,O∗). Every holomorphic line bundle B on a
complex manifoldM is uniquely determined by an open covering U = {Ui}i∈I of M
and a family {ξij}i,j∈I of non-vanishing holomorphic functions on each Ui ∩Uj 6= ∅
satisfying the cocycle relation ξij = ξik · ξkj on Ui ∩ Uj ∩ Uk. Thus {ξij} may be
regarded as an element of Z1(U ,O∗), the group of Čech 1-cocycles with coefficients
in the sheaf of non-vanishing holomorphic functions on M , with respect to the cov-
ering U . Let B′ be another line bundle on M defined by cocycle {ηij}. It is not
difficult to see that B′ is isomorphic to B if and only if there exist non-vanishing
holomorphic functions fi : Ui → C∗ such that ηij = (fi/fj)ξij on Ui ∩ Uj . Inter-
preting {ξij} and {ηij} as elements of Z1(U ,O∗), the last condition may be written
as {ξij/ηij} ∈ B1(U ,O∗), the group of Čech 1-coboundaries. We conclude that
two holomorphic line bundles on M are isomorphic if and only if they represent the
same element of the Čech cohomology group H1(M,O∗) := Z1(M,O∗)/B1(M,O∗).

1.9. Line Bundles on CP2. Most of the results presented here are true for
CPn, n ≥ 2. However, we only treat the case n = 2 for simplicity of exposition.

Consider the short exact sequence of sheaves

0→ Z 2πi−→ O exp−→ O∗ → 0

on M . From this sequence we obtain the long exact sequence of cohomology groups

· · · → H1(M,O)→ H1(M,O∗) c1−→ H2(M,Z)→ H2(M,O)→ · · ·(1.17)

For every line bundle B ∈ H1(M,O∗), c1(B) ∈ H2(M,Z) is called the first Chern
class of B. Explicitly, let B = [{ξij}] be defined for a covering U = {Ui} for which
every Ui is connected, every Ui ∩ Uj is simply-connected, and every Ui ∩ Uj ∩ Uk
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is connected. Then c1(B) = [{cijk}], where cijk := 1/(2π
√
−1){log ξjk − log ξik +

log ξij} and the branches of logarithms are arbitrarily chosen [Kod].
There are two basic facts about the sequence (1.17) in the case M = CP2.

First, for every i ≥ 1 we have Hi(CP2,O) = 0 as a consequence of the Hodge
Decomposition Theorem [GH]. Second, H2(CP2,Z) ' Z [GH]. It follows that c1
in (1.17) is an isomorphism, H1(CP2,O∗) is the infinite cyclic group Z, and every
holomorphic line bundle on CP2 is determined up to isomorphism by its first Chern
class (compare §1.8).

Now consider CP2 with affine charts {(Ui, φ−1
i )}i=0,1,2 , as in §1.3. For every

integer n, define a line bundle B(n) on CP2 whose cocycle {ξij}i,j=0,1,2 is given by

ξij : Ui ∩ Uj → C∗, i, j = 0, 1, 2

ξij [x0, x1, x2] :=
(
xj
xi

)n
.(1.18)

It is not difficult to check that B(−1), called the canonical line bundle over CP2, and
its dual bundle B(1) are both generators for the infinite cyclic group H1(CP2,O∗).
By a standard convention we define c1(B(1)) = 1. It follows that c1(B(n)) = n for
all integers n.

Adding up the above remarks, it follows that every holomorphic line bundle B
on CP2 is isomorphic to B(n), where n = c1(B).

Now suppose that F is an SHFC on CP2, and let β : B → TCP2 be its
associated bundle map given by Theorem 1.12. Choose n = c1(B) so that B is
isomorphic to B(n) by some ψ : B → B(n). By Remark 1.15, if β̃ is defined by
β̃ := β ◦ ψ−1, then β̃ : B(n)→ TCP2 is a bundle map which also represents F .

1.10. Explicit Form of SHFC’s on CP2. In view of the remarks in the last
paragraph, we are now going to determine the explicit form of every holomorphic
bundle map β : B(−n+1) → TCP2 for every integer n. (We choose −n+1 instead
of n just to make later formulations easier.)

Once again consider CP2 equipped with the three affine charts (Ui, φ−1
i ), i =

0, 1, 2. Restricting β to Ui × C, there exists a holomorphic vector field Xi on
Ui representing the action of βi : Ui × C → TUi ' Ui × C2. In other words,
βi(p, t) = (p, tXi(p)). Let X0 := f(x, y)∂/∂x+g(x, y)∂/∂y andX1 := f̃(u, v)∂/∂u+
g̃(u, v)∂/∂v, where f, g, f̃, g̃ are holomorphic on C2. Set Ũ0 := U0r{(x, y) : x = 0}
and Ũ1 := U1 r {(u, v) : u = 0}. We have the following commutative diagram:

Ũ0 × C
ξ−−−−→ Ũ1 ×Cyβ0

yβ1

TŨ0 ' Ũ0 ×C2 (φ01)∗−−−−→ TŨ1 ' Ũ1 ×C2

where ξ(x, y, t) := (u, v, t/ξ01(x, y)). Note that by (1.18), ξ01(x, y) = ξ01[1, x, y] =
x−n+1 = un−1 so that ξ(x, y, t) = (u, v, u−n+1t). It follows that (φ01)∗X0 =
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u−n+1X1, or

f̃(u, v) = −un+1f

(
1
u
,
v

u

)
g̃(u, v) = −un

{
vf

(
1
u
,
v

u

)
− g

(
1
u
,
v

u

)}
.

(1.19)

Since f̃ and g̃ are holomorphic on C2, (1.19) shows that if n ≤ −1, then f and g
both vanish. So let us assume that n ≥ 0.

Suppose that f =
∑∞
k=0 fk and g =

∑∞
k=0 gk, where fk and gk are the homo-

geneous parts of degree k of the power series expansions of f and g. It follows then
from (1.19) that fk ≡ gk ≡ 0 for k ≥ n+ 2, and

vfn+1(1, v)− gn+1(1, v) ≡ 0.(1.20)

Coming back to the affine chart (x, y) ∈ U0, we obtain from (1.20) that

yfn+1(x, y)− xgn+1(x, y) ≡ 0.(1.21)

It is easy to see that there are no other restrictions on these homogeneous polyno-
mials. Thus we have proved the following

Theorem 1.16. Let β : B(−n + 1)→ TCP2 be a holomorphic bundle map. If
n ≤ −1, then β ≡ 0. If n ≥ 0, then in the affine chart (x, y) ∈ U0, β is given by a
polynomial vector field of the form

n+1∑
k=0

fk
∂

∂x
+
n+1∑
k=0

gk
∂

∂y
,

where fk and gk are homogeneous polynomials of degree k, and yfn+1 −xgn+1 ≡ 0.

Now let F be an SHFC on CP2 and let β : B → TCP2 represent F . Set
n = −c1(B) + 1. Then, by the above theorem F is induced by a polynomial 1-form

ω = [(
n∑
k=0

fk) + xh] dy− [(
n∑
k=0

gk) + yh] dx,

in the affine chart U0, where h = fn+1/x = gn+1/y is a homogeneous polynomial
of degree n or h ≡ 0. Let us assume for a moment that the latter happens, i.e.,
fn+1 ≡ gn+1 ≡ 0. Then, rewriting (1.19) gives us

f̃(u, v) = −un+1
n∑
k=0

u−kfk(1, v)

g̃(u, v) = −un
n∑
k=0

u−k[vfk(1, v)− gk(1, v)].

(1.22)

This shows that vfn(1, v)−gn(1, v) 6≡ 0 since otherwise f̃ and g̃ would have a com-
mon factor u, meaning that β would vanish on the entire line u = 0 (contradicting
the fact that β must vanish at finitely many points). We summarize the above
observations in the following
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Corollary 1.17. Let F be an SHFC on CP2 and β : B → TCP2 be any
holomorphic bundle map representing F . Then c1(B) ≤ 1. If n = −c1(B)+1, then
F is given by a unique (up to a multiplicative constant) polynomial 1-form

ω = (f + xh) dy− (g + yh) dx(1.23)

in the affine chart (x, y) ∈ U0. Here

• f =
∑n
k=0 fk and g =

∑n
k=0 gk, with fk and gk being homogeneous polyno-

mials of degree k,
• either h is a non-zero homogeneous polynomial of degree n, or if h ≡ 0, then
yfn − xgn 6≡ 0,

• the two polynomials f + xh and g + yh have no common factor.

1.11. Geometric Degree of an SHFC on CP2. Here we show that the
“cohomological degree” n = −c1(B) + 1 of an SHFC F given by Corollary 1.17
coincides with a geometric invariant which we will call the “geometric degree” of
F . Roughly speaking, the geometric degree of F is the number of points at which
a generic projective line is tangent to the leaves of F . This notion allows us to give
a stratification of the space of all SHFC’s on CP2.

Let F be an SHFC on CP2 and L be any projective line such that Lr sing(F)
is not a leaf of F . A point p ∈ L is called a tangency point of F and L if either
p ∈ sing(F), or p 6∈ sing(F) and L is the tangent line to Lp at p.

Let F be of the form Fω : {ω = Pdy−Qdx = 0} in the affine chart (x, y) ∈ U0,
and L∩U0 be parametrized by `(T ) = (x0 +aT, y0 +bT ), where p = (x0, y0) = `(0).
Then it is clear that p is a tangency point of F and L if and only if T = 0 is a root
of the polynomial T 7→ bP (`(T ))− aQ(`(T )). The order of tangency of F and L at
p is defined to be the multiplicity of T = 0 as a root of this polynomial. Define

m(F , L) :=
∑
p

(order of tangency of F and L at p),

where the (finite) sum is taken over all the tangency points.
In the theorem below, we show that m(F , L) does not depend on L (as long as

Lr sing(F) is not a leaf), so that we can call it the geometric degree of F .

Theorem 1.18. Let F be an SHFC on CP2 and n = −c1(B) + 1, where B is
the line bundle associated with F . Let L be any projective line such that Lrsing(F)
is not a leaf. Then m(F , L) = n. In particular, an SHFC F has geometric degree
n if and only if F is induced by a 1-form ω as in (1.23) in which h is a non-zero
homogeneous polynomial of degree n, or h ≡ 0 and yfn − xgn 6≡ 0.

Proof. Let n = −c1(B) + 1 so that F is induced by a 1-form ω as in (1.23).
Take a projective line L such that L r sing(F) is not a leaf. Since the normal
form (1.23) is invariant under projective transformations, we may assume that
L is the x-axis. By (1.23), (x, 0) ∈ L ∩ U0 is a tangency point if and only if
g(x, 0) =

∑n
k=0 gk(x, 0) = 0. As for the point at infinity for L, consider the affine

chart (u, v) = (1/x, y/x) ∈ U1 in which L is given by the line {v = 0}. By (1.19),



SINGULAR HOLOMORPHIC FOLIATIONS ON CP2 19

the foliation is described by the polynomial 1-form ω′ = f̃ dv − g̃ du, where

f̃(u, v) = −
n∑
k=0

un+1−kfk(1, v)− h(1, v)

g̃(u, v) = −
n∑
k=0

un−k[vfk(1, v)− gk(1, v)].

(1.24)

This shows that L has a tangency point at infinity if and only if u = 0 is a root
of g̃(u, 0) = 0, or gn(1, 0) = 0 by (1.24). To prove the theorem, we distinguish two
cases:

(i) The polynomial x 7→ gn(x, 0) is not identically zero. In this case,
∑n
k=0 gk(x, 0)

is a polynomial of degree n in x, so there are exactly n finite tangency points on
L counting multiplicities. Note that the point at infinity for L is not a tangency
point since gn(1, 0) 6= 0. So in this case, m(F , L) = n.

(ii) There is a largest 0 ≤ j < n such that x 7→ gj(x, 0) is not identically zero
(otherwise

∑n
k=0 gk(x, 0) would be everywhere zero, so Lrsing(F) would be a leaf).

This means that g(x, 0) = 0 has exactly j roots counting multiplicities. In this case,
the point at infinity for L is a tangency point of order n− j. In fact, (1.24) shows
that g̃(u, 0) = −

∑n
k=0 u

n−kgk(1, 0) = −
∑j
k=0 u

n−kgk(1, 0), which has a root of
multiplicity n− j at u = 0. Thus, there are n tangency points on L altogether, so
again m(F , L) = n.

As an example, (1.12) shows that F is induced by a holomorphic vector field
on CP2 if and only if the geometric degree of F is ≤ 1.

The set of all SHFC’s on CP2 of geometric degree n is denoted by Dn. Each
Dn is topologized in the natural way: a neighborhood of F ∈ Dn consists of all
foliations of geometric degree n whose defining polynomials have coefficients close
to that of F , up to multiplication by a non-zero constant. To be more accurate,
consider the complex linear space of all polynomial 1-forms ω as in (1.23). By
Remark 1.14, ω and ω′ define the same foliation if and only if there exists a non-
zero constant λ such that ω′ = λω. Therefore Dn can be considered as an open
subset of the complex projective space CPN , where N is the dimension of the above
linear space minus one, that is N = 2

∑n+1
k=1 k+ (n+ 1)− 1 = n2 + 4n+ 2. It is not

difficult to check that Dn is connected and dense in this projective space.

Corollary 1.19. The set Dn of all SHFC’s of geometric degree n ≥ 0 on CP2

can be identified with an open, connected and dense subset of the complex projective
space CPN , where N = n2 + 4n+ 2. So we can equip Dn with the induced topology
and a natural Lebesgue measure class.

The definition of Dn allows us to decompose the space S of all SHFC’s on CP2

into a disjoint union
⋃
Dn and topologize it in a natural way. A subset U of S is

open in this topology if and only if U ∩Dn is open for every n. Hence this topology
makes every Dn into a connected component of S. Similarly, S inherits a natural
Lebesgue measure class: A set U ⊂ S has measure zero if and only if U ∩ Dn has
measure zero in Dn.

