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0. INTRODUCTION

There are two main topics we will discuss in these lectures:
(I) The core differential algebra:

(a) Introduction:
We will begin with an introduction to differential algebraic structures, important terms
and notation, and a general background needed for this lecture.

(b) Differential elimination:
Given a system of polynomial partial differential equations (PDE’s for short), we will
determine if

(i) this system is consistent, or if
(ii) another polynomial PDE is a consequence of the system.

(iii) If time permits, we will also discuss algorithms will perform (i) and (ii).
(II) Differential Galois Theory for linear systems of ordinary differential equations (ODE’s for

short). This subject deals with questions of this sort:
Given a system

(?)
d
dx

y(x) = A(x)y(x),

where A(x) is an n×n matrix, find all algebraic relations that a solution of (?) can possibly
satisfy. Hrushovski developed an algorithm to solve this for any A(x) with entries in Q̄(x)
(here, Q̄ is the algebraic closure of Q).

Example 0.1. Consider the ODE
dy(x)

dx
=

1
2x

y(x).

We know that y(x) =
√

x is a solution to this equation. As such, we can determine an algebraic
relation to this ODE to be

y2(x)− x = 0.

In the previous example, we solved the ODE to determine an algebraic relation. Differential
Galois Theory uses methods to find relations without having to solve.

1. FOUNDATIONS OF DIFFERENTIAL ALGEBRA

1.1. Definitions and Examples. We first define the core structures in differential algebra:
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Definition 1.1. A commutative ring R with 1 supplied with a finite set ∆ = {∂1, . . . ,∂n} is called a
differential ring if ∂1, . . . ,∂n are commuting derivations from R→ R.

Definition 1.2. For a ring R, a map ∂ : R→ R is called a derivation if:
(1) For all a,b ∈ R we have ∂(a+b) = ∂(a)+∂(b).
(2) For all a,b ∈ R, the Leibniz product rule is satisfied, i.e., ∂(ab) = ∂(a) ·b+a ·∂(b).

Definition 1.3. Let ∆ = {∂1, . . . ,∂n} be a set of derivations for a differential ring R. ∆ is commuting
if for all a ∈ R we have ∂i(∂ j(a)) = ∂ j(∂i(a)) for 1≤ i, j ≤ n.

Remark. The notation (R,∆) will sometimes be used for a differential ring R with derivations ∆. If
∆ = {∂} (that is, if ∆ consists of only one derivation), then (R,∆) is called an ordinary differential
ring. If ∆ = {∂1, . . . ,∂n} (that is, ∆ consists of many derivations), then (R,∆) is called a partial
differential ring.

Example 1.1. Let R be a commutative ring with 1, ∆ = {∂}. R is a differential ring if we define
∂(r) = 0 for all r ∈ R. All properties of a differential ring are then trivially satisfied.

Example 1.2. Let R = Z. What are the possible derivations?
To begin, notice that ∂(n) is determined by ∂(1) (or ∂(−1)) using additivity. Indeed, for n≥ 1,

∂(n) = ∂(1+1+ . . .+1︸ ︷︷ ︸
n times

) = ∂(1)+ . . .+∂(1)︸ ︷︷ ︸
n times

= n∂(1)

(similarly, we have for n≥ 1, ∂(−n) = ∂((−1)+ . . .+(−1)︸ ︷︷ ︸
n times

) = n∂(−1)).

When n = 0, we have ∂(0) = ∂(0+0) = ∂(0)+∂(0), and we see that ∂(0) = 0. For n =−1, we
have

∂(−1) = ∂(1 · (−1)) = ∂(1) · (−1)+1 ·∂(−1),

Subtracting ∂(−1) we see that 0 = (−1)∂(1), and therefore ∂(1) = 0. We can also easily show that
∂(−1) = 0. Indeed,

0 = ∂(1) = ∂((−1)(−1)) = ∂(−1)(−1)+(−1)∂(−1) =−2∂(−1),

so ∂(−1) = 0. This shows that the only derivation that exists for Z is the trivial one.

Example 1.3. Let R =Q. Take the element 1
b where b 6= 0 ∈ Z. We have

0 = ∂(1) = ∂(b ·1/b) = ∂(b) ·1/b+b ·∂(1/b),

and continuing further we get ∂(1
b) =−

∂(b)
b2 .

This calculation shows, in fact, how to determine the derivative an element a of any differential
ring, provided the inverse of a exists.

More generally, given any a 6= 0 ∈ Z, we can compute ∂(a
b) where b is taking as above. Namely,

we get
∂(a/b) = ∂(a ·1/b),

and using the Leibniz rule, we get

∂(a ·1/b) = ∂(a) ·1/b+a ·∂(1/b) =
∂(a)

b
− a∂(b)

b2 =
∂(a)b−a∂(b)

b2 .
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Combining this result with that fact that both a and b are integers, the following occurs:

∂(a/b) =
∂(a)b−a∂(b)

b2 =
0 ·b−a ·0

b2 = 0,

and we see that Q only has trivial derivations.

In examples 1.1-1.3, the derivations are trivial. We will now define a non-trivial derivation:

Example 1.4. Let R =Q[x], ∂(x) = 1. Let an, ...,a0 ∈Q. We can determine the following:

∂(anxn + . . .+a0) = ∂(anxn)+ . . .+∂(a1x)+∂(a0) =

= an∂(xn)+an−1∂(xn−1) . . .+a1 = annxn−1 + . . .+a1.

Exercise 1. Prove that, for every differential ring R,∆ = {∂1, . . . ,∂n}:
(1) For all x ∈ R and m≥ 1, that ∂i(xm) = mxm−1∂i(x), and
(2) for all m≥ 1, a,b ∈ R, and 1≤ i≤ n,

∂
m
i (ab) =

m

∑
p=0

(
m
p

)
∂

p
i (a) ·∂

m−p
i (b),

where ∂m
i (ab) = ∂i(∂i(. . .(∂i︸ ︷︷ ︸

m times

(ab ) . . .)︸︷︷︸
m times

Remark. In example 1.4, if we let ∂(x) = f instead of ∂(x) = 1 for some f ∈ R, then our result
would be analagous to the chain rule one studies in analysis; namely, we get

∂(anxn + . . .+a0) = annxn−1 · f + . . .+a1 · f .

This idea leads us to the following notion: If S is an ordinary differential ring, R = S[x], then
allowing ∂(x) = f for some f ∈ R turns R into a differential ring. This notion of arbitrarily defining
the derivation only works for the ordinary case. If one wishes to extend to other derivations, a
problem may occur.

Example 1.5. This is an example where extension of derivations fails. Consider R =Q[x], and let
∂1(x) = 1,∂2(x) = x. These derivations do not commute, since ∂1(∂2(x)) = 1 while ∂2(∂1(x)) = 0,
and R is therefore no longer a differential ring.

Definition 1.4. (S,{∂S
1, . . . ,∂

S
m})⊂ (R,{∂R

1 , . . . ,∂
R
m}) is a differential ring extension if S⊂ R and for

all i,1≤ i≤ m we have
∂

R
i |S = ∂

S
i .

Remark. If (R,∆) is a differential ring and R is a field, then (R,∆) is called a differential field.