1.12. Line at Infinity as a Leaf. Let us find conditions on a 1-form ω which
guarantee that the line at infinity L0 = CP2rU0 with singular points of Fω deleted
is a leaf. Consider an SHFC F ∈ Dn induced by a polynomial 1-form ω as (1.23):
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ω = (f + xh)dy− (g + yh)dx, where f =
∑n
k=0 fk , g =

∑n
k=0 gk and h is either a

non-zero homogeneous polynomial of degree n, or h ≡ 0 but yfn − xgn 6≡ 0.

Theorem 1.20. The line at infinity L0 with singular points of F ∈ Dn deleted
is a leaf of F if and only if h ≡ 0.

Proof. This follows easily from the proof of Theorem 1.18. In fact, L0 r
sing(F) is a leaf if and only if the line {u = 0} is a solution of ω′ = f̃dv− g̃du = 0.
By (1.24), this happens if and only if h(1, v) ≡ 0. Since h is a homogeneous
polynomial, the latter condition is equivalent to h ≡ 0.

Remark 1.21. Here is an alternative notation for polynomial 1-forms which
will be used in many subsequent discussions. Let

ω = (f + xh)dy− (g + yh)dx = Pdy−Qdx,

as in (1.23). Define

R(x, y) = yP (x, y)− xQ(x, y) = yf(x, y) − xg(x, y)

as in §1.5, and note that deg R ≤ n+ 1. Then F|U1 is given by {ω′ = 0}, where

ω′(u, v) = ukP

(
1
u
,
v

u

)
dv − ukR

(
1
u
,
v

u

)
du,

and, as in (1.7), k is the least positive integer which makes ω′ a polynomial 1-form.
(Note that this representation should be identical to (1.24) up to a multiplicative
constant.) If h 6≡ 0, then deg P = n+ 1 and so k = n + 1. On the other hand, if
h ≡ 0, then yfn − xgn 6≡ 0 by Theorem 1.18 which means deg R = n+ 1. So again
we have k = n+ 1.

For a fixed F , we denote L0 r sing(F) by L∞ whenever it is a leaf of F . We
often refer to L∞ as the leaf at infinity.

As can be seen from the above theorem, for a foliation F ∈ Dn the line at
infinity L0 r sing(F) is unlikely to be a leaf since this condition is equivalent to
vanishing of a homogeneous polynomial. This is a consequence of the way we
topologized the space S of all SHFC’s on CP2 using the topologies on the Dn. The
decomposition

⋃
Dn is quite natural from the geometric point of view; however, it

leads to a rather peculiar condition on the polynomials describing the associated
1-form (Theorem 1.18). The situation can be changed in a delicate way by choosing
a different decomposition S =

⋃
An which is more natural from the point of view

of differential equations in C2 but has no longer an intrinsic geometric meaning.
Elements of An are simply determined by the maximum degree of their defining
polynomials.

Definition 1.22. Fix the affine chart (x, y) ∈ U0 and let n ≥ 0. We say
that an SHFC F belongs to the class An if it is induced by a polynomial 1-form
ω = Pdy−Qdx with max{deg P, degQ} = n and P,Q relatively prime. The number
n is called the affine degree of F (with respect to U0)

Note that An is well-defined since if Fω = Fω′ , then ω′ = λω for some non-zero
constant λ. It is important to realize that unlike the condition F ∈ Dn (normal
form (1.23)), whether or not F ∈ An strongly depends on the choice of a particular
affine coordinate system, and that is why we call n the “affine degree.”
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Consider the complex linear space of all polynomial 1-forms ω = Pdy − Qdx
with max{deg P, degQ} ≤ n, which has dimension (n + 1)(n + 2). Then, as in the
case of Dn, one has

Corollary 1.23. The set An of all SHFC’s of affine degree n ≥ 0 on CP2

can be identified with an open, connected and dense subset of the complex projective
space CPN , where N = n2 + 3n+ 1. So we can equip An with the induced topology
and a natural Lebesgue measure class.

Using the decomposition of S into the disjoint union of the An, we can define
a new topology and measure class on S in the same way we did using the Dn (see
the remarks after Corollary 1.19). In this new topology, each class An turns into a
connected component of S. The topologies and measure classes coming from

⋃
An

and
⋃
Dn are significantly different. As a first indication of this difference, let

F : {ω = Pdy −Qdx = 0} ∈ An and decompose P =
∑n
k=0 Pk and Q =

∑n
k=0Qk

into the sum of the homogeneous polynomials Pk and Qk of degree k. Then it easily
follows from Theorem 1.18 and Theorem 1.20 that

Corollary 1.24. The line at infinity L0r sing (F) is a leaf of F : {Pdy −
Qdx = 0} ∈ An if and only if yPn − xQn 6≡ 0.

One concludes that inAn it is very likely to have L0rsing(F) as a leaf, contrary
to what we observed before in Dn.

Corollary 1.25. Fix the affine chart (x, y) ∈ U0 and an SHFC F ∈ An.

• If the line at infinity L0 r sing(F) is a leaf, then F ∈ An ∩Dn so that
affine degree of F = geometric degree of F .

• Otherwise, F ∈ An ∩ Dn−1 so that
affine degree of F = (geometric degree of F) + 1.

The main reason for the contrast between An and Dn is the fact that dimAn <
dimDn < dimAn+1. In fact, it is not hard to see that Dn ⊂ An ∪ An+1 and
An ⊂ Dn−1 ∪ Dn. Fig. 3 is an attempt to illustrate the first property while Fig. 4
is a schematic diagram of the set-theoretic relations between these classes.

Example 1.26. The two SHFC’s

F1 : {xdy− ydx = 0} F2 : {ydy − xdx = 0}

both belong to A1 so they both have affine degree 1. However, F1 belongs to D0

hence has geometric degree 0, while F2 belongs to D1 and so it has geometric degree
1. Note that the line at infinity is not a leaf of F1 but it is a leaf of F2.

Example 1.27. As another example, let us illustrate how the topologies com-
ing from the two decompositions S =

⋃
An =

⋃
Dn are different. Consider the two

SHFC’s
F : {x2dy− y2dx = 0},

Fε : {(x2 + εxy2)dy − (y2 + εy3)dx = 0}.
As ε → 0, Fε → F in the topology induced by

⋃
Dn but Fε does not converge in

the topology induced by
⋃
An.
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An+1

Dn

An

Figure 3. dimAn < dimDn < dimAn+1.

An-1 A An+1n D D Dn-1 n n+1

Figure 4. Set-theoretic relations between {Dn} and {An}.

1.13. A Complex One-Dimensional Analogy. The following simple ex-
ample may help understand the difference between the two decompositions {Dn}
and {An}: Let S be the space of all linear conjugacy classes of complex polynomial
maps in C of degree at most 4 which are tangent to the identity map at the origin.
This space can be naturally decomposed by the order of tangency near the fixed
point at 0: For 0 ≤ n ≤ 2, consider the sets Dn of conjugacy classes of normalized
polynomials as follows:

D0 = 〈z 7→ z + z4〉 ' point
D1 = 〈z 7→ z + z3 + az4〉 ' C
D2 = 〈z 7→ z + z2 + az3 + bz4〉 ' C2.

Clearly S =
⋃2
n=0 Dn and this decomposition induces a topology τD and a measure

class µD on S. On the other hand, one can consider the following conjugacy classes
determined by the degree of polynomials (i.e., by their behavior near infinity):

A0 = 〈z 7→ z + z2〉 ' point
A1 = 〈z 7→ z + az2 + z3〉 ' C
A2 = 〈z 7→ z + az2 + bz3 + z4〉 ' C2.
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This gives rise to a second decomposition S =
⋃2
n=0 An hence a corresponding

topology τA and measure class µA on S. One has the relations

A0 ⊂ D2 D0 ⊂ A2

A1 ⊂ D1 ∪D2 D1 ⊂ A1 ∪A2

The topologies τD and τA and measure classes µD and µA are very different. For
example, D1 ⊂ S is an open set in τD, but it is not open in τA since D1 ∩A1 is a
single point. On the other hand, D1 ⊂ A1 ∪A2 has measure zero with respect to
µA but this is certainly not true with respect to µD.

1.14. Typical Properties. Certain geometric or dynamical properties often
hold for “most” and not all SHFC’s in An or Dn. In these cases, we can use the
Lebesgue measure class to make sense of this fact. A property P is said to be
typical for elements of An, or we say that a typical SHFC in An satisfies P, if
{F ∈ An : F does not satisfy P} has Lebesgue measure zero in An. We can define
a typical property in Dn in a similar way.

For example, it follows from Theorem 1.20 and Corollary 1.24 that having the
line at infinity as a leaf is not typical in Dn but it is typical in An.

Definition 1.28. Let F ∈ An. We say that F has Petrovskĭı-Landis property
if L0r sing(F) is a leaf of F and L0∩ sing(F) consists of n+1 distinct points. The
class of all such F is denoted by A′n.

If F : {Pdy−Qdx = 0} ∈ A′n, it follows from Corollary 1.24 that yPn−xQn 6≡ 0.
On the other hand, using the notation of Remark 1.21, if R = yP − xQ, we have
degR = n+ 1 and

L0 ∩ sing(F) = {(0, v) : un+1R

(
1
u
,
v

u

) ∣∣∣
u=0

= 0}

in the affine chart (u, v) ∈ U1. It follows that un+1R(1/u, v/u)|u=0 must have n+1
distinct roots in v. The above two conditions on P and Q show that

Corollary 1.29. A typical SHFC in An has Petrovskĭı-Landis property.

2. The Monodromy Group of a Leaf

Given an SHFC F on CP2 one can study individual leaves as Riemann surfaces.
However, to study the so-called transverse dynamics of the foliation one needs a
tool to describe the rate of convergence or divergence of nearby leaves. The concept
of holonomy, and in particular the monodromy of a leaf, first introduced by C.
Ehresmann, is the essential tool in describing the transverse dynamics near the
leaf. The point is that the transverse dynamics of a leaf depends directly on its
fundamental group: the smaller π1(L) is, the simpler the behavior of the leaves
near L will be.

2.1. Holonomy Mappings and Monodromy Groups. Let F be an SHFC
on CP2 and L be a non-singular leaf of F . Fix p, q ∈ L, and consider small
transversals Σ,Σ′ ' D to L at p, q, respectively. Let γ : [0, 1]→ L be a continuous
path with γ(0) = p, γ(1) = q. For each z ∈ Σ near p one can “travel” on Lz “over”
γ[0, 1] to reach Σ′ at some point z′. To be precise, let {(Ui, ϕi)}0≤i≤n be foliation
charts of F and 0 = t0 < t1 < · · · < tn < tn+1 = 1 be a partition of [0, 1] such that
if Ui ∩ Uj 6= ∅ then Ui ∪ Uj is contained in a foliation chart, and γ[ti, ti+1] ⊂ Ui
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Figure 5. Definition of holonomy.

for 0 ≤ i ≤ n. For each 1 ≤ i ≤ n choose a transversal Σi ' D to L at γ(ti), and
set Σ0 = Σ and Σn+1 = Σ′ (see Fig. 5). Then for each z ∈ Σi sufficiently close to
γ(ti) the plaque of Ui passing through z meets Σi+1 in a unique point fi(z), and
z 7→ fi(z) is holomorphic, with fi(γ(ti)) = γ(ti+1). It follows that the composition
fγ := fn ◦ · · · ◦ f0 is defined for z ∈ Σ near p, with fγ(p) = q.

Definition 2.1. The mapping fγ is called the holonomy associated with γ.

There are several remarks about this mapping which can be checked directly
from the definition (compare [CL]).

Remark 2.2. fγ is independent of the chosen transversals Σi, 1 ≤ i ≤ n, and
the foliation charts Ui. Hence Σ,Σ′, and γ determine the germ of fγ at p.

Remark 2.3. The germ of fγ at p depends only on the homotopy class of γ
rel{0, 1}, that is, if η is another path joining p and q in L which is homotopic to γ
with η(0) = γ(0) and η(1) = γ(1), then the germ of fη at p coincides with that of
fγ .

Remark 2.4. If γ−1(t) := γ(1 − t), then fγ−1 = (fγ)−1. In particular, fγ
represents the germ of a local biholomorphism.

Remark 2.5. Let Σ1 and Σ′1 be other transversals to L at p and q, respectively.
Let h : Σ → Σ1 and h̃ : Σ′ → Σ′1 be projections along the plaques of F in a
neighborhood of p and q, respectively. Then the holonomy gγ : Σ1 → Σ′1 satisfies
gγ = h̃ ◦ fγ ◦ h−1.

In the special case p = q, we obtain a generalization of the Poincaré first return
map for real vector fields.

Definition 2.6. Let L be a non-singular leaf of an SHFC F on CP2, let p ∈ L,
and let Σ be a transversal to L at p. For each [γ] ∈ π1(L, p), the holonomy mapping
fγ : Σ→ Σ is called the monodromy mapping of L associated with γ (Fig. 6).

Note that by Remark 2.3, the germ of fγ at p depends only on the homotopy
class [γ]. It is quite easy to see that [γ] 7→ fγ is a homomorphism from π1(L, p)
into the group of germs of biholomorphisms of Σ fixing p: [γ ◦ η] 7→ fγ ◦ fη.
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Figure 6. Monodromy mapping associated with γ.

Remark 2.7. It should be noted that each [γ] ∈ π1(L, p) determines only the
germ at p of a biholomorphism fγ of Σ, for changing γ in its homotopy class results
in changing the domain of definition of fγ .

Remark 2.8. If the transversal Σ is replaced by another one Σ1, then by Re-
mark 2.5 there exists a local biholomorphism h : Σ → Σ1 fixing p such that the
monodromy mapping gγ : Σ1 → Σ1 satisfies gγ = h ◦ fγ ◦ h−1. In other words, the
germ of the monodromy mapping fγ depends only on [γ] up to conjugacy. Since
conjugate germs of biholomorphisms fixing p have the same iterative dynamics near
p, it is not really important which transversal we choose at p.

Convention 2.9. We always fix some p ∈ L as the base point for the fun-
damental group. We will fix some transversal Σ at p. Moreover, we will choose
a coordinate on Σ in which p = 0. Thus, every monodromy mapping fγ can be
identified with an element of Bih0(C), the group of germs at 0 of biholomorphisms
C→ C fixing the origin.

Definition 2.10. The image of π1(L) under the monodromy mapping [γ] 7→ fγ
is called the monodromy group of L, and is denoted by G(L). Since we always fix
the transversals, it can be identified with a subgroup of Bih0(C).

Given a leaf L whose π1 is finitely-generated, it is natural to fix some loops as
the generators of π1(L). So we arrive at the following definition:

Definition 2.11. A non-singular leaf L of an SHFC F on CP2 is called a
marked leaf if π1(L) is finitely-generated and a set of loops {γ1, . . . , γk} is given
as its generators. Similarly, a finitely-generated subgroup G ⊂ Bih0(C) is called
a marked subgroup if a set of local biholomorphisms {f1, . . . , fk} is given as its
generators.
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Clearly, the monodromy group of a marked leaf is a marked subgroup if one
chooses {fγ1 , · · · , fγk} as its generators.

2.2. The Monodromy Pseudo-Group of a Leaf. There is a certain dif-
ficulty in defining the orbit of a point under the action of the monodromy group
G(L) of a leaf L. This is simply due to the fact that elements of G(L) are germs,
while in the definition of an orbit one should consider them as maps. On the other
hand, given f ∈ G(L), a point z may well be outside the domain of f but f may
have an analytic continuation which is defined at z. Naturally, one askes to what
extent this continuation really represents the same monodromy. For instance, if
F is induced by a Hamiltonian form ω = dH, then the monodromy group of the
leaf at infinity L∞ is abelian [I3]. Hence for every γ in the commutator subgroup
[π1(L∞), π1(L∞)] the germ of fγ at 0 is the identity, which can be analytically
continued everywhere. However, for z sufficiently far from 0, the monodromy fγ
may be undefined or it may differ from z.

Since the transverse dynamics of a leaf L is reflected in the orbit of points in
the transversal Σ under the action of G(L), it is quite natural to be careful about
the domains of definitions. This point in addressed in the following definition:

Definition 2.12. Let G ⊂ Bih0(C) be a marked subgroup with generators
{f1, . . . , fk}, all defined on some domain Ω around 0. The pseudo-group PG consists
of all pairs (f,Ωf ), where f ∈ G and Ωf is a domain on which f is conformal, with
the group operation (f,Ωf ) ◦ (g,Ωg) := (f ◦ g,Ωf◦g). The domain Ωf is defined as
follows: Let

f =
N∏
i=1

fεiji , ji ∈ {1, . . . , k} , εi ∈ {−1, 1}(2.1)

be any representation of f in terms of the generators. Any germ
∏n
i=1 f

εi
ji

, with
n ≤ N , is called an intermediate representation of f . The domain ΩΠf associated
to the representation (2.1) is defined as the maximal starlike domain centered at
0 contained in Ω on which all the intermediate representations can be analytically
continued as conformal maps, with

n∏
i=1

fεiji (ΩΠf) ⊂ Ω, for all n ≤ N.

Finally, Ωf is defined to be the union of ΩΠf ’s for all possible representations of f
of the form (2.1). It is clear that f is a conformal mapping on Ωf .

The above definition associates a monodromy pseudo-group PG(L) to each
marked leaf L. The construction above allows us to define the orbit of z ∈ Σ
as {f(z) : (f,Ωf ) ∈ PG(L) and z ∈ Ωf}. The basic property that we will be using
is that the orbit of z under PG(L) always lies in Lz ∩ Σ.

2.3. Multiplier of a Monodromy Mapping. As we will see later, the dy-
namics of an f ∈ Bih0(C) is essentially dominated by its derivative f ′(0) at the
fixed point 0, also known as the multiplier of f at 0. Therefore it would not be
surprising that the behavior of leaves near a given leaf L is determined to a large
extent by the multipliers at 0 of the monodromy mappings fγ for γ ∈ π1(L). Our
aim here is to give a formula for f ′γ(0) in terms of a path integral (see [KS] for more
general formulas of this type). We will use this formula in the next section, where
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Figure 7. Proof of Theorem 2.13.

we will compute the multipliers of the monodromy mappings of the leaf at infinity
of an F ∈ A′n. It must be mentioned that this is quite similar to a well-known result
of Reeb for real codimension 1 non-singular foliations [Re]. Of course a different
argument is needed here since our foliations have real codimension 2. However,
our proof is greatly facilitated by the fact the foliations are induced by polynomial
1-forms.

Let F : {ω = Pdy − Qdx = 0} ∈ An, and suppose that L∞, the line at
infinity with sing(F) deleted, is a leaf of F (see Corollary 1.24). Fix some non-
singular leaf L 6= L∞. It follows that L is completely contained in the affine chart
(x, y) ∈ U0. Without loss of generality we may assume that E := L∩SP is discrete
in the leaf topology, hence countable (see §1.4 for the definition of SP ). In fact,
if E is not discrete, it has a limit point z0 in L. Parametrizing L around z0 by
T 7→ (x(T ), y(T )) with z0 = (x(0), y(0)), we conclude that P (x(T ), y(T )) ≡ 0. By
analytic continuation, P (x, y) = 0 for every (x, y) ∈ L. Therefore we can pursue the
argument with L ∩ SQ, which is finite since P and Q are assumed to be relatively
prime.

So assume that E is discrete. By integrability of ω, there exists a meromorphic
1-form α = Xdy−Y dx, holomorphic on LrE, such that dω = ω ∧α (since P and
Q have no common factor, one can actually find polynomial vector fields X and Y
with this property; see equation (2.3) below).

Theorem 2.13. Given γ ∈ π1(L, p0) one has

f ′γ(0) = exp
(
−
∫
γ

α

)
.(2.2)

Proof. Consider L as the graph of a (multi-valued) function y = ϕ(x) over
some region of the x-axis. Let E = L ∩ SP and Ẽ := {x ∈ C : There exists y ∈ C
such that (x, y) ∈ E}. Without loss of generality we can assume that the base point
p0 = (x0, y0) is not in E. Moreover, we may replace γ by a path in its homotopy
class that avoids E, if necessary. Take a “vertical” Σ transversal to L at p0, and
let y be the coordinate on Σ (Fig. 7). For y ∈ Σ near y0, each leaf Ly is the graph
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of the solution Φ(x, y) of dy/dx = Q(x, y)/P (x, y), i.e.,

∂Φ
∂x

(x, y) =
Q(x,Φ(x, y))
P (x,Φ(x, y))

, Φ(x0, y) = y.

Define ξ(x) := ∂Φ/∂y(x, y0). Note that

dξ

dx
(x) =

∂2Φ
∂x∂y

(x, y0)

=
∂

∂y

[
Q(x,Φ(x, y))
P (x,Φ(x, y))

]
(x, y0)

=
[
Qy(x, ϕ(x))P (x, ϕ(x))− Py(x, ϕ(x))Q(x, ϕ(x))

P 2(x, ϕ(x))

]
ξ(x)

=: T (x)ξ(x),

with ξ(x0) = 1. Thus ξ(x) = exp(
∫ x
x0
T (τ)dτ), where the path of integration avoids

Ẽ. But f ′γ(0) is the result of analytic continuation of ξ along γ̃, the projection on
the x-axis of γ, so that f ′γ(0) = exp(

∫
γ̃
T (x)dx). On the other hand, the condition

dω = ω ∧ α shows that

Y P −XQ = Px +Qy,(2.3)

so that on an open neighborhood W ⊂ L of γ one has

α|W = (Xdy − Y dx)|W =
(
XQ

P
− Y

)∣∣∣
W
dx = −

(
Px +Qy

P

) ∣∣∣
y=ϕ(x)

dx.

Now, compute∫
γ̃

T (x) dx+
∫
γ

α =
∫
γ̃

[
T (x) −

(
Px +Qy

P

)
y=ϕ(x)

]
dx

=
∫
γ̃

QyP − PyQ− P (Px +Qy)
P 2

y=ϕ(x)
dx

= −
∫
γ̃

PyQ+ PxP

P 2
y=ϕ(x)

dx

= −
∫
γ̃

∂/∂x(P (x, ϕ(x)))
P

dx

= −
∫
γ̃

∂

∂x
logP (x, ϕ(x)) dx

= 2πin

for some integer n by the Argument Principle. Hence
∫
γ̃
T (x) dx and −

∫
γ
α differ

by an integer multiple of 2πi, which proves the result.
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2.4. Monodromy Group of the Leaf at Infinity. Let F ∈ A′n be an
SHFC on CP2 having Petrovskĭı-Landis property. Recall from Definition 1.28 that
this means L0 r sing(F) is a leaf and L0 ∩ sing(F) consists of exactly n+ 1 points
{p1, . . . , pn+1}. Having an algebraic leaf homeomorphic to the punctured Riemann
sphere imposes severe restrictions on the global behavior of the leaves. Roughly
speaking, for F ∈ A′n the global behavior of the leaves is essentially determined
by their local behavior in some neighborhood of the leaf at infinity L∞. In fact,
under the assumption F ∈ A′n, each non-singular leaf must accumulate on L0

(Corollary 2.17 below). Once this is established, we can study the monodromy
group of L∞ to get information about the behavior of nearby leaves, which then
can be transferred elsewhere.

Theorem 2.14. Let X =
∑n
j=1 fj ∂/∂zj be a holomorphic vector field on Cn.

Then every non-singular solution of the differential equation dz/dT = X(z) is
unbounded.

Proof. Fix z0 ∈ Cn with X(z0) 6= 0, and suppose by way of contradiction
that the integral curve Lz0 passing through z0 is bounded. Let T 7→ η(T ) be a
local parametrization of Lz0 , with η(0) = z0. Let R > 0 be the largest radius
such that η(T ) can be analytically continued over D(0, R). If R = +∞, then η(T )
will be constant by Liouville’s Theorem, contrary to the assumption X(z0) 6= 0.
So R < +∞. Recall from the Existence and Uniqueness Theorem of solutions of
holomorphic differential equations that for each T0 ∈ C and each p ∈ Cn, if X is
holomorphic on {z ∈ Cn : |z − p| < b}, then there exists a local parametrization
T 7→ ηp(T ) of Lp, with ηp(T0) = p, defined on D(T0, b/(M + kb)), where M =
sup{|X(z)| : |z − p| < b} and k = sup{|dX(z)/dz| : |z − p| < b} (see for example
[CoL]). In our case, since Lz0 is bounded by the assumption, both |X(·)| and
|dX(·)/dz| will be bounded on Lz0 , and hence the quantity b/(M + kb) has a
uniform lower bound 2δ > 0 for all p ∈ Lz0 . It follows that for each T0 ∈ D(0, R)
with R− |T0| < δ, we can find a local parametrization ηp : D(T0, 2δ)→ Cn for Lz0
around p = ηp(T0). These local parametrizations patch together, giving an analytic
continuation of η over the disk D(0, R+ δ). The contradiction shows that Lz0 must
be unbounded.

Remark 2.15. The same argument in the real case gives another proof of the
fact that an integral curve of a differential equation on Rn is either unbounded or
it is bounded and parametrized by the entire real line.

Corollary 2.16. Let L ⊂ CP2 be any projective line and L be any non-
singular leaf of an SHFC F . Then L∩ L 6= ∅.

Proof. Consider the affine chart (x, y) for CP2 r L ' C2. In this coordi-
nate system, L = L0. Note that the leaves of F|C2 are the integral curves of a
(polynomial) vector field. Now the result follows from Theorem 2.14.

Corollary 2.17. Any non-singular leaf of an SHFC in A′n has an accumula-
tion point on the line at infinity.

If the accumulation point is not singular, then the whole line at infinity is
contained in the closure of the leaf by Proposition 1.6.

Knowing that each leaf accumulates on L0, we now proceed to study the mon-
odromy group of the leaf at infinity L∞. Let F : {ω = Pdy−Qdx = 0} ∈ A′n and
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Figure 8. Marking the leaf at infinity.

L0∩ sing(F) = {p1, . . . , pn+1}. Recall from Remark 1.21 that F is described in the
affine chart (u, v) ∈ U1 by

ω′(u, v) = un+1P

(
1
u
,
v

u

)
dv − un+1R

(
1
u
,
v

u

)
du = 0,(2.4)

where R(x, y) = yP (x, y) − xQ(x, y). The line at infinity L0 is the closure of
{(0, v) : v ∈ C}, and pj := (0, aj), 1 ≤ j ≤ n+ 1, where the aj are distinct roots in
v of the polynomial un+1R(1/u, v/u)|u=0.

The leaf at infinity L∞ = L0 r {p1, . . . , pn+1} can be made into a marked leaf
by choosing fixed loops {γ1, . . . , γn} as generators of π1(L∞). Fixing a base point
a /∈ {p1, . . . , pn+1}, each γj goes around pj once in the positive direction and does
not encircle pj for i 6= j (Fig. 8).

Definition 2.18. The monodromy mappings fγj for 1 ≤ j ≤ n generate the
monodromy group of the leaf at infinity, denoted by G∞.

Let us compute the multiplier of each monodromy mapping fγj in terms of P
and Q. In the affine chart (u, v) ∈ U1, the foliation is induced by the polynomial
1-form ω′ of (2.4). Write

un+1P

(
1
u
,
v

u

)
=: uP̃ (u, v) and un+1R

(
1
u
,
v

u

)
=: R̃(u, v),(2.5)

where P̃ and R̃ are polynomials with R̃(0, aj) = 0 for 1 ≤ j ≤ n + 1. Note that
F|U1 is induced by the vector field

X1 = uP̃ (u, v)
∂

∂u
+ R̃(u, v)

∂

∂v

(compare (1.7)). Let us consider the Jacobian matrix DX1 at the singular point
pj:

DX1(pj) =
(

P̃ (0, aj) 0
R̃u(0, aj) R̃v(0, aj)

)
,(2.6)
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where the indices denote partial derivatives. The quotient

λj :=
P̃ (0, aj)
R̃v(0, aj)

(2.7)

of the eigenvalues of the matrix (2.6) is called the characteristic number of the
singularity pj . Note that since the roots of R̃(0, v) are simple by assumption, we
have R̃v(0, aj) 6= 0 and λj of (2.7) is well-defined. On the other hand, the char-
acteristic number is evidently independent of the vector field representing F near
pj, since such a vector field is unique up to multiplication by a nowhere vanishing
holomorphic function near pj .