Let (K,∆)⊂ (L,∆) be a differential field extension, and let a ∈ L be algebraic over K, i.e., there
exist bn, . . . ,b1,b0 ∈ K such that p(a) = bnan + . . .+ b1a+ b0 = 0 where bn 6= 0. For simplicity,
consider the case where ∆ = {δ}. Consider δ(p(a)), which according to the previous line, yields
δ(p(a)) = 0. If we write this out completely, we get:

δ(bn)an +bnnan−1
δ(a)+δ(bn−1)an−1 +bn−1(n−1)an−2

δ(a)+ . . .

. . .+δ(b1)a+b1δ(a)+δ(b0).

By grouping accordingly, we get

−δ(a) · ∂p(a)
∂a

= δ(bn)an + . . .+δ(b1)+δ(b0).
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We see that if ∂p(a)
∂a 6= 0, we can divide by −∂p(a)

∂a to get

δ(a) =−δ(bn)an + . . .+δ(b0)
∂p(a)

∂a

.

Example 1.6. Consider Fp be a field with p elements, where p is prime. Let K = Fp(xp)⊂ L =
Fp(x).
Question: Is x algebraic over K? Yes; p= yp−xp satisfies p(x) = 0. However, ∂(xp) = pxp−1∂(x) =
0, so ∂ is 0 on K, and the extension using the above method fails.

Remark. For a differential ring (R,∆), we define R∆ := {r ∈ R|∀i, ∂i(r) = 0}. These r are called
constants.

Exercise 2. Prove that R∆ is a subring of R and, if R is a field, then R∆ is a subfield of R.

Example 1.7. (1) If R = Z, then R∆ = Z.
(2) If R =Q[x] and ∂(x) = 1, then R∆ =Q.

Remark. If K is a field, charK=0 and K∆ = K, then for every algebraic field extension K ⊂ L (i.e.,
every a ∈ L is algebraic over K), then L∆ = L.

1.2. Differential Ideals.

Definition 1.5. Let (R,∆) be a differential ring. An ideal I ∈ R is a differential ideal (or ∆-ideal) if,
for all ∂ ∈ ∆ and a ∈ I, we have ∂(a) ∈ I.

From this point further, (R,∆) will be used to denote a differential ring while R will be used
for a commutative ring (we assume commutative rings have unity), and, unless otherwise stated,
∆ = {∂1, . . . ,∂n}.

Example 1.8. Consider (R,∆).
(1) I=(R,∆) and
(2) I=(0)

are both differential ideals.

Proposition 1.1. Let I = ( f1, . . . , fm)⊂ (R,∆) be the ideal in (R,∆) generated by f1, . . . , fm ∈ (R,∆).
I is a differential ideal if and only if, for all j,1≤ j ≤ m and i,1≤ i≤ n we have ∂i( f j) ∈ I.

Proof. (⇒) Assume I is a differential ideal. It follows by definition that ∂i( f j) ∈ I for all i, j.
(⇐) Assume that ∂i( f j) ∈ I for all i, j. Consider g ∈ I. We represent g as follows:

g = a1 f1 + . . .+am fm.

We want to show that ∂i(g) ∈ I. If we differentiate g, we get the following:

∂i(g) = ∂i(a1 f1 + . . .+am fm),

which, after simplifying, we get

∂i(g) = ∂i(a1) f1 +a1∂i( f1)+ . . .+∂i(am) fm +am∂i( fm).

Since each f j ∈ I and each ∂i( f j) ∈ I, each term on the right hand side is in I, and therefore
∂i(g) ∈ I �
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We continue by noting some notations. If S ⊂ (R,∆), then [S] denotes the smallest differential
ideal of (R,∆) that contains S; it is the intersection of all differential ideals containing S.

In other words, [S] is the ideal of (R,∆) generated by θ(S),θ ∈Θ where

Θ = {∂i1
1 ∂

i2
2 · · ·∂

in
n |i1, . . . , in ≥ 0}.

In particular, we see that (S)⊂ [S] by letting all ir = 0.

Example 1.9. Let (R,∆) = Q[x] with ∆ = {∂}, and ∂(x) = 1. What are the differential ideals in
(R,∆)?

(1) I1 = R and
(2) I2 = 0,

but are there any other differential ideals?
To check for others, let I ⊂ (R,∆) be a differential ideal with I 6= 0. Then, there exists 0 6= f ∈ I
where f is the of the smallest degree in I. However, if f 6∈Q then deg(∂( f ))< deg( f ), where both
∂( f ) and f are contained in I. Therefore, f ∈Q and I = (R,∆). Thus, the only two ideals in (R,∆)
are (1) and (2).

1.3. Radical Differential Ideals.

Definition 1.6. Let R be a commutative ring. An ideal I ⊂ R is called radical if, for all f ∈ R, if
there exists an n≥ 1 such that f n ∈ I, then f ∈ I.

Example 1.10. Let R =Q[x]. Is the ideal I = (x2) radical? Since x2 ∈ I but x /∈ I, we see that I is
not radical.

Exercise 3. Let R be as in Example 1.10. Describe all radical ideals in R.

Given an ideal I ⊂ R,
√

I denotes the smallest radical ideal containing I.

Remark. If I 6= R, then
√

I 6= R. Indeed, if 1 ∈
√

I, then 1n ∈ I for some n≥ 1, so 1 ∈ I.

Definition 1.7. An ideal I ⊂ (R,∆) is called a radical differential ideal if:
(1) I is a differential ideal, and
(2) I is a radical ideal.

For a subset S⊂ R, {S} denotes the smallest radical differential ideal containing S. One also says
that S generates the radical differential ideal {S}. It will be clear in which context {} will denote a
radical differential ideal.

We now turn to the construction of radical differential ideals. Normally, one may intuitively start
with S, consider [S], and then take its radical

√
[S]. However, this may not be sufficient.

Example 1.11. Let (R,∆) = Z2[x,y] where ∂(x) = y and ∂(y) = 0. Consider I = [x2]. Notice
that ∂(x2) = 2xy = 0, which implies I = (x2). One can easily show that

√
I = (x). However,√

[x2] =
√
(x2) is not a differential ideal since ∂(x) = y /∈ (x).

Exercise 4. Construct an example of an ideal I ⊂ (R,∆) such that [
√

I] (that is, first taking the
radical of I then generating the differential ideal) is not a radical ideal for both characteristic p and
characteristic 0.

Theorem 1.1. Let (R,∆) be a differential ring, Q ⊂ R, and let I ⊂ (R,∆) be a differential ideal.
Then,

√
I is a radical differential ideal.
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Proof. In order to prove this, we first state and prove a lemma:

Lemma 1.1. Let I ⊂ (R,∆) be a differential ideal and let Q⊂ R. Let a ∈ R such that an ∈ I. Then,
(∂(a))2n−1 ∈ I.

Proof of Lemma 1.1. By induction, we will show that, for all k, 1≤ k ≤ n, we have

(?) an−k
∂(a)2k−1 ∈ I,

and the lemma will follow by allowing k = n.
If k = 1, then

an−1
∂(a) ∈ I.

Indeed,
∂(an) = nan−1

∂(a).
Since Q⊂ R, we divide by n and it follows that an−1∂(a) ∈ I.

Now for the inductive step. Assume that (?) holds for some k, where 1≤ k < n. We want to show
that

(??) an−(k+1)(∂(a))2k+1 ∈ I.

Applying ∂ to (?), we obtain:

(n− k)an−k−1
∂(a)2k +an−k(2k−1)∂(a)2k−2

∂(∂(a)) ∈ I.