For simplicity we denote fγj by fj and f ′j(0) by νj.

Proposition 2.19. νj = e2πiλj .

Proof. By Theorem 2.13, we have νj = exp(−
∫
γj
α), where α is any mero-

morphic 1-form which satisfies dω′ = ω′ ∧ α. Choose, for example, the 1-form
α = −(uP̃u + P̃ + R̃v)/R̃ dv. Then we have

−
∫
γj

α =
∫
γj

uP̃u + P̃ + R̃v

R̃ u=0
dv

=
∫
γj

P̃ (0, v) + R̃v(0, v)
R̃(0, v)

dv

= 2πi Res

[
P̃ (0, v) + R̃v(0, v)

R̃(0, v)
; aj

]
= 2πi(λj + 1),

so that exp(−
∫
γj
α) = e2πiλj .

Remark 2.20. Since f1◦· · ·◦fn+1 =id, one has ν1 · · ·νn+1 = 1 so that
∑n+1
j=1 λj

is an integer by the above proposition. This integer turns out to be 1 by the
following argument. By (2.7), λj is the residue at aj of the meromorphic function
P̃ (0, v)/R̃(0, v) on L0 ' CP1. If R̃(0, v) = c

∏n+1
j=1 (v − aj), then c is the coefficient

of yn+1 in R(x, y) by (2.5), hence it is the coefficient of yn in P (x, y) since R =
yP − xQ. So again by (2.5) P̃ (0, v) is a polynomial in v with leading term cvn. It
follows that the residue at infinity of P̃ (0, v)/R̃(0, v) is −1. Hence

∑n+1
j=1 λj −1 = 0

by the Residue Theorem.

2.5. Equivalence of Foliations and Subgroups of Bih0(C). For singular
smooth 1-dimensional foliations on real manifolds, one can speak of topological or
Ck equivalences, or topological or Ck conjugacies. In the case of an equivalence, one
is concerned only about the topology of the leaves, but in the case of a conjugacy,
the actual parametrization of the leaves is also relevant. Of course the latter makes
sense only when the foliations are described by single smooth vector fields on the
ambient space.

In the complex analytic case, we can still think of equivalences as well as conju-
gacies between SHFC’s. But again the notion of conjugacy requires the existence of
holomorphic vector fields defined on the ambient space representing the foliations.
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One can develop a theory of conjugacies for holomorphic vector fields defined on
non-compact complex manifolds such as open subsets of Cn. However, the study of
conjugacies for holomorphic vector fields on compact complex manifolds is certainly
less interesting, as the possible examples are rather rare and often trivial (compare
Proposition 1.9).

Based on this observation, the most natural notion of equivalence between
SHFC’s on CP2 seems to be the following:

Definition 2.21. Two SHFC’s F and F ′ on CP2 are said to be topologically
(resp. holomorphically) equivalent if there exists a homeomorphism (resp. biholo-
morphism) H : CP2 → CP2 which maps the leaves of F to those of F ′.

The existence of an equivalence between two SHFC’s has the following impli-
cation on the monodromy groups:

Proposition 2.22. Let F and F ′ be topologically (resp. holomorphically) equiv-
alent SHFC’s linked by H : CP2 → CP2. Let p be a non-singular point for F . Then
the monodromy group G(Lp) is isomorphic to G(L′H(p)). More precisely, there ex-
ists a local homeomorphism (resp. biholomorphism) h defined on some neighborhood
of 0 ∈ C, with h(0) = 0, and a group isomorphism k : G(Lp) → G(L′H(p)) such
that h ◦ f = k(f) ◦ h for every f ∈ G(Lp).

Proof. Let γ ∈ π1(Lp, p) and Σ be a transversal to Lp at p. Set q = H(p), γ′ :=
H∗γ ∈ π1(L′q, q), and let Σ′ be a transversal to L′q at q. As in the definition of the
monodromy mapping, choose foliation charts {(Ui, ϕi)}0≤i≤n and transversals Σi
for F , and the corresponding data {(U ′i , ϕ′i)}0≤i≤n and Σ′i for F ′, and consider the
decompositions fγ = fn ◦ · · · ◦ f0 and gγ′ = gn ◦ · · · ◦ g0 (compare §2.1). Without
loss of generality we may assume that U ′i = H(Ui). Since F|Ui (resp. F ′|U ′i) is a
trivial foliation, one has a projection along leaves πi : Ui → Σi (resp. π′i : U ′i → Σ′i)
which sends every z to the unique intersection point of the plaque of Ui (resp. U ′i)
through z with Σi (resp. Σ′i).

Define hi : Σi → Σ′i by hi := π′i ◦ H. Since H is a leaf-preserving homeo-
morphism (resp. biholomorphism) each hi is also a homeomorphism (resp. biholo-
morphism) with inverse h−1

i = πi ◦ H−1 (see Fig. 9). Now the definition of fi
and gi shows that hi+1 ◦ fi = gi ◦ hi for 0 ≤ i ≤ n. Therefore, the two relations
fγ = fn ◦ · · · ◦ f0 and gγ′ = gn ◦ · · · ◦ g0 show that gγ′ ◦ h0 = h0 ◦ fγ . To complete
the proof, note that the mapping fγ 7→ k(fγ) := h0 ◦ fγ ◦ h0

−1 is an isomorphism
between G(Lp) and G(L′q).

The following definition is suggested by the above proposition:

Definition 2.23. Two subgroupsG,G′ ⊂ Bih0(C) are topologically (resp. holo-
morphically) equivalent if there exists a homeomorphism (resp. biholomorphism) h
defined on some neighborhood of 0 ∈ C, with h(0) = 0, such that h ◦ f ◦ h−1 ∈ G′
if and only if f ∈ G.

It follows that the mapping f 7→ k(f) := h◦f ◦h−1 : G→ G′ is an isomorphism,
and the following diagram is commutative:

(C, 0)
f−−−−→ (C, 0)yh yh

(C, 0)
k(f)−−−−→ (C, 0)

(2.8)
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Figure 9. Equivalent foliations.

Theorem 2.24. If two SHFC’s F and F ′ on CP2 are topologically (resp. holo-
morphically) equivalent, then so are the monodromy groups of the corresponding
leaves.

This theorem naturally leads us to the study of equivalent subgroups of Bih0(C)
in order to gain information about equivalent SHFC’s. Below we list a few impor-
tant results concerning these equivalence problems.

Theorem 2.25. Let G,G′ ⊂ Bih0(C) be two topologically equivalent marked
subgroups linked by an orientation-preserving homeomorphism h such that the di-
agram (2.8) is commutative. Suppose that G is non-abelian, and that there exist
f1, f2 ∈ G such that the multiplicative subgroup of C∗ generated by f ′1(0), f ′2(0) is
dense in C. Then h is actually a biholomorphism, so that G and G′ are holomor-
phically equivalent.

This phenomenon is called absolute rigidity of subgroups of Bih0(C). (A sub-
group G ⊂ Bih0(C) is called absolutely rigid if every subgroup which is topologically
equivalent to G is holomorphically equivalent to it.) The proof of this theorem can
be found in [I3].

Along this line, A. Shcherbakov [Sh] has shown the following result:

Theorem 2.26. A non-solvable subgroup of Bih0(C) is absolutely rigid.

For an almost complete topological and analytical classification of germs in
Bih0(C), see paper II of [I5].

The next result gives “moduli of stability” for typical SHFC’s on CP2.

Theorem 2.27. Let F ,F ′ ∈ A′n be two SHFC’s on CP2 having no algebraic
leaves other than the leaf at infinity. Let L0 ∩ sing(F) = {p1, . . . , pn+1}, L0 ∩
sing(F ′) = {p′1, . . . , p′n+1}, and λj and λ′j be the characteristic numbers of pj and
p′j, respectively. Suppose that λj and λ′j are non-zero, and F and F ′ are topologi-
cally equivalent by a homeomorphism H : CP2 → CP2 with H(pj) = p′j. Then there
exists an R-linear transformation A : C→ C, with A(λj) = λ′j for 1 ≤ j ≤ n + 1.

It follows in particular that the n+1 characteristic numbers λ′j span a subspace
of Cn+1 of dimension ≤ 2. The proof of Theorem 2.27 is based on studying the
equivalence of the monodromy groups of the leaves at infinity, and uses the same
techniques as the proof of Theorem 2.25. It was first proved by Il’yashenko [I3]
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in the case λj, λ
′
j are not real numbers. Later, it was generalized by V. Naishul

[N], who presented a much more difficult argument to handle the case where the
characteristic numbers are real.

Recall that F ∈ An is structurally stable if there exists a neighborhood Ω ⊂ An
of F such that every SHFC in Ω is topologically equivalent to F . Since it can be
shown that the set of F ∈ A′n which do not have any algebraic leaf other than L∞
is open and dense in An (see Definition 1.28 and the proof of Proposition 3.21), it
follows from Theorem 2.27 that

Corollary 2.28. No SHFC in An is structurally stable when n ≥ 2.

The following theorem, which proves a type of “absolute rigidity” for SHFC’s,
is a fundamental result first proved by Il’yashenko [I3].

Theorem 2.29. A typical F ∈ An is absolutely rigid. That is, there exist
neighborhoods Ω ⊂ An of F and U of the identity mapping on CP2 in the uniform
topology such that every SHFC in Ω which is topologically equivalent to F by a
homeomorphism in U is holomorphically equivalent to F .

X. Gómez-Mont [GO] has generalized the above theorem to SHFC’s on pro-
jective complex surfaces which have an algebraic leaf of sufficiently rich homotopy
group.

3. Density and Ergodicity Theorems

In the previous chapter we noted that the behavior of leaves near the leaf at
infinity L∞ gives us information about their global behavior. The orbits of points
under the action of the monodromy pseudo-group PG∞ in turn give us a picture of
the behavior of leaves near L∞. So a natural task is to consider dynamics of germs
in G∞, that is, the iterations in a finitely-generated subgroup of Bih0(C).

Here is a sketch of what will follow in this chapter. First we consider elements
of Bih0(C) without any attention to the relationship with the monodromy groups
of SHFC’s. We study the linearization of hyperbolic germs (Theorem 3.2), and
approximation of a linear map by elements of a pseudo-group of germs in Bih0(C)
(Proposition 3.4) which leads us to a local density theorem (Theorem 3.5). We
then consider the notion of ergodicity in Bih0(C) and find conditions under which
a finitely-generated subgroup of Bih0(C) is ergodic (Theorem 3.15). Finally, these
results will be applied to the monodromy group G∞ of a typical F ∈ An, leading
to the density theorem of M. Khudai-Veronov (Theorem 3.24) and the ergodicity
theorem of Il’yashenko and Sinai (Theorem 3.26).

3.1. Linearization of Germs in Bih0(C). Let us begin with the following
definition:

Definition 3.1. A germ f ∈ Bih0(C) is called linearizable if there exists a
holomorphic change of coordinate ζ = ζ(z) near 0, with ζ(0) = 0, such that

ζ(f(z)) = f ′(0) · ζ(z).(3.1)

In other words, we have the following commutative diagram:

(C, 0) f−−−−→ (C, 0)yζ yζ
(C, 0)

f′(0).−−−−→ (C, 0)
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It follows that the holomorphic change of coordinate ζ conjugates f with its
tangent map at the fixed point 0.

If the germs f and g are conjugate, say if ζ ◦ f ◦ ζ−1 = g, then ζ ◦ fn ◦ ζ−1 = gn

for every n ≥ 1, so f and g have identical iterative dynamics near 0 up to a
change of coordinate. Thus the possibility of linearization can be very helpful in
understanding the dynamics of iterations.

It is a remarkable fact that the possibility of linearizing a germ depends on
the multiplier of the germ at the fixed point 0. In particular, it was shown by
G. Koenigs that f ∈ Bih0(C) is linearizable if f is hyperbolic in the sense that
|f ′(0)| 6= 1 [M].

Theorem 3.2. Every hyperbolic germ f ∈ Bih0(C) is linearizable. The local
linearization ζ is unique up to multiplication by a non-zero constant.

Proof. Let ν := f ′(0). Without losing generality we may assume that |ν| <
1, for otherwise we can consider f−1. Choose a constant c < 1 so that c2 <
|ν| < c, and let r > 0 be such that |f(z)| ≤ c|z| for z ∈ D(0, r). For every
z0 ∈ D(0, r), the orbit {zn := fn(z0)}n≥0 converges geometrically towards the
origin, with |zn| ≤ rcn. Choose k > 0 so that |f(z)− νz| ≤ k|z|2 for all z ∈ D(0, r).
It follows that |zn+1 − νzn| ≤ kr2c2n. Set ζn(z) := fn(z)/νn. Then |ζn+1 − ζn| ≤
(kr2/|ν|)(c2/|ν|)n. This estimate shows that the sequence {ζn} converges uniformly
on D(0, r) to a holomorphic map ζ. The identity ζ ◦ f = νζ is immediate. Note
that ζ′(0) = limζ′n(0) = limν−n(fn)′(0) = 1, so ζ is a local biholomorphism. If
η ◦ f = νη, then ζ ◦ η−1 commutes with the linear map z 7→ νz. Applying this
condition and comparing the coefficients of the Taylor series expansions, it follows
that ζ ◦ η−1 = (const.)z, and the uniqueness follows.