Multiply the above by ∂(a) to obtain (??), and we are done. �

Back to the theorem, we see that by applying Lemma 1.1, the theorem follows. �

1.4. Prime Ideals.

Definition 1.8. An ideal P ∈ R is call prime if, whenever the product ab ∈ P, either a ∈ P or b ∈ P
for all a,b ∈ R.

Example 1.12. Let R = Q[x,y], and let I = (xy) be an ideal. I is not prime. Indeed, xy ∈ I but
neither x ∈ I nor y ∈ I. However, the ideals P1 = (x) and P2 = (y) are prime.

Exercise 5. Show that (xy) = (x)∩ (y).
Definition 1.9. Let P be a differential ideal in (R,∆). P is a prime differential ideal if, in addition
to being a differential ideal, P is also a prime ideal.

Remark. We make notes of a few items:
(1) If P is prime, then P is radical by definition. Moreover, an intersection of radical ideals is a

radical ideal.
(2) P is a prime ideal if and only if R/P is an integral domain. In fact, some texts use this as the

definition for prime ideals.
(3) I ⊂ R is a radical ideal if and only if R/I is reduced, that is, R/I contains no nilpotent

elements.
(4) If I1, . . . , In are differential ideals, then

⋂n
i=1 Ii is a differential ideal.

In commutative algebra, one studies decomposition of ideals. In differential algebra, we have an
analogous statement. However, before we state the theorem, we will prove several lemmas. For the
following, assume (R,∆) is a differential ring, ∂ ∈ ∆, and I ⊂ R is a radical differential ideal.

Lemma 1.2. If ab ∈ I, then ∂(a)b ∈ I and a∂(b) ∈ I.
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Proof. Indeed, ab ∈ I implies that its derivative ∂(ab) ∈ I. However,

∂(ab) = ∂(a)b+a∂(b) ∈ I.

Multiplying by a, we get
∂(a)ab+a2

∂(b) ∈ I,

which further implies that a2∂(b) ∈ I. Multiply a2∂(b) by ∂(b) to obtain

(a∂(b))2 ∈ I.

Since I is radical, we have a∂(b) ∈ I. The other inclusion follows immediately. �

Lemma 1.3. Let S⊂ R be any subset. Then

I′ = {x ∈ (R,∆) |xS⊂ I}

is a radical differential ideal.

Proof. First we show that I′ is an ideal. Indeed, if a,b ∈ I′ and s ∈ S then as+bs ∈ I, and therefore
s(a+ b) ∈ I which implies a+ b ∈ I′. Also, if a ∈ I′, r ∈ R, we have r(as) ∈ I, which implies
(ra)s ∈ I, and therefore ra ∈ I′. Hence, I′ is an ideal.

I′ is a differential ideal. Indeed, for all a ∈ I′ and s ∈ S, we have as ∈ I. By Lemma 1.2, this
implies that ∂(a)s ∈ I which further implies that ∂(a) ∈ I′.

I′ is radical. Indeed, let an ∈ I′ for n≥ 1. This implies ans ∈ I. Multiplying by sn−1, we obtain
ansn ∈ I. Since I is radical, this inclusion implies that as ∈ I, which shows that a ∈ I′. �

Lemma 1.4. Let S⊂ R be any subset. Let a ∈ R. Then a{S} ⊂ {aS}.

Proof. Let I′ = {x ∈ R|xa ∈ {aS}}. It is clear that S⊂ I′. By Lemma 1.3, I′ is a radical differential
ideal, so {S} ⊂ I′. Thus a{S} ⊂ {aS}. �

Lemma 1.5. For all subsets S,T ⊂ R, we have {S}{T} ⊂ {ST}.

Proof. Consider
A = {x ∈ (R,∆) |x{T} ⊂ {ST}}.

(1) S⊂ A and
(2) A is a radical differential ideal.

(1) follows from Lemma 1.3, and (2) follows from Lemma 1.4.
�

Lemmas 1.2-1.5 were needed to show the following:

Lemma 1.6. Let T ⊂ R be a subset closed under multiplication and let P be maximal among radical
differential ideals that do not intersect T . Then P is prime.

Proof. By contradiction, suppose P is not prime. Let a,b∈R be such that ab∈P but a /∈P and b /∈P.
Hence, we get that {P,a} and {P,b} are both proper radical differential ideals containing P. Hence,
these two radical differential ideals intersect T , i.e., there exist t1, t2 ∈ T such that t1 ∈ {P,a} and
t2 ∈ {P,b}. Since T is closed under multiplication, t1t2 ∈ T , but then t1t2 ∈ {Pb,aP,P2,ab} ⊂ {P}.
→←, since {P}∩T = /0. �

Now we are ready to state our theorem:
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Theorem 1.2. Let I ⊂ R be a radical differential ideal. Then, there exists {Pα |α ∈ J}, where Pα

are prime differential ideals such that
I =

⋂
α∈J

Pα.

Proof. As in Lemma 1.6, let T be a multiplicatively closed subset of R and let Q be a maximal
radical differential ideal in R with Q∩T =∅ (such a Q exists by Zorn’s Lemma). By Lemma 1.6,
Q is prime.

We will show that, for all x ∈ R\I, there exists a prime differential ideal Px such that I ⊂ Px and
x /∈ Px. If we can show this, then the theorem follows since we can take

I =
⋂

x∈R\I
Px.

Let T = {xn|n≥ 1} ⊂ R. T is multiplicatively closed. Let Px be the ideal from Lemma 1.6, and the
theorem follows. �

Corollary 1.1. Let Q ⊂ R and M ⊂ R be maximal among proper differential ideals. Then, M is
prime.

Example 1.13. Consider the differential ring (R,∆) = Z2[x] with ∆ = {δ} defined by δ(x) = 1.
Take M = (x2). This ideal is not prime, but it is a maximal differential ideal.

Exercise 6. Prove the above statement. Hint: Any ideal I ) M is of the from I = (ax+b) where
a,b ∈ Z2, but I is differential if and only if a = 0.

Proof (Corollary 1.1). Consider {M}=
√
[M] =

√
M. If

√
M = R, then 1 ∈

√
M⇒ 1 ∈M, which

contradicts M being proper. Therefore,
√

M is a proper radical differential ideal containing M.
Since M is maximal,

√
M = M. Now, since M is radical, Theorem 1.2 states that

M =
⋂
α∈J

Pα,

where each Pα is a prime differential ideal. Therefore, for all α ∈ J, M = Pα, and therefore M is
prime. �

2. THE RING OF DIFFERENTIAL POLYNOMIALS AND ITS IDEALS

2.1. Ring of Differential Polynomials. Let (K,∆) be a differential field with ∆ = {∂1, . . . ,∂m}.
Using this structure, we want to develop an algebraic structure containing differential equations
like:

(1) uxx = ut .
(2) uxx = u2

t .
(3) uxx + vxx = ut .

(Equations of the form uxx = sin(ut) will not be considered.) In order to proceed with this, we first
give some definitions.

Definition 2.1. The ring of differential polynomials with coefficients in K in differential indetermi-
nates y1, . . . ,yn is the ring of polynomials

K[θyi |θ ∈Θ,1≤ i≤ n].

We denote the above ring as K{y1, . . . ,yn}.
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In Definition 2.1, Θ = {∂i1
1 . . .∂im

m | i1, . . . , im ≥ 0}.