Remark 3.3. The problem of linearizing non-hyperbolic germs is extremely
difficult and has a long history. In fact, if ν = e2πit with 0 < t < 1 irrational, it
turns out that the possibility of linearizing a germ f with f ′(0) = ν depends on the
asymptotic behavior of the denominators of the continued fraction approximations
to t. Part of the linearization problem was solved by A. Brjuno in the mid 60’s,
but the complete solution has been found only in recent years with the work of J.C.
Yoccoz and R. Perez-Marco [P].

3.2. Approximation by Elements of a Pseudo-Group. The next propo-
sition shows how to approximate a linear map in a suitable coordinate system by
elements of a given pseudo-group PG of germs in a finitely-generated subgroup
G ⊂ Bih0(C). The proof is nothing but an elaboration of the following elementary
fact: If f ∈ Bih0(C) and |ν1| < 1, then f ′(0)z = limn→∞ ν

−n
1 f(νn1 z).

Proposition 3.4. Let G be a marked subgroup of Bih0(C) with generators
f1, . . . , fk, all defined on some domain Ω containing 0. Let f1 be a hyperbolic germ
and ζ be a holomorphic coordinate change linearizing f1. Without loss of generality,
assume that |f ′1(0)| < 1, ζ is defined on Ω, and ζ(Ω) = D(0, r) for some r > 0.
Let DG be the tangent group of G, i.e., the multiplicative subgroup of C∗ generated
by νj := f ′j(0), 1 ≤ j ≤ k. Then for every ν ∈ DG, there exists a sequence Fn
in the pseudo-group PG which in coordinate ζ converges to the linear map ζ 7→ νζ
uniformly on compact subsets of {ζ : |ζ| < min(r, r/|ν|)}= ζ(Ω ∩ ν−1Ω).

By an abuse of notation, we denote by f(ζ) the germ induced by f in the
coordinate ζ, where f ∈ Bih0(C) and ζ is a holomorphic change of coordinate near
0.
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Proof. It suffices to consider the case where ν ∈ DG, i.e., when ν = f ′(0) for
some f ∈ G. The general case will then follow by the uniformity of convergence
and a standard diagonal argument. Define

Fn := f−n1 ◦ f ◦ fn1 .(3.2)

First we claim that Fn is defined on Ω for all sufficiently large n, and Fn(ζ) → νζ
uniformly on compact subsets of D(0, r) as n → ∞. In fact, if f(ζ) = νζ +∑∞
j=2 ajζ

j , then it easily follows from (3.2) that

Fn(ζ) = νζ +
∞∑
j=2

ajν
n(j−1)
1 ζj .(3.3)

Since f(ζ) is holomorphic on D(0, r′) for some 0 < r′ < r, one has lim supj j
√
|aj| ≤

1/r′, so for large n, lim supj
j
√
|aj||ν1|n(j−1) ≤ 1/r. Thus the expression on the

right hand side of (3.3) has an analytic continuation to D(0, r), i.e., Fn is defined
in Ω for large n. Now the fact that Fn(ζ) → νζ uniformly on compact subsets of
D(0, r) is immediate from (3.3).

What remains to be shown is that for every compact set K ⊂ Ω ∩ ν−1Ω there
is an N = N(K) > 0 such that the domain ΩFn of Fn as an element of PG (see
Definition 2.12) contains K for all n > N .

Each intermediate representation of Fn in (3.2) has the form

gm := fm1 or hmn := f
−(n−m)
1 ◦ f ◦ fn1 , 0 ≤m ≤ n.

We shall prove that for large n, gm(ζ) and hmn(ζ) have conformal extensions to
D(0, r) and K′ := ζ(K) is mapped into D(0, r) by them. In fact, gm(ζ) = νm1 ζ and
hmn(ζ) → νm1 νζ uniformly in ζ and m as n→∞, so that gm(ζ) and hmn(ζ) have
conformal extensions over D(0, r) for large n. Now gm(ζ(K)) = νm1 K

′ ⊂ D(0, r) for
all m ≥ 0. On the other hand, let δ := sup{|ζ| : ζ ∈ K′}, so that δ < min(r, r/|ν|).
Choose 0 < ε < r − |ν|δ, and find N > 0 such that |hmn(ζ) − νm1 νζ| < ε for
all 0 ≤ m ≤ n and ζ ∈ D(0, r) whenever n > N . Then if ζ ∈ K′ we have
|hmn(ζ)| < ε+ |ν1|m|ν|δ < r for n > N and all 0 ≤ m ≤ n.

Theorem 3.5. Let G ⊂ Bih0(C) be a marked subgroup, and suppose that the
tangent group DG is dense in C. Then there exists an open neighborhood Ω of 0
such that for every z ∈ Ωr {0} the orbit of z under the pseudo-group PG is dense
in Ω.

Proof. Since DG = C, G must contain at least one hyperbolic germ, say f1.
Let Ω and ζ be as in Proposition 3.4. By density of DG, for every ν ∈ C there
exists a sequence {Fn} in PG such that Fn(ζ)→ νζ uniformly on compact subsets
of ζ(Ω∩ν−1Ω). Choose z ∈ Ωr{0} and let w ∈ Ω be arbitrary. Set ν := ζ(w)/ζ(z).
Then Fn(ζ(z)) → (ζ(w)/ζ(z)) ζ(z) = ζ(w) as n→∞, and we are done.

3.3. Ergodicity in Subgroups of Bih0(C). Recall from ergodic theory that
a measure-preserving transformation T acting on a probability space X is called
ergodic if every T -invariant subset of X has measure 0 or 1. In what follows, for
two measurable sets A,B ⊂ C, the notation A .= B means the symmetric difference
(Ar B) ∪ (B rA) has Lebesgue measure zero.

Definition 3.6. Two Lebesgue measurable subsets A and B of C are said to
be equivalent at 0 if there exists an open disk U around 0 such that A∩U .= B∩U .
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Figure 10. Invariant sets A for the action f : z 7→ νz with [A] 6=
[C] and [A] 6= [∅]. Left: |ν| 6= 1. Right: |ν|= 1.

The germ of A, denoted by [A], is the equivalence class of A under this relation.
Given an f ∈ Bih0(C), a set A is called f-invariant if [A] = [f(A)]. Given a
subgroup G ⊂ Bih0(C), a set A is said to be G-invariant if it is f-invariant for
every f ∈ G. The subgroup G is called ergodic if for every G-invariant set A, we
have [A] = [C] or [∅].

Example 3.7. Let f(z) = νz, ν 6= 0, and G be the subgroup of Bih0(C)
generated by f . Then G is not ergodic since it is easy to construct an f-invariant
measurable set A such that [A] 6= [C] and [A] 6= [∅]. For example, if |ν| < 1 (the
case |ν| > 1 is similar), take any sector B in the fundamental annulus {z : |ν| <
|z| ≤ 1} and set A =

⋃∞
n=0 ν

nB (see Fig. 10 left). If, on the other hand, |ν| = 1,
consider the invariant set A =

⋃∞
n=0{z : 2−2n−1 ≤ |z| ≤ 2−2n} (see Fig. 10 right).

However, we will see that if G is generated by two linear germs f1(z) = ν1z and
f2(z) = ν2z, with the tangent group DG = 〈ν1, ν2〉 dense in C, then G is ergodic
(see Proposition 3.13).

Definition 3.8. Let A ⊂ C be Lebesgue measurable. A point z ∈ C is called
a density point of A if

lim
r→0

m(A ∩ D(z, r))
m(D(z, r))

= 1,(3.4)

where m denotes Lebesgue measure on C.

It is well-known that almost every point of A is a density point of A (see [Ru]
for a proof).

Our next goal is to prove that under fairly general circumstances, a marked
subgroup of Bih0(C) is ergodic. The idea of the proof, due to E. Ghys, is based on
a few preliminary statements, which we present below. The first one is the classical
“Koebe 1/4-Theorem” (see [Ru]):

Theorem 3.9. Let f : D(z, r) → C be a univalent function. Then f(D(z, r))
contains the disk D(f(z), |f ′(z)|r/4).

Lemma 3.10. Let f(z) = νz, with 0 < |ν| < 1, and g ∈ Bih0(C). Suppose that
A is both f- and g-invariant. Then there exists an open disk U around 0 such that
A ∩ U .= ν−ngνn(A) ∩ U for all n ≥ 0.
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Figure 11. Proof of Proposition 3.11.

Proof. Evidently, for each integer n, A is invariant under f−n◦g◦fn. To prove
the assertion, it suffices to find a disk U that works uniformly for all sufficiently
large n. Without loss of generality, in what follows we replace .= by = by modifying
the inclusions up to a set of measure zero.

Choose a disk V = D(0, r1) such that

A ∩ V = (νA) ∩ V = (ν−1A) ∩ V = g(A) ∩ V.(3.5)

Set µ := 1/g′(0). Since ν−ng−1νn converges uniformly to z 7→ µz in a neigh-
borhood of 0, we can choose a disk U = D(0, r2) ⊂ V and an N > 0 such that
|ν−ng−1(νnz)| ≤ |µ||z| + r1/2 for all z ∈ U and all n > N . Moreover, we may
choose r2 such that |µ|r2 < r1/2 and N large enough such that νnU ⊂ g(U) for all
n > N .

Now suppose that z ∈ A∩U . Then by (3.5), w = νnz ∈ A∩U . Again by (3.5)
we have w = g(x), where x ∈ A. If n > N , x is in fact in A ∩ U by the choice of
N . If y = ν−nx, then |y| = |ν−ng−1(νnz)| ≤ |µ||z|+ r1/2 ≤ |µ|r2 + r1/2 < r1, so
that y ∈ V . Once again by (3.5) we obtain y ∈ A∩ V . Hence, z ∈ ν−ngνn(A) ∩U .

The proof that ν−ngνn(A) ∩ U ⊂ A ∩ U for all large n is quite similar.

Proposition 3.11. Let fn ∈ Bih0(C) be defined on some open neighborhood
V of 0 for all n ≥ 1, and fn → f ∈ Bih0(C) uniformly on compact subsets of V .
Suppose that A is fn-invariant and that there exists a disk U ⊂ V around 0 such
that A ∩ U .= fn(A) ∩ U for all n ≥ 1. Then A is f-invariant.

Proof. Without loss of generality we may assume that A has positive measure
and each point ofA is a density point. Choose a smaller disk W ⊂ U∩f(U)∩f−1(U)
such that fn(W ) ⊂ U for all n. Choose z0 ∈ A such that f(z0) ∈W . We show that
f(z0) is a density point for A. This proves f(A)∩W ⊂ A∩W . Next, by the choice
of W , f−1

n (A) ∩W = A ∩W , so the same argument gives us A ∩W ⊂ f(A) ∩W .
So let z0 ∈ A with f(z0) ∈W . By the choice of W , we have z0 ∈ U . Given any

ε > 0, choose r = r(ε) > 0 so small that
(i) D(z0, r) ⊂ U ,

(ii) 1− ε < m(A ∩ D(z0, r
′))

m(D(z0, r′))
≤ 1 for every 0 < r′ ≤ r,
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(iii) |f ′(z0)| − ε ≤ inf
z∈D(z0,r)

|f ′n(z)| ≤ sup
z∈D(z0,r)

|f ′n(z)| ≤ |f ′(z0)|+ ε for all large n.

For simplicity, set µ := |f ′(z0)| − ε, D := D(z0, r), D′ := D(f(z0), µr/4), and
D′n := D(fn(z0), µr/4). By Theorem 3.9, fn(D) contains D′n if n is large enough
(Fig. 11). Since D′n r A ⊂ fn(D) r (A ∩ fn(D)) = fn(D) r fn(A ∩D), for large n
we have
m(A ∩D′n) ≥ m(D′n)−m(fn(D)) +m(fn(A ∩D))

= m(D′n)−
∫
D

|f ′n|2 dm+
∫
A∩D

|f ′n|2 dm

≥ m(D′n)− (|f ′(z0)|+ ε)2 m(D) + µ2m(A ∩D) (by (iii))

≥ [1− 16(|f ′(z0)|+ ε)2µ−2 + 16(1− ε)]m(D′n) (by (ii))

=: `(ε)m(D′n).

As n → ∞, m(A ∩ D′n) → m(A ∩ D′) by Lebesgue’s Dominated Convergence
Theorem. Therefore

m(A ∩D′)
m(D′)

≥ `(ε).

Since `(ε)→ 1 as ε→ 0, it follows that f(z0) is a density point of A.

Corollary 3.12. Under the assumptions of Proposition 3.4, every G-invariant
set A is also DG-invariant.

Proof. Let ν = g′(0) ∈ DG for some g ∈ G. In the coordinate ζ one has
f1(ζ) = ν1ζ, and by Proposition 3.4, f−n1 ◦ g ◦ fn1 converges to ζ → νζ uniformly on
compact subsets of ζ(Ω∩ ν−1Ω). It follows from Lemma 3.10 and Proposition 3.11
that A is invariant under ζ 7→ νζ.

The proof of the following proposition uses a standard technique in ergodic
theory (see for example Appendix 11 of [AA]).

Proposition 3.13. Choose νj ∈ C∗, 1 ≤ j ≤ k, and let G be the subgroup of
Bih0(C) generated by the linear germs z 7→ νjz, 1 ≤ j ≤ k. Then G is ergodic if
and only if its tangent group DG is dense in C.

Proof. Suppose that DG is dense in C. Then G contains at least one hyper-
bolic element f(z) = νz with |ν| < 1. Let A ⊂ C be any measurable G-invariant
set. Choose a disk U around 0 such that A ∩ U .= (νA) ∩ U . Take the quotient
of U r {0} under the action of the group {fn : n ∈ Z} generated by f , which is
biholomorphic to a 2-torus T2. Let G̃ be the induced group of translations of T2,
and Ã be the induced measurable subset of T2. Note that Ã is invariant under the
action of G̃, and the orbit of each point in T2 is dense under this action.