Example 2.1. Let us take (1), (2), and (3) from the beginning of this section and express those
equations using Definition 2.1. Take y1 = u, y2 = v, ∂1 =

∂

∂x , ∂2 =
∂

∂t . We get

uxx = ∂
2
1y1,

vxx = ∂
2
1y2,

ut = ∂2y1,

(ut)
2 = (∂2y1)

2.

Example 2.2. Given our differential field (K,∆), if ∆ = {δ}, we define

K{y}= K[y,δy,δ2y, . . . ,δny, . . .], (?)

that is, the field K adjoined with infinitely many indeterminates δ(i)y for i≥ 0. When there is no
confusion, we write

K[y,y′,y′′, . . . ,y(n), . . .]
in place of (?).

To give a differential structure, we define the following (assume ∆ = {∂1, . . . ,∂m}).
For all i, j,

∂i(θy j) := (∂iθ)y j,

where
∂iθ

def
= ∂

p1
1 · · ·∂

pi+1
i · · ·∂pm

m ,

where θ = ∂
p1
1 · · ·∂

pi
i · · ·∂

pm
m and ps ≥ 0 for 1≤ s≤ m.

Example 2.3. Using the notation from Example 2.1,

uxxt =
∂

∂x
(uxt)←→ ∂1(∂1∂2y1) = ∂

2
1∂2y1.

Definition 2.2. A differential ring is called Ritt-Noetherian if the set of its radical differential ideals
satisfies the ascending chain condition (ACC).

The ACC for radical differential ideals states that, for every chain of radical differential ideals

I0 ⊆ I1 ⊆ . . . IN ⊆ . . . ,

there exists some finite N ∈ N such that IN = IN+1 = . . .. (we say that such chains stabilize).
The Hilbert Basis Theorem in commutative algebra states that, given a field K, K[x1, . . . ,xn] is

Noetherian. To state this theorem for a differential field (K,∆), we need more hypotheses.

Theorem 2.1 (Ritt-Raudenbush). The differential ring K{y1, . . . ,yn} is Ritt-Noetherian, where
(K,∆) is a differential field and Q⊂ K.

This is not, in fact, the original statement. The original statement is as follows:

Theorem (Ritt-Raudenbush). If (R,∆) is a differential ring satisfying ACC on radical differential
ideals, then R{y} satisfies ACC on radical differential ideals.

The proof requires more techniques than we presently have, and, therefore, it will be given later.
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Exercise 7. Prove that, for every ordinary differential field (K,{δ}), where Q⊂ K,[
y2]⊂ [y2,(δy)2]⊂ . . .⊂

[
y2,(δy)2, . . . ,(δpy)2]⊂ . . .

does not stabilize in K{y} (Recall that [ ] is reserved for differential ideals while {} is reserved for
radical differential ideals).

Corollary 2.1. Let I ⊂ K{y1, . . . ,yn} be a radical differential ideal. Then there exist f1, . . . , fp ∈
K{y1, . . . ,yn} such that I = { f1, . . . , fp}.

Proof. Take 0 6= f1 ∈ I. Let f2 ∈ I \{ f1}, etc. We have a chain

{ f1} ⊂ { f1, f2} ⊂ . . . ,

which, by the ACC, stabilizes after a finite number of steps. �

Exercise 8. Consider K{x,y}. Prove that {xy} does not have a finite generating set as a differential
ideal, that is,

{xy} 6= [ f1, . . . , fp].

Theorem 2.2. For every radical differential ideal I ⊂ R, where (R,∆) is Ritt-Noetherian and Q⊂ R,
there exist a finite number of prime differential ideals P1, . . . ,Pq such that

I =
q⋂

i=1

Pi.

Moreover, if the above intersection is irredundant, then this set of prime ideals is unique.

The ideals P1, . . . ,Pq are called the minimal differential prime components of I.

Proof. Suppose the statement of the theorem is not true, i.e., there exist radical differential ideals
that are not finite intersections of prime differential ideals. Since (R,∆) is Ritt-Noetherian, there
exists a maximal radical differential ideal Q that is not a finite intersection of prime differential
ideals.

By our assumption, Q is not prime (indeed, otherwise Q is a finite intersection of itself). Therefore,
there exist a,b ∈ R such that ab ∈ Q but a /∈ Q and b /∈ Q. By definition, 1 /∈ Q, and, therefore, the
radical differential ideals {Q,a} and {Q,b} both properly contain Q.

Now, 1 /∈ {Q,a} (also 1/∈ {Q,b}). Indeed, if 1 ∈ {Q,a}, then, in particular, 1 ∈ [Q,a]. Then

1 = c+∑
θ

cθθ(a) (?),

where c ∈ Q, cθ ∈ R. Multiply (?) by b, and, by Lemma 1.2, b ∈ Q,→←. Hence, 1 /∈ {Q,a} (and
similarly, 1 /∈ {Q,b}).

Now, since Q is maximal, {Q,a} is a finite intersection of prime differential ideals. In other
words,

{Q,a}= Pa
1 ∩ . . .∩Pa

qa
,

where each Pa
i is a prime differential ideal. Similarly,

{Q,b}= Pb
1 ∩ . . .∩Pb

qb
.

We will show that Q = {Q,a}∩{Q,b}.
Q⊂ {Q,a}∩{Q,b} is clear. To show the reverse, let c ∈ {Q,a}∩{Q,b}. Then,

c2 ∈ {Q,a} · {Q,b} ⊂ {Q2,Qa,Qb,ab}.
10



By the hypothesis, ab ∈ Q, and, therefore, c2 ∈ Q. Since Q is radical, c2 ∈ Q implies c ∈ Q. Since
{Q,a}∩{Q,b}= Q, we have

Q =

(
qa⋂

k=1

Pa
k

)
∩

(
qb⋂
j=1

Pb
j

)
,

which is a finite intersection.
To show the uniqueness, let

Q = P1∩ . . .∩Pr = Q1∩ . . .∩Qs.

So, for all i, 1≤ i≤ s,
Qi ⊃ P1∩ . . .∩Pr.

Then, there exists j, 1 ≤ j ≤ r such that Qi ⊃ Pj. Indeed, assume the contrary. Let a1 ∈ P1,a2 ∈
P2, . . . ,ar ∈ Pr with ak /∈ Qi for all k. However,

a1 · . . . ·ar ∈ P1 · . . . ·Pr ⊂ Qi,

contradicting that Qi is prime. Therefore, Pj ⊂ Qi. By reversing the roles of P and Q, there exists
n, 1≤ n≤ s such that Pj ⊃ Qn.

If n = i, then Pj = Qi. If n 6= i, then Qi ⊃ Pj ⊃ Qn, which contradicts the irredundancy of the
decomposition

Q1∩ . . .∩Qs.

�

Exercise. The following is a hint to Exercise 7 above. Let K{y} be a ring of differential polynomials
of char(K) = 0 and ∆ = {δ}. We will show, in steps, what needs to be done to solve the problem.
We need to show that the inclusions in the following infinite increasing chain are strict:

[y2]⊂ [y2,(y′)2]⊂ . . .⊂ [y2, . . . ,(y(n))2]⊂ . . .

Let In = [y2, . . . ,(y(n))2] with n≥ 0. We will construct a sequence (V2n,n≥ 0) of finite dimensional
vector spaces such that, for all n≥ 0, V2n ⊂ In but V2n * In−1.

To construct (V2n,n≥ 0), we will first introduce some terminology. For a monomial m = x(i)y( j),
we define the weight of m to be be i+ j, denoted wt(m). For example,

wt(y · y) = 0,

wt(y · y′) = 1,

wt(y(4)y(5)) = 9.
Let Vn = spanK(m) where deg(m) = 2 and wt(m) = n. We get the sequence:

V0 =spanK(y2)

V1 =spanK(yy′)

V2 =spanK(yy′′, (y′)2)

V3 =spanK(yy′′′, y′y′′)
...

V2n =spanK(yy(2n), y′y(2n−1), . . . ,(y(n))2)

V2n+1 =spanK(yy(2n+1), y′y(2n), . . . ,y(n)y(n+1)),

11



and from here we see that dimV2n = n+1 = dimV2n+1.
(Step 1) Show that V2n+2 = spanK(δ

2(V2n),(y(n+1))2). Do this by expressing each element

δ
2(y(k)y(2n−k))

via the basis of V2n+2 and (y(n+1))2, and show that the change of basis matrix is invertible.
(Step 2) Show that, for all n,

In∩V2n+2 = spanK(δ
2(V2n))(V2n+2.

Exercise. We also give a hint to solve Exercise 8 above. Using the setup of Exercise 8, let I = {xy}
and J = (x(i)y( j), i≥ 0, j ≥ 0) (here, J is just an ideal).

(Step 1) Show that I = J. I ⊃ J follows from Lemma 1.2. To show I ⊂ J, it is sufficient to show that
J is a radical differential ideal. J is clearly a differential ideal, since

(x(i)y( j))′ = x(i+1)y( j)+ x(i)y( j+1) ∈ J.

To show that J is radical, we first notice that

( f ∈ K{x,y}& f /∈ J⇔ f has a term with no y( j) (or x(i))).

It is then easy to show (using the above observation) that, if f /∈ J, then, for all m ≥ 1,
f m /∈ J.

(Step 2) Suppose that I = [ f1, . . . , fp] for some f1, . . . , fp ∈ K{x,y}. Then, there exists q ≥ 0 such
that, for all 1≤ i≤ p, fi ∈ [x(s)y(t), 0≤ s, t ≤ q] = J′. Hence, we would get

{xy}= J′.

We need to show that

(?) x(q+1)y(q+1) /∈ J′,

thus getting a contradiction.
In order to show (?), we introduce some new definitions and state a proposition.

Definition 2.3. Let (R,∆) and (S,∆) be differential rings. A ring homomorphism ϕ : R→ S is a
differential ring homomorphism if, for all ∂ ∈ ∆ and a ∈ R, we have ϕ(∂(a)) = ∂(ϕ(a)).

Example 2.4. We introduce some examples of differential ring homomorphisms:
(1) Let (R,∆)⊂ (S,∆), and condiser idR, that is, the identity map on R. This is a differential

ring homomorphism.
(2) Let (R,∆) = K{y1, . . . ,yn} where (K,∆) is a differential field. Let (L,∆) be a differential

field containing K. Also, let (a1, . . . ,an) ∈ L. The map

K{y1, . . . ,yn}→ L

defined by
f 7→ f (a1, . . . ,an),

is a differential ring homomorphism (check this!).

Next, we state a proposition whose proof will be left to the reader.

Proposition 2.1. Let ϕ : (R,∆)→ (S,∆) be a surjective differential ring homomorphism, and let
I ⊂ R be a differential ideal. Then, ϕ(I) is a differential ideal.

12



Now, to show (?), apply the differential homomorphism from K{x,y}→ K{y} where f (x,y) 7→
f (y,y) (e.g., x(i)y(i) 7→ y(i)y( j)). �

With the notion of a differential ring homomorphism now defined, we continue with the following
proposition.

Proposition 2.2. Let (R,∆), (S,∆) be differential rings, and ϕ : R→ S be a ring homomorphsim. If
ϕ is a differential ring homomorphism, then Ker(ϕ) is a differential ideal.

Exercise 9. Prove Proposition 2.2.

Remark. Notice that the converse of Proposition 2.2 is not necessarily true. Consider the following
case: Let R = S = K{y} be a differential polynomial ring with ∆ = {δ}. Let ϕ : K{y}→ K{y} be
defined by

ϕ(y) = δy

ϕ(δy) = y

ϕ(δny) = δ
ny (n≥ 2)

ϕ(a) = a (a ∈ K).

This is indeed an injective ring homomorphism, and therefore ker(ϕ) = 0 is a differential ideal.
However,

δ(ϕ(y)) = δ(δy) = δ
2y 6= y = ϕ(δy).

Since δ does not commute with ϕ, ϕ is not a differential homomorphism.

Corollary 2.2. Ideal I ⊂ R is a differential ideal if and only if (R/I,∆) is a differential ring
(
and

therefore I = ker(R→ R/I)
)
.

Proof. (⇒) Let r+ I ∈ R/I. For each ∂ ∈ ∆, define

∂(r+ I) = ∂(r)+ I. (?)

To show that (?) is well defined, we need to show that (?) is independent of the choice of repre-
sentative. Let r+ I = s+ I (so that r− s ∈ I). For all ∂ ∈ ∆, we have ∂(r+ I) = ∂(s+ I), that is,
∂(r)+ I = ∂(s)+ I. From this equality we have ∂(r)−∂(s) = ∂(r− s) ∈ I, which is indeed the case,
since r− s ∈ I, and I is by assumption a differential ideal.

Exercise. Prove (⇐).

�

Proposition 2.3. Let f1, . . . , fp ∈ K{y1, . . . ,yn} be linear (i.e., deg( fi) = 1, 1≤ i≤ p). Then either
1 ∈ [ f1, . . . , fp] = P or [ f1, . . . , fp] = P is a prime differential ideal.

Proof. We will show that, if a,b ∈ K{y1, . . . ,yn}, then

(??) ab ∈ P⇒ a ∈ P or b ∈ P.

Suppose (??) fails for some a,b ∈ K{y1, . . . ,yn}. Then

ab ∈ ( f1, . . . , fp,Θ1 f1, . . . ,Θp fp︸ ︷︷ ︸
finitely many

) = Q⊂ K[x1, . . . ,xq],

where the x1, . . . ,xq are the relabeled variables. Note that Q⊂ P.
13



Q is an ideal generated by linear polynomials. Apply Gauss-Jordan elimination (Do this!), and let
xi1, . . . ,xit be the non leading variables. If Q contains an element of K, then 1 ∈ Q⊂ P. Otherwise,

K[x1, . . . ,xq]/Q∼= K[xi1, . . . ,xit ],

which is a domain. Therefore, Q is prime and (??) must hold. �

Exercise 10. Let (K,{δ}) be an ordinary differential ring with char(K) = 0.
(1) Show that [(y′)2 + y] is not a radical differential ideal by showing that y′′′ ∈ {(y′)2 + y} but

y′′′ /∈ [(y′)2 + y].
(2) Find the smallest n such that (y′′′)n ∈ [(y′)2 + y].
(3) Show that {(y′)2 + y} is not a prime ideal by showing that

(a) {(y′)2 + y}= {(y′)2 +1,2y′′+1}∩ [y].
(b) {(y′)2 + 1,2y′′+ 1} is prime and is equal to the set of all f ∈ K{y} such that ∃n :

(y′)n f ∈ {(y′)2 +1} and (a) is irredundant.