It suffices to show that Ã or T2rÃ has measure zero. Expand the characteristic
function of Ã into the Fourier series

χÃ(e2πix, e2πiy) =
∑
m,n

amn e
2πi(mx+ny),

where we identify T2 with {(e2πix, e2πiy) ∈ S1 ×S1}. Let f̃ ∈ G̃ be the translation
(e2πix, e2πiy) 7→ (e2πi(x+α), e2πi(y+β)). The G̃-invariance of Ã shows that

χÃ =
∑
m,n

amne
2πi(mα+nβ) e2πi(mx+ny)
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almost everywhere. Therefore, for all m, n ∈ Z, amn = amn e
2πi(mα+nβ). Since G̃

contains at least one irrational translation (otherwise, the orbit of each point would
be finite), we conclude that amn = 0 for all (m, n) 6= (0, 0), hence χÃ = 0 or 1
almost everywhere.

Conversely, let G be ergodic. Clearly G contains a hyperbolic element f0(z) =
νz, with |ν| < 1. Suppose by way of contradiction that DG is not dense in C,
so that there exists an open disk D(z, r) such that DG ∩ D(z, r) = ∅. Set A :=⋃
f∈G f(D(z, r/2)). Then A is an open, G-invariant set such that DG ∩ A = ∅.

The germ of A at 0, denoted by [A], is not equal to [∅] since every neighborhood
of 0 contains νnD(z, r/2) for large n. It follows that [A] = [C]. The invariance of
A and the fact that |ν| < 1 will then show that m(C r A) = 0. In particular, A
is dense in C. Let {wn} be a sequence in A such that limwn=1. Let wn = σnzn,
where σn ∈ DG and zn ∈ D(z, r/2). Then σ−1

n belongs to D(z, r) for large n . This
contradicts the assumption DG ∩ D(z, r) = ∅.

Remark 3.14. The above proof shows how the notion of ergodicity for finitely-
generated subgroups of Bih0(C) containing a hyperbolic germ is related to the usual
notion of ergodicity for translations of tori, justifying Definition 3.6.

Theorem 3.15. Let G ⊂ Bih0(C) be a marked subgroup, with the tangent group
DG dense in C. Then G is ergodic.

Proof. Since DG is dense in C, G must contain at least one hyperbolic ele-
ment. By Corollary 3.12, every G-invariant set A is also DG-invariant. By Propo-
sition 3.13, [A] = [C] or [∅].

3.4. Density of Leaves of SHFC’s on CP2. This section is devoted to the
proof of a theorem of Khudai-Veronov on density of leaves of a typical SHFC on
CP2. We first prove a version of this theorem which asserts that for a typical
F ∈ An all but a finite number of leaves are dense in CP2. Next, by applying a
more elaborate argument, we show that among these exceptional leaves only L∞ is
robust. In fact, for a typical F ∈ An all leaves except L∞ are dense in CP2.

Definition 3.16. Let X be a holomorphic vector field defined in some neigh-
borhood U of p ∈ C2, and let p be an isolated singular point of X. Let σ1 and σ2 be
the eigenvalues of the Jacobian matrix DX(p). We say that p is a non-degenerate
singularity if σ1σ2 6= 0. p is called a hyperbolic singularity if it is non-degenerate
and the characteristic number σ1/σ2 is not real.

Theorem 3.17. Every hyperbolic singularity is locally linearizable: There exist
neighborhoods U of p and V of 0 ∈ C2 and a biholomorphism ϕ : U '−→ V such
that (ϕ∗X)(x, y) = σ1x ∂/∂x + σ2y ∂/∂y.

In fact, in this two dimensional case, the linearization is possible when either
σ1/σ2 6∈ R, or σ1/σ2 is positive but not an integer or the inverse of an integer (the
so-called “non-resonant Poincaré case” ). For a proof, see [Ar].

Using the above theorem, we can understand the local picture of a hyperbolic
singularity since it is easy to integrate the linearized vector field.

Recall that for a holomorphic vector field X with an isolated singularity at
p, a local separatrix through p is the image of a punctured disk D∗(0, r) under a
holomorphic immersion η such that dη(T )/dT = X(η(T )) for T ∈ D∗(0, r), and
limT→0 η(T ) = p. It follows that a local separatrix of p is an invariant analytic
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Figure 12. A hyperbolic singularity at the origin of C2.

curve which passes through p, perhaps with a singularity there. It is shown by
C. Camacho and P. Sad that every holomorphic vector field X with an isolated
singularity at 0 ∈ C2 has a local separatrix through 0 [CS]. On the other hand,
this statement is false in higher dimensions, even in C3 [GL].

Corollary 3.18. Let X be a holomorphic vector field defined in a neighbor-
hood of an isolated hyperbolic singularity p ∈ C2. Then X has exactly two local
separatrices through p, and every other integral curve near p accumulates on these
two separatrices.

Fig. 12 is an attempt to visualize this situation.

Proof. By Theorem 3.17 X can locally be transformed into σ1x ∂/∂x +
σ2y ∂/∂y. The integral curve passing through (x0, y0) can be parametrized as
T 7→ (x0e

σ1T , y0e
σ2T ). It follows that the punctured axes {x = 0} r {(0, 0)} and

{y = 0} r {(0, 0)} are local separatrices. Since σ1/σ2 6∈ R, there exist sequences
{Tn} and {T ′n} such that

eσ1Tn = 1 for n = 1, 2, . . . , eσ2Tn → 0 as n→∞,
eσ2T

′
n = 1 for n = 1, 2, . . . , eσ1T

′
n → 0 as n→∞.

It follows that if x0y0 6= 0, the integral curve passing through (x0, y0) accumulates
on (x0, 0) and (0, y0), hence on the axes {x = 0} and {y = 0} by Proposition 1.6.

Now let F ∈ A′n, L0∩ sing(F) = {p1, . . . , pn+1}, and let λj be the character-
istic number of pj, as in (2.7). It follows that pj is a hyperbolic singularity of X1

(hence of any vector field representing F near pj) if and only if λj 6∈ R. By Propo-
sition 2.19, the last condition is equivalent to |νj| 6= 1, where νj is the multiplier
at 0 of the monodromy mapping fj ∈ G∞. We conclude that pj is a hyperbolic
singularity if and only if fj is a hyperbolic germ in Bih0(C).

Note that if pj is hyperbolic, then one of the separatrices through pj is the leaf
at infinity; the other one is transversal to L∞ (Fig. 13).
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Figure 13. Leaf at infinity with hyperbolic singularities.

Proposition 3.19. A typical F ∈ An, n ≥ 2, satisfies the following conditions:
(i) F ∈ A′n,

(ii) |νj| 6= 1 for all 1 ≤ j ≤ n; in other words, all the generators of G∞ are
hyperbolic,

(iii) the tangent group DG∞ = 〈ν1, . . . , νn〉 is dense in C.

Proof. Since the union of sets of measure zero has measure zero, it suffices to
prove that each condition is typical in An.

The first condition is typical by Corollary 1.29. The second one is typical by
(2.7): If |νj| = 1, then λj ∈ R, and this can be easily destroyed by perturbing the
coefficients of P and Q.

The third condition is more subtle. By (2.7) and Proposition 2.19, it suffices
to prove that for almost every (λ1, . . . , λn) ∈ Cn, the multiplicative subgroup
generated by {e2πiλ1 , . . . , e2πiλn} is dense in C. Evidently it is enough to prove
this statement for n = 2, since then we can take the product of the resulting subset
of C2 by Cn−2 to obtain a subset of full measure in Cn.

We shall prove that for almost every (λ1, λ2) ∈ C2, the additive subgroup
generated by {1, λ1, λ2} is dense in C. Suppose that (λ1, λ2) is chosen such that

(∗) no two vectors in {1, λ1, λ2} are R-dependent,
(∗∗) if 1 = aλ1 + bλ2, with a, b ∈ R, then b/a is irrational.

Let Λ be the lattice generated by {λ1, λ2}, and consider the quotient torus R2 π−→
R2/Λ. Let L : R2 → R2 be a linear map with L(λ1) = (1, 0), L(λ2) = (0, 1). Then
L(1) = (a, b), and L induces a homeomorphism L̃ : R2/Λ → R2/Z2 such that the
following diagram commutes:

R2 L−−−−→ R2yπ yπ′
R2/Λ L̃−−−−→ R2/Z2

(3.6)

Note that the slope of L(1) is irrational by (∗∗). So the sequence {π′(L(n))}n≥0

is dense in R2/Z2. Pulling back this sequence to the torus R2/Λ by L̃, it follows
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from diagram (3.6) that the sequence {π(n)}n≥0 is dense in R2/Λ. Hence if (λ1, λ2)
satisfies (∗) and (∗∗), the subgroup generated by {1, λ1, λ2} is dense in C. Finally, it
is straightforward to check that (∗) and (∗∗) hold for almost every (λ1, λ2) ∈ C2.

Now the first version of the density theorem is quite easy to prove.

Theorem 3.20. For a typical F ∈ An, all but at most n+2 non-singular leaves
are dense in CP2.

Proof. Let F ∈ An have properties (i), (ii), and (iii) of Proposition 3.19.
Since all the singular points {p1, . . . , pn+1} = L0∩ sing(F) are hyperbolic, there
are exactly two local separatrices through each pj, one of them lies in L∞. Denote
by Lj the global separatrix through pj which is transversal to L∞. (By the global
separatrix we mean the extension of the local separatrix as a leaf.) Note that we
might have Li = Lj even if i 6= j.

Now let p ∈ CP2r(sing(F)∪L1∪ . . .∪Ln+1∪L∞). By Corollary 2.17, Lp has a
point of accumulation on L0. By the choice of p and Corollary 3.18, this point can
be chosen on L∞, hence by Proposition 1.6 the entire L∞ is in the closure of Lp.
In particular, Lp intersects the transversal Σ to L∞ at the base point a of π1(L∞).
By Theorem 3.5, Lp ∩ Σ is dense in some neighborhood Ω ⊂ Σ of a.

Now choose any open set U ⊂ CP2 and any point q ∈ U r (sing(F) ∪ L1 ∪
. . .∪Ln+1 ∪L∞). By the above argument, Lq ∩Σ is dense in Ω. Therefore q ∈ Lp
by another application of Proposition 1.6. Since U was arbitrary, Lp is dense in
CP2.

The above proof shows that all non-singular leaves other than L∞ and the global
separatrices Lj are dense. The condition p 6∈

⋃n+1
j=1 Lj is only used to guarantee

the existence of point in L∞ ∩Lp. If the only accumulation points of Lp on L0 are
singular, it turns out that Lp is an algebraic curve. Since the algebraic leaves other
than L∞ are not typical for elements of An (Proposition 3.21 below), we can prove
a stronger version of the density theorem without the assumption p 6∈

⋃n+1
j=1 Lj in

the above proof.

Proposition 3.21. For a typical F ∈ An, the only algebraic leaf is the leaf at
infinity L∞.

Proof. The argument below is an adaptation of an idea due to I. Petrovskĭı
and E. Landis [PL1]. Let F : {Pdy−Qdx = 0} ∈ An. Suppose that the algebraic
curve SK : {K = 0} (see §1.4) with singular points of F deleted is a leaf of F ,
where K = K(x, y) is an irreducible polynomial of degree k. Since SK is a leaf, we
have

∂K

∂x
(x, y)P (x, y) +

∂K

∂y
(x, y)Q(x, y) = 0

whenever K(x, y) = 0. It follows that there exists a polynomial K̃ of degree at
most (n− 1) such that

∂K

∂x
P +

∂K

∂y
Q = KK̃.(3.7)

Conversely, if there exist polynomials K, K̃, P, and Q satisfying (3.7) with K ir-
reducible and P and Q relatively prime, then SKr sing(F) is an algebraic leaf of
F : {Pdy−Qdx = 0}.
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Let E be the complex linear space of the coefficients of K, K̃, P, and Q, which
has dimension
(k + 1)(k + 2)

2
+
n(n+ 1)

2
+2

(n + 1)(n+ 2)
2

=
1
2
{(k+1)(k+2)+(3n2 +7n+4)}.

If we impose (3.7) on these coefficients, we obtain equalities that define an algebraic
variety S in E. Note that if a belongs to S, so does λa for every λ ∈ C∗ by
(3.7). Therefore, S projects to an algebraic variety S∗ in CPd, with d = dimE − 1.
Decompose S∗ as

⋃m
j=1 S

∗
j , where each S∗j is irreducible. Let E′ ⊂ E be the subspace

of coefficients of P and Q, which has dimension n2 + 3n+ 2. The linear projection
E → E′ induces a projection π : CPd → CPN , where N = (dimE′)−1 = n2+3n+1.
Each π(S∗j ) is an algebraic variety in CPN . Since there are SHFC’s in An which do
not have any algebraic leaf other than L∞, we have π(S∗j ) 6= CPN , so dim π(S∗j ) ≤
N−1. Taking the union for all j = 1, · · · , m, we obtain the algebraic variety π(S∗)
in CPN , each irreducible component of which has dimension ≤ N − 1. It follows
that the Lebesgue measure of π(S∗) in An is zero. Since points in π(S∗) ∩ An
correspond to SHFC’s which have an algebraic leaf other than L∞, we obtain the
result.

Remark 3.22. By a much more difficult argument, using an index theorem of
Camacho and Sad and the concept of the Milnor number of a local branch of a
singular point, A. Lins Neto has shown that for n ≥ 2 there exists an open and
dense subset of Dn (see Corollary 1.19) consisting of SHFC’s which do not have
any algebraic leaf [L].

Proposition 3.23. Let F ∈ A′n and all points in L0 ∩ sing(F) be hyperbolic.
Let L be a non-singular leaf of F such that L∩L0 consists of singular points only.
Then L is an algebraic leaf.

Proof. Let Ω = CP2 r sing(F). First we show that L is closed in Ω. Since
L ∩ L0 ⊂ L0 ∩ sing(F), it follows that L coincides with the global separatrix Lj
which is transversal to L∞ at the singular point pj on L0. Let p ∈ L be any non-
singular point. Then, by Proposition 1.6, L0 ∩ Lp ⊂ L0 ∩ L ⊂ L0 ∩ sing(L), which
shows Lp also coincides with Lj. Hence Lp = L and p ∈ L.