2.2. Characteristic Sets. We will use characteristic sets to prove the Ritt-Raudenbush Theorem
stated in Section 2.1.

Example 2.5. We begin with some motivation:
(1) Given the ring Z, and ideal (n) ∈ Z, we know that m ∈ (n)⇔ m = nq+0, q ∈ Z.
(2) In Q[x], if ( f ) ∈ Q[x] is an ideal, by the division algorithm we know that g ∈ ( f )⇔ g =

f q+ r where r = 0.
(3) However, in the ring Q[x1, . . . ,xn], given an ideal ( f1, . . . , fm) ⊂ Q[x1, . . . ,xn], we use

Gröbner bases to test ideal membership.
We recall that in order to use Gröbner bases, one needs to choose some ordering on monomials. We
will use an analogous tool for ordering on differential polynomials.

Definition 2.4. Let Y = y1, . . . ,yn and ∆ = ∂1, . . . ,∂m. Recall that Θ = {θ |θ = ∂
i1
1 , . . . ,∂

im
m } (here,

{} denotes set notation). A differential ranking on ΘY is a well-ordering on ΘY (i.e., a total ordering
where every non-empty subset has the smallest element) such that:

(1) for all u,v ∈ΘY and θ ∈Θ,

if u < v, then θu < θv.

(2) For all θ 6= id,
u < θu.

Example 2.6. We present a few examples, and introduce orderings from commutative algebra:
(1) Let Y = y and ∆ = δ. The set

ΘY = y,δy,δ2y, . . . ,δpy, . . .

has a unique ranking
y < δy < δ

2y < .. . < δ
py < .. .

(2) Let Y = y and ∆ = ∂1,∂2. Note that, for any ordering, we have:

y < ∂1y < ∂1∂2y,

but we also have
y < ∂2y < ∂1∂2y.

How do we compare ∂1y to ∂2y?
14



(3) Let≺lex be the lexicographic ordering on i1, i2 for i1, i2 ≥ 0
(
examples include (0,100)≺lex

(1,2) and (2,1)≺lex (2,2)
)
. We can let

∂
i1
1 ∂

i2
2 y < ∂

j1
1 ∂

j2
2 y⇔ (i1, i2)≺lex ( j1, j2).

(4) We could also use the graded lexicographic ordering (deglex) defined as follows:

(i1, i2)≺deglex ( j1, j2)⇔ either i1 + i2 < j1 + j2
else i1 + i2 = j1 + j2 and (i1, i2)≺lex ( j1, j2).

Now that we have rankings on ΘY , we begin to discuss the analog of the division algorithm of
Commutative Algebra. Let K be a differential field.

Definition 2.5. Let f ∈ K{y1, . . . ,yn}. The variable ∂
i1
1 · . . . ·∂im

m y j in f of the greatest rank is called
the leader of f , denoted u f .

Example 2.7. Two examples before we continue with the algorithm:
(1) For ∆ = {δ} and K{y}, consider f = (y′)2 + y+1 ∈ K{y}. We see that u f = y′.
(2) For ∆ = {∂x,∂t} and K{u}, consider f = uxx +ut ∈ K{u}. What is u f ? To answer, we first

need to define a ranking:
(a) Consider the graded lexicographic ordering on {(i1, i2) | i1, i2 ≥ 0}. So,

ΘY = {∂i1
x ∂

i2
t u | i1, i2 ≥ 0},

and we have
uxx = ∂

2
xu� ∂tu = ut ,

as 2 > 1. Hence, u f = uxx.

(b) Consider the lexicographic order on {(i1, i2) | i1, i2 ≥ 0} so that ΘY = {∂i1
t ∂

i2
x u | i1, i2 ≥

0} (i.e., we consider the case ∂t > ∂x). Then,

∂
2
x ≺ ∂t ,

and we have u f = ut .

Given a polynomial f ∈ K{y1, . . . ,yn}, once we determine u f , we write f as a univariate polyno-
mial in u f as follows:

(?) f = apup
f +ap−1up−1

f + · · ·+a0, ai ∈ K{y1, . . . ,yn}.

Example 2.8. Let K{y} be an ordinary differential polynomial ring, and let f = y · y′′+1 ∈ K{y}.
We have u f = y′′ and therefore a1 = y, a0 = 1.

Definition 2.6. In (?) above, the coefficient ap is called the initial of f , and is denoted by I f .

Example 2.9. Consider f = (y′)2 + y ∈ K{y} (here, ∆ = {δ}). We see that u f = y′, I f = 1. Apply
δ to f :

δ((y′)2 + y) = 2y′y′′+ y′,
and call 2y′y′′+ y′ = g. We then have ug = y′′ and Ig = 2y′.

Note that in Example 2.9, 2y′ = ∂((y′)2+y)
∂y′ with degδu f (δ f ) = 1.

Exercise 11. Prove that if charK = 0, then for every f ∈ K{y1, . . . ,yn}, any ranking �, and any
δ ∈ ∆, I(δ f ) =

∂ f
∂u f

.
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Definition 2.7. ∂ f
∂u f

is called the seperant of f , denoted S f .

Example 2.10. In Example 2.9, S(y′)2+y = 2y′.

For the following, let K be a differential field, R = K{y1, . . . ,yn} be a differential polynomial
ring, and let a ranking on ΘY be fixed (unless otherwise noted).

Definition 2.8. For all f ,g ∈ R, we say that f is partially reduced with respect to g if none of the
terms of f contains a proper derivative of ug.

Example 2.11. (1) Let f = y2 and g = y+1. Here, ug = y and we see that f is partially reduced
with respect to g.

(2) Let f = y2 + y′ and g = y+1. ug is the same as before, but f is not partially reduced with
respect to g, since the term y′ in f can be obtained by applying δ to ug.

(3) Let f = 2yy′′+ y and g = y+1. Since 2yy′′ in f is divisible by a proper derivative of ug, we
see that f is not partially reduced with respect to g.

Definition 2.9. We say that f is reduced with respect to g if
(i) f is partially reduced with respect to g, and

(ii) if u f = ug, then degu f ( f )< degug(g).

Example 2.12. Let f = y and g = y+1. f is not reduced with respect to g, since (ii) above is not
satisfied.

Definition 2.10. A subset A ⊂ R is called autoreduced if, for all f ,g ∈A where f 6= g, f is reduced
with respect to g.

Example 2.13. Let A = 2yy′′+ y,y+1. This is not autoreduced
(
see Example 2.11(3)

)
.

Exercise 12. Prove that every autoreduced set in R is finite.

Let A and B be autoreduced. Let A = A1, . . . ,Ap and B = B1, . . . ,Bq with A1 < .. . < Ap and
B1 < .. . < Bq for some ranking <, where we say that f > g if u f > ug, else if u f = ug then
degu f ( f )> degug(g).

We say that A < B if:
(1) there exists i, 1≤ i≤ p such that, for all j, 1≤ j ≤ i−1, ¬(B j < A j) and Ai < Bi. Else,
(2) q < p and ¬(B j < A j), 1≤ j ≤ q.

Example 2.14. Let R = K{y1,y2} with ∆ = {δ} with any deglex ranking. Let

A = {A1 = (y′2)
2 +1,A2 = y′′1 + y2} and B = {B1 = (y′2)+2}.

Is A < B? Starting with 1, we compare A1 to B1, and we see that B1 < A1, so we have B < A .
Now, consider

B̃ = {B̃1 = (y′2)
2 +1},

and compare A with B̃ . Since ¬(B̃1 < A1), we have A < B̃ .

Exercise 13. Show that every non-empty set of autoreduced sets in R has a minimal element.

Exercise 14. Develop a division algorithm as follows: Fix a ranking.
Input: f ∈ R and A1, ...,Ap = A ⊂ R an autoreduced set.

Output: g ∈ R such that
16



(1) g is reduced with respect to each element of A ;
(2) There exists n≥ 0 such that

In
A1
· . . . · In

Ap
·Sn

A1
· . . . ·Sn

Ap
· f −g ∈ [A ].(

Hint: in the regular division algorithm, one sees that if f = x2 + 1 and A = x+ 1, then f =

q(x+1)+g so that f −g ∈ (A)
)
.

Example 2.15. Let R = K{y1,y2}, ∆ = {δ}, charK = 0, and consider the deglex ranking with
y1 > y2.

(1) Let f = y1 and A = A1 = y2 ·y1. Here, uA1 = y1, IA1 = y2, and we have g = 0, so IA · f −0 ∈
[A ].

(2) Let f = y′1 +1 and A = A1 = y2y2
1. Again we have uA1 = y1. Differentiate A1:

A′1 = 2y2y1y′1 + y′2(y1)
2,

and we get SA1 · f −A′1 = 2y2y1− y′2y2
1. Multiplty through by IA1 to get

IA1 ·SA1 · f − IA1 ·A
′
1 = 2y2

2y1− y′2y2(y1)
2.

Finally, we get

IA1 ·SA1 · f −2y2
2y1︸ ︷︷ ︸
g

=−y′2A1 + IA1 ·A
′
1 ∈ [A ].

Definition 2.11. Let I ⊂ R be a differential ideal. A minimal autoreduced subset of I is called a
characteristic set of I.

We began this section with preliminary information that would help prove the Ritt–Raudenbush
Theorem. Before we give the proof, we begin with two lemmas:

Lemma 2.1. Let Q ⊂ R. Let S ⊂ R be a subset and a ∈ R such that the ideal {S,a} has a
finite set of generators as a radical differential ideal. Then, there exists s1, . . . ,sp ∈ S such that
{S,a}= {s1, . . . ,sp,a}.

Proof. By hypothesis, there exist b1, . . . ,bq ∈ R such that {S,a}= {b1, . . . ,bq}. In particular, for all
i, 1≤ i≤ q,bi ∈ {S,a}, that is, for all i there exists ni ≥ 1 such that bni

i ∈ [S,a]. Let s1, . . . ,sp ∈ S
be such that, for all i, bni

i ∈ [s1, . . . ,sp,a]. Therefore, for all i, bi ∈ {s1, . . . ,sp,a}, implying

{S,a}= {b1, . . . ,bq} ⊂ {s1, . . . ,sp,a} ⊂ {S,a}

. �

Lemma 2.2. Let Q ⊂ K. For any ranking, let I ⊂ K{y1, . . . ,yn} be a differential ideal, and
C = c1, . . . ,cp be a characteristic set of I. Then, if f ∈ I is reduced with respect to C , then f = 0. In
particular, for all i, 1≤ i≤ p, Sci /∈ I and Ici /∈ I.

Proof. Notice that, for all i, 1 ≤ i ≤ p, we have Sci < ci and Ici < ci. Indeed, the latter holds by
definition and

ci = Iciu
ni
ci
+ . . . , and Sci = nIciu

ni−1
ci

+ . . .

If there exists an i such that Ici ∈ I, then notice that, since C is autoreduced, Ici and Sci are reduced
with respect to C .
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Let now f ∈ I be reduced with respect to C and c1, . . . ,cpi be the elements in C such that cpi < f .
Then the set {c1, . . . ,cpi, f} is autoreduced, and

{c1, . . . ,cpi, f}< C ,

which contradicts the minimality of C . �

We are now ready to prove the Ritt-Raudenbush Theorem. We first restate the theorem:

Theorem (See Theorem 2.1 above). Let (K,∆) be a differential field with char(K)=0. Then the
radical differential ideals in R = K{y1, . . . ,yn} satisfy the ACC.

Proof. We will prove an equivalent statement, namely we will prove that for all radical differential
ideals I ⊂ R, there exists a finite set F ⊂ R such that I = {F}.

Exercise 15. Prove that the set of radical differential ideals in R satisfies the ACC if and only if for
all radical differential ideals I ⊂ R, there exists a finite set F ⊂ R such that I = {F} (we say that I is
finitely generated as a radical differential ideal).

Back to the proof, suppose that there exists a radical differential ideal I ⊂ R that is not finitely
generated. By Zorn’s Lemma, there exists a maximal radical differential ideal J that is not finitely
generated. We will first show that J is prime.

Suppose J is not prime, i.e., there exist a,b ∈ R such that ab ∈ J but a /∈ J and b /∈ J. Then, the
radical differential ideals {a,J} and {b,J} properly contain J. By maximality of J, we see that both
{a,J} and {b,J} are finitely generated. By Lemma 2.1, there exist f1, . . . , fq ∈ J and g1, . . . ,gq ∈ J
such that:

{a,J}= {a, f1, . . . , fq} and {b,J}= {b,g1, . . . ,gq}.
We have:

{a,J}{b,J} ⊂ {ab, further products of a,b, fi,g j}= a⊂ {J}.

For all f ∈ J, f 2 ∈ {a,J}{b,J}⇒ f 2 ∈ a⇒ f ∈ a, and J is therefore finitely generated→←. Thus,
J is prime.

Let C = c1, . . . ,cp be a characteristic set of J. Then, for all i, by Lemma 2.2, we have Ici, Sci /∈ J.
Therefore, by maximality of J, {Sc1Ic1 · . . . ·ScpIcp,J} is finitely generated as a radical differential
ideal. By Lemma 2.1, there exist f1, . . . , fq ∈ J such that

{Sc1Ic1 · . . . ·ScpIcp,J}= {Sc1Ic1 · . . . ·ScpIcp, f1, . . . , fq}.

Let h ∈ J. Reduce h with respect to C and find a g ∈ R such that:

(1) g is reduced with respect to C , and
(2) Sc1Ic1 · . . . ·ScpIcph−g ∈ {C} ⊂ J.

By Lemma 2.2, one sees that g = 0, so Sc1Ic1 · . . . ·ScpIcph∈ {C}, and thus Sc1Ic1 · . . . ·ScpIcpJ ⊂ {C}.
We now have:

J2 ⊂ J · {Sc1Ic1 · . . . ·ScpIcp,J}= J · {Sc1Ic1 · . . . ·ScpIcp, f1, . . . , f1}

⊂ {Sc1Ic1 · . . . ·ScpIcpJ, f1, . . . , fq} ⊂ {c1, . . . ,cp, f1, . . . , fq} ⊂ J.

We conclude that {c1, . . . ,cp, f1, . . . , fq}= J. �
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3. DIFFERENTIAL ALGEBRAIC EXTENSIONS.

Recall that, given an extension of fields L ⊃ K, and element a ∈ L is called algebraic over K
if there exists a non-zero polynomial p ∈ K[x] such that p(a) = 0. If a is not algebraic, then it is
transcendental.