Next we show that L is an analytic subvariety of CP2. Let p ∈ Ω. If p ∈ L,
then p ∈ L by the above argument. Suppose that (U, ϕ) is a foliation chart around
p, Σ is a transversal to Lp = L at p, Σ′ is another transversal to L at p′ near
pj ∈ L0 ∩ sing(F), and γ is any path in L joining p to p′ (Fig. 14). Let fγ : Σ→ Σ′

be the associated holonomy mapping. If there exists a sequence pn ∈ L ∩ Σ which
converges to p, then by considering the sequence fγ(pn) ∈ L ∩ Σ′ we conclude
from Corollary 3.18 that L must have a non-singular accumulation point on L∞,
which contradicts our assumption. Therefore, by choosing U small enough, the
only plaque of L in U is the one which passes through p, and evidently there exists
a holomorphic function f : U → C such that f−1(0) = L∩ U .

This means L r sing(F) is a 1-dimensional analytic subvariety of Ω. Since
dim(sing(F)) = 0 < 1 = dim(L r sing(F)), the theorem of Remmert-Stein (see
for example [GR]) shows that L is an analytic subvariety of CP2. Finally, every
analytic subvariety of CP2 is algebraic by Chow’s Theorem [GH].

Now, by Theorem 3.20, Proposition 3.21 and Proposition 3.23, we obtain the
density theorem of Khudai-Veronov:
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Figure 14. Proof of Proposition 3.23.

Theorem 3.24. For a typical F ∈ An, every leaf, except the leaf at infinity, is
dense in CP2.

3.5. Ergodicity of SHFC’s on CP2. In what follows, we say that a set
A ⊂ CP2 has measure zero if for every chart (U, ϕ) compatible with the standard
smooth structure of CP2, the set ϕ(A ∩ U) ⊂ R4 has Lebesgue measure zero. In
other words, we consider the Lebesgue measure class on CP2.

Definition 3.25. Let F ∈ An. The saturation s(A) of A ⊂ CP2 is the set of
all points q such that q ∈ Lp for some p ∈ A. A measurable set A is called saturated
if s(A) = A up to a set of measure zero. An SHFC F is called ergodic if for every
measurable saturated set A, either A or CP2 rA has measure zero.

Evidently if F is ergodic, then every non-singular leaf of F is either dense in
CP2 or its closure has measure zero. Also the following observation is useful: Let
Lp be a non-singular leaf and Σ be a transversal to Lp at p. Suppose that A ⊂ Σ is
a set of measure zero with respect to the Lebesgue measure class on Σ ' D. Then
s(A) has measure zero in CP2. This is because s(A) can be covered by a countable
number of foliation charts {(Ui, ϕi)}∞i=1 and each s(A) ∩ Ui has measure zero. In
particular, each single leaf has measure zero (take A = {p}).

Theorem 3.26. Let F ∈ An have properties (i),(ii), and (iii) of Proposi-
tion 3.19. Then F is ergodic. In particular, ergodicity is typical for elements
of An.

Proof. Let A be a measurable saturated subset of CP2. Without loss of
generality, we may assume that A does not contain any global separatrix Lj through
pj ∈ L0 ∩ sing(F), for each individual leaf has measure zero. Let p ∈ A be non-
singular. Then Lp must accumulate on L∞, so it has to intersect the transversal Σ
to L∞ at the base point a. By Theorem 3.15, G∞ is ergodic. Since A is saturated,
A ∩ Σ is G∞-invariant, so there is an open disk U ⊂ Σ around a such that either
A ∩ U or U r A has measure zero with respect to the Lebesgue measure class on
Σ. It is clear that

s(A ∩ U) = A r sing(F) and s(U rA) = CP2 r {A ∪ sing(F)}
up to a set of measure zero in CP2. By the observation before the statement of the
theorem, it follows that either A or CP2 r A has measure zero.
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4. Non-Trivial Minimal Sets

This chapter deals with a somewhat different global aspect of SHFC’s on CP2.
As will be seen, the foliations under consideration are essentially those which do not
have any algebraic leaf. In particular, because of the absence of the leaf at infinity,
we cannot utilize such powerful tools as the monodromy group G∞. Recall that
a typical F ∈ An has at least one algebraic leaf (i.e., L∞). Hence from the point
of view of differential equations for which the decomposition into the An is more
natural, the foliations we consider in this chapter almost never occur. However,
from the point of view of foliation theory, for which the natural decomposition
is by the Dn, the property of having no algebraic leaf seems to be typical (see
Remark 3.22).

4.1. An Open Problem. The study of limit sets of foliations and flows in
the real domain has proved to be of great significance in those theories. The clas-
sical theorem of Poincaré-Bendixson asserts that for every smooth real flow on the
2-sphere, every trajectory accumulates either on a periodic orbit or a singular point
(or both). It is natural to ask a similar question for SHFC’s on CP2. Here the
analogue of a periodic orbit is a compact non-singular leaf and it is not difficult to
prove that no such leaves could exist (Theorem 4.10). So we naturally arrive at the
following question, apparently first asked by C. Camacho:

Question. Is there a non-singular leaf of an SHFC on CP2 which does not accu-
mulate on any singular point?

Oddly enough, the question has remained open since the mid 80’s. One can formu-
late it in a slightly different language, commonly used in foliation theory.

Definition 4.1. A minimal set for an SHFC on CP2 is a compact saturated
non-empty subset of CP2 which is minimal with respect to these three properties. A
non-trivial minimal set is a minimal set which is not a singular point. Throughout
this chapter, M will always denote a non-trivial minimal set.

Minimality shows that if p ∈ M, then Lp = M. It follows that the problem
of finding a non-singular leaf which does not accumulate on any singular point is
equivalent to finding a non-trivial minimal set. Therefore, we can reformulate the
above question as

The Minimal Set Problem. Does there exist an SHFC on CP2 which has a
non-trivial minimal set?

Such a non-trivial minimal set is an example of a Riemann surface lamination. By
definition, a Riemann surface lamination (RSL) is a compact space which locally
looks like the product of the unit disk and a compact metric space (usually a Cantor
set). The transition maps between various charts are required to be holomorphic
in the leaf direction and only continuous in the transverse direction. Clearly every
compact Riemann surface is such a space, but they form the class of trivial RSL’s.
Although there are some basic results on uniformization of RSL’s (see [Ca]), the
corresponding embedding problem is rather unexplored. A classical theorem asserts
that every compact Riemann surface can be holomorphically embedded inCP3. The
Minimal Set Problem, as Ghys has suggested [Gh], could be viewed as a special
case of the embedding problem for RSL’s: “Can a non-trivial Riemann surface
lamination be holomorphically embedded in CP2?”
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In what follows we show some basic properties of non-trivial minimal sets. This
theory, due to Camacho, Lins Neto, and Sad [CLS1], was developed in part in the
hope of arriving at a contradiction to the existence of non-trivial minimal sets.

4.2. Uniqueness of Minimal Sets. How many distinct non-trivial minimal
sets, if any at all, can an SHFC on CP2 have?

Theorem 4.2. An SHFC on CP2 has at most one non-trivial minimal set.

The proof of this nice fact is quite elementary, and is based on the study of
the distance between two non-singular leaves and the application of the Maximum
Principle for real harmonic functions (compare [CLS1]).

To study the distance between two leaves, we have to choose a suitable Rie-
mannian metric on CP2. Consider the Hermitian metric

ds2 =
|dx|2 + |dy|2 + |xdy− ydx|2

(1 + |x|2 + |y|2)2
(4.1)

in the affine chart (x, y) ∈ U0, which extends to a Hermitian metric on the entire
projective plane. It is called the Fubini-Study metric on CP2 [GH]. We will denote
by d the Riemannian distance induced by this metric. Note that the associated
(1, 1)-form of the Fubini-Study metric is

Ω =
√
−1

2π
dx ∧ dx+ dy ∧ dy + (xdy− ydx) ∧ (xdy − ydx)

(1 + |x|2 + |y|2)2

=
√
−1

2π
∂∂ log(1 + |x|2 + |y|2).

(4.2)

Lemma 4.3. For any p0 = (x0, y0) and p1 = (x1, y1) in the affine chart (x, y) ∈
U0, we have

d(p0, p1) ≤ |p0 − p1|
(1 + δ2(p0, p1))1/2

,

where δ(p0, p1) is the minimum (Euclidean) distance form the origin to the line
segment which joins p0 and p1 .

Proof. By definition, d(p0, p1) = infγ{
∫ 1

0
‖γ′(t)‖dt}, where the infimum is

taken over all piecewise smooth curves γ : [0, 1]→ CP2 with γ(0) = p0, γ(1) = p1.
In particular, when γ(t) = (1− t)p0 + tp1 =: (x(t), y(t)), one has

d2(p0, p1) ≤ (
∫ 1

0

‖γ′(t)‖dt)2 ≤
∫ 1

0

‖γ′(t)‖2dt.
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Now we estimate ‖γ′‖2:

‖γ′(t)‖2 =
|x′(t)|2 + |y′(t)|2 + |x(t)y′(t) − y(t)x′(t)|2

(1 + |x(t)|2 + |y(t)|2)2

≤ |x
′(t)|2 + |y′(t)|2 + (|x(t)|2 + |y(t)|2)(|x′(t)|2 + |y′(t)|2)

(1 + |x(t)|2 + |y(t)|2)2

=
(|x′(t)|2 + |y′(t)|2)(1 + |x(t)|2 + |y(t)|2)

(1 + |x(t)|2 + |y(t)|2)2

=
|x0 − x1|2 + |y0 − y1|2

1 + |x(t)|2 + |y(t)|2

≤ |p0 − p1|2
1 + δ2(p0, p1)

,

and this completes the proof.

Corollary 4.4. Let E and F be two disjoint compact subsets of CP2, and
E′ := E ∩ U0 and F ′ := F ∩ U0 be both non-empty. If ε := inf{|p − q| : (p, q) ∈
E′ × F ′}, then ε > 0 and there exists a pair (p, q) ∈ E′ × F ′ with |p− q| = ε.

Proof. Let (pn, qn) ∈ E′×F ′ be such that |pn−qn| → ε as n→∞. By taking
subsequences, if necessary, we may assume that pn → p ∈ E and qn → q ∈ F . If
(p, q) ∈ E′ × F ′, we are done. Otherwise, if p ∈ E r E′, one has q ∈ F r F ′

since |pn − qn| is bounded. Therefore δ(pn, qn) →∞ as n → ∞, so d(p, q) = 0 by
Lemma 4.3, which is a contradiction.

Proof of Theorem 4.2. Let M1 and M2 be two non-trivial minimal sets of F :
{Pdy−Qdx = 0}. They are necessarily disjoint by minimality. SetM′1 :=M1∩U0,
M′2 :=M2 ∩U0 and ε := inf{|p− q| : (p, q) ∈M′1 ×M′2}. By Corollary 4.4, there
exists (p, q) ∈ M′1 × M′2, with |p − q| = ε. For simplicity, let p = (0, 0) and
q = (0, y0), with |y0| = ε. It follows from the definition of ε that the y-axis is
normal to Lp and Lq at p and q. Since p and q are not singular, we can parametrize
the leaves by the x-parameter in a disk D(0, r) around the origin:

Lp : x 7→ yp(x), y′p(x) =
Q(x, yp(x))
P (x, yp(x))

, yp(0) = 0,

Lq : x 7→ yq(x), y′q(x) =
Q(x, yq(x))
P (x, yq(x))

, yq(0) = y0.

Define h : D(0, r) → R by h(x) = log |yp(x) − yq(x)|. This is a harmonic function
with a minimum at x = 0. Therefore h ≡ log ε on D(0, r), so that locally Lq is
just the translation of Lp by y0. By analytic continuation, this is true globally, i.e.,
Lq∩U0 = (Lp∩U0)+(0, y0). By Corollary 2.16, there exists a sequence qn ∈ Lq∩U0

tending to infinity. The sequence pn := qn− (0, y0) ∈ Lp ∩U0 also tends to infinity,
so d(pn, qn)→ 0 by Lemma 4.3. This shows that Lp ∩ Lq =M1 ∩M2 6= ∅, which
is a contradiction.
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4.3. Poincaré Metric and Hyperbolicity. According to the Uniformiza-
tion Theorem of Koebe-Poincaré-Riemann, every simply-connected Riemann sur-
face is biholomorphic to one of the three standard models: The Riemann sphere Ĉ,
the complex plane C, or the unit disk D [Ah]. Since every Riemann surface has a
holomorphic universal covering, it follows that every Riemann surface can be cov-
ered holomorphically by Ĉ, C, or D, in which case it is called spherical, Euclidean,
or hyperbolic, respectively. Elementary considerations show that every spherical
Riemann surface is biholomorphic to Ĉ, while the Euclidean Riemann surfaces are
biholomorphic to C, or to the cylinder C/Z ' C∗, or to a torus C/Λ for a rank 2
lattice Λ in the plane. The last two surfaces are biholomorphic to the quotients of
C modulo the action of the groups generated by

{z 7→ z + a, for some a ∈ C∗},
and

{z 7→ z + a, z 7→ z + b, for some a, b ∈ C∗ with a/b /∈ R},
respectively. All other Riemann surfaces are hyperbolic.

Definition 4.5. The Riemannian metric

ρD :=
4

(1− |z|2)2
|dz|2

is called the Poincaré or hyperbolic metric on the unit disk.

The Poincaré metric ρD is invariant under all biholomorphisms ϕ : D → D.
It is uniquely characterized by this property up to multiplication by a non-zero
constant. Therefore, all biholomorphisms of D are isometries with respect to the
distance induced by ρD. The unit disk equipped with this distance is a complete
metric space [M].

Now let X be a hyperbolic Riemann surface, with the universal covering map
π : D → X. Since the Poincaré metric ρD is invariant under all covering trans-
formations, ρD induces a well-defined Poincaré metric ρX on X which is invariant
under all biholomorphisms X → X. By the definition of ρX , the projection π is a
local isometry.

It is a direct consequence of Schwarz Lemma that if ϕ : X → Y is a holomor-
phic mapping between hyperbolic Riemann surfaces, then ϕ decreases the Poincaré
distances, i.e., for every x, y ∈ X,

dY (ϕ(x), ϕ(y)) ≤ dX(x, y),

where dX and dY are the Riemannian distances induced by ρX and ρY , respectively.
If the equality holds for a pair (x, y), then ϕ will be a local isometry and a covering
map [M].

Definition 4.6. For a conformal metric ds2 = h2|dz|2 on a Riemann surface,
the Gaussian curvature κ is given by

κ(z) = −(∆ logh)(z)
h2(z)

,

where, as usual, z is a local uniformizing parameter on the surface.

It follows form this definition that the Gaussian curvature is a conformal in-
variant, that is, if ϕ : X → Y is a holomorphic map between Riemann surfaces,
and if ds2 is a conformal metric on Y , then at any point z ∈ X for which ϕ′(z) 6= 0,
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the curvature κ′ at z of the pull-back metric on X is equal to the curvature κ of
ds2 at ϕ(z).

It also follows from Definition 4.5 and Definition 4.6 that the Poincaré metric
ρD on the unit disk has constant Gaussian curvature −1. The same is true for every
hyperbolic surface equipped with the Poincaré metric since curvature is a conformal
invariant.

The fact that hyperbolic Riemann surfaces admit a metric of strictly negative
curvature is a characteristic property, as seen in the following theorem:

Theorem 4.7. Suppose that X is a Riemann surface that has a conformal
metric whose Gaussian curvature κ satisfies κ < σ < 0 for some constant σ. Then
X is hyperbolic.

Indeed, this is a special case of a more general fact: A complex manifold M
which admits a distance for which every holomorphic mapping D→M is distance-
decreasing is hyperbolic in the sense of Kobayashi. For Riemann surfaces, the usual
notion of hyperbolicity is equivalent to the hyperbolicity in the sense of Kobayashi.
By Ahlfors’ generalized version of Schwarz Lemma, a Riemann surface X which has
a conformal metric of strictly negative curvature admits a distance for which every
holomorphic mapping D → X is distance-decreasing (see [Kob], and also [Kr] for
an elegant exposition in the case of domains in C).

4.4. Hyperbolicity in Minimal Sets. Our next goal is to determine the
conformal type of a leaf in the non-trivial minimal set. To this end, let us construct
a Hermitian metric on CP2rsing(F) which induces a conformal metric of negative
Gaussian curvature on each non-singular leaf of a given SHFC F . The metric is a
modification of the Fubini-Study metric (4.1).

Suppose that F : {ω = Pdy−Qdx = 0} ∈ Dn, and let R = yP −xQ. Consider
the following Hermitian metric on U0 r sing(F):

ρ := (1 + |x|2 + |y|2)n−1 |dx|2 + |dy|2 + |xdy− ydx|2
|P (x, y)|2 + |Q(x, y)|2 + |R(x, y)|2 .(4.3)

ρ extends to a Hermitian metric on CP2 r sing(F). To see this, let us for example
compute the extended metric on the affine chart (u, v) ∈ U1 (compare (1.6)):

(φ∗10ρ)(u, v) =
(

1 +
1
|u|2 +

|v|2
|u|2

)n−1 |u|−4(|du|2 + |udv − vdu|2 + |dv|2)
|P ( 1

u ,
v
u )|2 + |Q( 1

u ,
v
u )|2 + |R( 1

u ,
v
u )|2

=
(
1 + |u|2 + |v|2

)n−1 |du|2 + |dv|2 + |udv − vdu|2

|P̃ (u, v)|2 + |Q̃(u, v)|2 + |R̃(u, v)|2
,

where P̃ (u, v) = un+1P

(
1
u
,
v

u

)
, Q̃(u, v) = un+1Q

(
1
u
,
v

u

)
, and R̃(u, v) = un+1R

(
1
u
,
v

u

)
are polynomials in u, v.

Now let p ∈ U0 be a non-singular point of F , and let η : T 7→ (x(T ), y(T )) be
a local parametrization of Lp near p with η(0) = p. By (4.3) above, the induced
conformal metric on Lp is

ds2 = (1+|x(T )|2+|y(T )|2)n−1 |x′(T )|2 + |y′(T )|2 + |x(T )y′(T )− y(T )x′(T )|2
|P (η(T ))|2 + |Q(η(T ))|2 + |R(η(T ))|2 |dT |2
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= (1 + |x(T )|2 + |y(T )|2)n−1|dT |2

=: h2(T )|dT |2.
By Definition 4.6 and conformal invariance of the curvature, the Gaussian curvature
of Lp at p is given by

κ(p) = −(∆ logh)(0)
h2(0)

.

Computation gives

κ(p) =
−2

(1 + |p|2)n−1

(
∂

∂T

∂

∂T
logh2(T )

)
T=0

=
−2(n− 1)

(1 + |p|2)n−1

(
∂

∂T

∂

∂T
log(1 + |x(T )|2 + |y(T )|2)

)
T=0

=
−2(n− 1)

(1 + |p|2)n−1

(
|x′(T )|2 + |y′(T )|2 + |x(T )y′(T ) − y(T )x′(T )|2

(1 + |x(T )|2 + |y(T )|2)2

)
T=0

=
−2(n− 1)

(1 + |p|2)n+1
(|P (p)|2 + |Q(p)|2 + |R(p)|2),

(4.4)

which is strictly negative.
Now let F ∈ Dn have a non-trivial minimal set M, and p ∈ M. As the above

expression is a continuous function of p which extends to CP2 r sing(F), it follows
that the Gaussian curvature of the induced metric on Lp is uniformly bounded from
above by a negative constant. By Theorem 4.7, we obtain

Theorem 4.8. Every leaf in the non-trivial minimal set is a hyperbolic Rie-
mann surface.

Example 4.9. We can use the preceding result to show that no SHFC F of
geometric degree 1 can have a non-trivial minimal set. Let L be a leaf of F contained
in the non-trivial minimal set M. Choose p ∈ L and let T 7→ η(T ) be a local
parametrization of L near p, with η(0) = p. The germ of η can be analytically
continued over the entire plane C. To see this, observe that F is induced by
a holomorphic vector field on CP2 (see the comment after Theorem 1.18). By
Proposition 1.9, this vector field lifts to a linear vector field on C3. Since every
integral curve of a linear vector field is parametrized by C, the same must be true
for L. It follows that the result of analytic continuation of η is a single-valued
function. Now L is hyperbolic by Theorem 4.8. Let π : D → L be the universal
covering map, and lift η to obtain a holomorphic map η̃ : C → D with π ◦ η̃ = η.
By Liouville’s Theorem, η̃ is constant, which is a contradiction.

4.5. Algebraic Leaves and Minimal Sets. The next theorem answers a ba-
sic question which is of special interest in the case of any foliated manifold (compare
[CLS1]).

Theorem 4.10. No SHFC on CP2 can have a compact non-singular leaf.

Proof. Let L be a compact non-singular leaf of F : {Pdy − Qdx = 0}. By
Chow’s Theorem [GH], L is a smooth irreducible algebraic curve in CP2. Note
that L cannot be a component of both curves SP : {P = 0} and SQ : {Q = 0},
since P and Q are relatively prime. Hence, for example, we may assume that P is
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not identically zero on L. It follows that the intersection of L with SP is a finite
set {p1, . . . , pk}.

Consider the 1-forms

α =
∂

∂y

(
Q

P

)
dx and β = −∂ log(1 + |x|2 + |y|2)

in the affine chart (x, y) ∈ U0. An easy computation shows that the 1-form τ = α+β
is well-defined on CP2 rSP . For example, in the affine chart (u, v) ∈ U1 it is given
by

∂

∂v

(
R̃

P̃

)
du− ∂ log(1 + |u|2 + |v|2),

where P̃ and R̃ are polynomials in u, v defined in §4.4. The restriction α|L has
poles at the finite set {p1, . . . , pk} where L has a vertical tangent line. Without
loss of generality we assume that all the pj are in the affine chart U0. Furthermore,
it is easy to compute the residue of α|L at pj: If pj = (xj , yj) and if y 7→ xj +∑∞
i=mj

ai(y − yj)i is the local parametrization of L near pj with amj 6= 0, then

Res[α|L; pj] = 1−mj .

Now consider small disks Dj ⊂ L around each pj and integrate the 2-form dτ over
L′ = Lr

⋃
Dj : ∫

L′
dτ =

∑∫
∂Dj

τ

=
∑∫

∂Dj

α+
∑∫

∂Dj

β

= (2π
√
−1)

∑
(1−mj) +

∑∫
∂Dj

β.

On the other hand, dτ |L′ = dα|L′ + dβ|L′ = dβ|L′ = ∂̄β|L′ = (2π
√
−1)Ω|L′ , where

Ω is the standard area form (4.2) coming from the Fubini-Study metric. Therefore

(2π
√
−1) area(L′) = (2π

√
−1)

∑
(1−mj) +

∑∫
∂Dj

β.

Letting Dj shrink to pj , we get

area(L) =
∑

(1−mj) ≤ 0,

which is a contradiction.

As a result, every algebraic leaf of an SHFC F must have some singular points
of F in its closure. Note that every singularity of an algebraic leaf is indeed a
singular point of F as well.

Proposition 4.11. Let M be the non-trivial minimal set of an SHFC F on
CP2. Then M intersects every algebraic curve in CP2.

Proof. Let SK : {K = 0} be an algebraic curve in CP2 of degree k. For every
triple (a, b, c) of positive real numbers, define

ϕ(x, y) = ϕa,b,c(x, y) :=
|K(x, y)|2

(a+ b|x|2 + c|y|2)k



SINGULAR HOLOMORPHIC FOLIATIONS ON CP2 53

which is a non-negative real-analytic function on the affine chart (x, y) ∈ U0. Since
K has degree k, ϕ can be extended to a real analytic function on the entire CP2,
with SK = ϕ−1(0).

Suppose that M∩ SK = ∅. Then ϕ attains a positive minimum on M, i.e.,
there exists p0 ∈M such that ϕ(p) ≥ ϕ(p0) > 0 for all p ∈M. Define ψ :M→ R
by ψ(p) = logϕ(p). Clearly ψ(p) ≥ logϕ(p0) > −∞ for all p ∈ M. On the
other hand, ψ is superharmonic along the non-singular leaf Lp0 . To see this, let
η : T 7→ (x(T ), y(T )) be a local parametrization of Lp0 near p0, with η(0) = p0.
Then ψ(η(T )) > −∞, and

∆ψ(η(T )) = 4
∂

∂T

∂

∂T
ψ(η(T ))

= −4k(a+ b|x(T )|2 + c|y(T )|2)−2

(ab|x′(T )|2 + ac|y′(T )|2 + bc|x(T )y′(T ) − y(T )x′(T )|2)

which is negative. Since ψ(η(T )) has a minimum at T = 0, it follows that ϕ is
constant on Lp0 , hence on M since Lp0 =M. Therefore, for any triple (a, b, c) of
positive real numbers, there exists α > 0 such that

|K(x, y)|2/k = α(a+ b|x|2 + c|y|2)

for all (x, y) ∈M. Evidently, this is impossible.

Corollary 4.12. No SHFC on CP2 which has an algebraic leaf can have a
non-trivial minimal set.

Proof. Let L be an algebraic leaf of an SHFC F . By Theorem 4.10, L neces-
sarily contains a singular point of F , say q. IfM is a non-trivial minimal set of F ,
then there exists p ∈M∩L by Proposition 4.11. As p is non-singular, L = Lp =M,
so q ∈ M∩ sing(F), which is a contradiction.

Therefore, in order to find an F with a non-trivial minimal set, we must look
for F in the sub-class of Dn consisting of SHFC’s which do not admit any algebraic
leaf. This sub-class is open and dense in Dn (see Remark 3.22).

Note that the above corollary gives another proof for the fact that no SHFC of
geometric degree 1 can have a non-trivial minimal set, since one can easily see that
every SHFC of geometric degree 1 has a projective line as a leaf.

We conclude with few important remarks.

Remark 4.13. It is shown in [CLS1] that every leaf L in the non-trivial min-
imal set M has exponential growth. This means that if we fix some Riemannian
metric on L and some p ∈ L, then

lim inf
r→+∞

log(area(Br(p)))
r

> 0,

where Br(p) denotes the open ball in L of radius r centered at p.

Remark 4.14. C. Bonatti, R. Langevin, and R. Moussu [BLM] have shown
that for any non-trivial minimal set M, there exists a leaf L ⊂ M such that the
monodromy group G(L) contains a hyperbolic germ in Bih0(C). The real version of
this theorem is a famous 1965 result of R. Sacksteder [Sa]: An exceptional minimal
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set of a transversely orientable codimension one C2 foliation on a compact manifold
contains a leaf with a hyperbolic monodromy mapping.

Remark 4.15. Here is a related result due to A. Candel and X. Gómez-Mont
[CaG] (see also the paper by A. Glutsyuk in [I6] for a generalization): Let F be
an SHFC with hyperbolic singular points and no algebraic leaves. Then every leaf
of F is a hyperbolic Riemann surface. In fact, a non-hyperbolic leaf gives rise to a
non-trivial invariant transverse measure for F . The support of this measure cannot
intersect the leaves outside of the (possible) minimal set since then it has to be
supported on the (global) separatrices by hyperbolicity of the singular points, and
this means that these separatrices (with singular points added) are compact, hence
algebraic, which is a contradiction. On the other hand, no invariant transverse
measure can live on the minimal set by a result of [CLS1].
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tion holomorphe au voisinage d’un point fixe (d’après J.C. Yoccoz), Séminaire Bourbaki,
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