Example 3.1. (1) Let K = Q, L = C.
√

2 ∈ L is algebraic over K, since it is the root of the
polynomial p = x2−2.

(2) π and e are transcendental over Q.

Recall also that elements a1, . . . ,an ∈ L are called algebraically dependent over K if there exists
a non-zero polynomial p ∈ K[x1, . . . ,xn] such that p(a1, . . . ,an) = 0.

Definition 3.1. Let L ⊃ K be an extension of differential fields. Then an element a ∈ L is called
differential algebraic over K if there exists a non-zero p ∈ K{y} such that p(a) = 0. In other words,
a is differential algebraic if there exists a non-empty finite subset of {θa |θ∈Θ} that is algebraically
dependent over K.

Example 3.2. Let K =Q, L =Q(x), ∆ = {δ}, and δx = 1. Let a ∈Q[x], i.e., a = anxn + . . .+a0,
where ai ∈ Q, 0 ≤ i ≤ n. Then, a is algebraic over K since δn+1(a) = 0, and we choose such a
p = y(n+1).

Exercise 16. In the previous example, if possible, for each a ∈ Q(x), find a non-zero p ∈ K{y}
such that p(a) = 0.

Theorem 3.1. Let L ⊃ K be a differential field extension and let α,β ∈ L. If α is differential
algebraic over K and β is differential algebraic over

K〈α〉 := Quot(K{α}),
then β is differential algebraic over K.

Remark. In Theorem 3.1, K〈α〉 is defined to be the quotient field of K{α}, which is the smallest
differential subfield of L containing both K and α.

A proof for Theorem 3.1 will be given later. But there is a corollary:

Corollary 3.1. Let L⊃ K be a differential field extension. Then,

M = { f ∈ L | f is differential algebraic over K}
is a differential subfield of L.

Exercise 17. Prove Corollary 3.1.

Definition 3.2. A differential field extension L⊃ K is called differentially finitely generated if there
exist a1, . . . ,an ∈ L such that

L = K〈a1, . . . ,an〉= Quot(K{a1, . . . ,an}),
that is, L is the smallest differential subfield of itself containing K and a1, . . . ,an.

Definition 3.3. A set ∆= {∂1, . . . ,∂m} is called independent over (K,∆) if there exist a1, . . . ,am ∈K
such that

det(∂ia j |1≤ i, j ≤ m) 6= 0,
that is, the m×m matrix with entries (∂ia j) is nonsingular.
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Example 3.3. (1) ∆ = {δ} is independent if and only if K ) K∆.
(2) ∆ is not independent over (Q,∆) (Why?).
(3) Let K =Q(x1, . . . ,xn), ∆ = {∂1, . . . ,∂n}, and ∂i =

∂

∂xi
. Then, ∆ is independent over (K,∆)

by taking the ai = xi.

Theorem 3.2 (Primitive Element Theorem for Differential Algebra). Let L and K be differential
fields such that L ⊃ K is a differentially finitely generated differential algebraic differential field
extension, and assume that ∆ is independent over (K,∆). Then, there exists a∈ L such that L =K〈a〉.
In other words, if b1, . . . ,bn ∈ L are differential algebraic over K, then there exists b ∈ K〈b1, . . . ,bn〉
such that K〈b1, . . . ,bn〉= K〈b〉.
Exercise 18. Let K =Q and ∆ = {δ}. Note that ∆ is not independent over (K,∆). Let

L = Quot(K{y1,y2}/[y′1,y′2]).
Let c1,c2 be the images of y1 and y2, respectively, in the above quotient. This gives L = K(c1,c2)
with δc1 = 0 and δc2 = 0. Prove that L 6= K〈c〉 for any c ∈ L.

Exercise 19. (See Theorem 3.4 below). Prove that ∆ is independent over (K,∆) if and only if, for
all p 6= 0 ∈ K{y}, there exists c ∈ K such that p(c) 6= 0 (Hint: Use the fact that K is infinite.)

Proof (Differential Primitive Element Theorem). Let n = 2. The general case will follow by induc-
tion on n. We will show that there exists c ∈ K〈b1,b2〉 such that

K〈b1,b2〉= K〈b1 + cb2〉.
For this, let t be a differential indeterminate over K. Note that b1 + tb2 is differential algebraic over
K〈t〉. Indeed, by Theorem 3.1 (whose proof will be shown later), the previous sentence holds. A
corollary to Theorem 3.1:

Corollary 3.2. For an extension L⊃ K, the set of differential algebraic elements of L over K is a
differential field.

Proof. Indeed, if α,β ∈ L are differential algebraic over K, then α+β ∈ K〈α〉〈β〉, and by theorem
3.1, α+β is differential algebraic over K. Similarly, αβ is differential algebraic over K. If α 6= 0,
then α−1 is a solution to αy−1 = 0 and thus α−1 is differential algebraic over K. �

Continuing with the proof of the Differential Primitive Element Theorem, we know that there
exists p 6= 0 ∈ K〈t〉{y} such that p(b1 + tb2) = 0. In general, for a ∈ L, the set

Ia = { f ∈ K{y}| f (a) = 0}
is a differential ideal of K{y}. Let > be a ranking and Ib1+tb2 ⊂ K〈t〉{y}. Let C = c1, . . .cq be a
characteristic set of Ib1+tb2 . By Lemma 2.2, we have c1 ∈ Ib1+tb2 and Sc1 /∈ Ib1+tb2 . Therefore, we
have

(?) c1(b1 + tb2) = 0 and Sc1(b1 + tb2) 6= 0.
Let uc1 = θy. By clearing the denominators in (?), we obtain g ∈ K{y,z} such that

(??) g(b1 + tb2, t) = 0 and
∂g
∂θy

(b1 + tb2, t) 6= 0.

We will find c ∈ K〈b1,b2〉 such that b2 ∈ K〈b1 + cb2〉. Since b2 =
∂θ(b1+tb2)

∂(θt) , (??) implies

∂g(b1 + tb2, t)
∂(θt)

=
∂g

∂(θy)
(b1 + tb2, t) ·b2 +

∂g
∂(θz)

(b1 + tb2, t) = 0 (???).
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From (?) and (???), we have

(1) b2 =
− ∂g

∂(θz)(b1 + tb2, t)
∂g

∂(θy)(b1 + tb2, t)
.

Let h = ∂g
∂(θy)(b1 + tb2, t) ∈ K{b1,b2}{t}. Consider K{b1,b2}〈t〉 as a vector space over K〈t〉 with

basis {1}∪{a1...ak | ∀i ai ∈Θ{b1,b2}}. Note that K{b1,b2}{t} is a subset of K{b1,b2}〈t〉, so h ∈
K{b1,b2}〈t〉. Since h 6= 0, some component q ∈ K〈t〉 of h is non-zero. No element of K〈t〉−K{t}
appears in h, so q ∈ K{t}. So by exercise 19, there exists c ∈ K such that q(c) 6= 0. Since the
basis elements do not contain t, this implies that h(c) = ∂g

∂(θy)(b1 + cb2,c) 6= 0. Thus, (1) yields
b2 ∈ K〈b1 + cb2,c〉= K〈b1 + cb2〉. �

We will present a proof for Theorem 3.1 later. However, we state a proposition concerning
Exercise 19:

Proposition 3.1. Let (K,∆) be a differential field with ∆ = ∂1, . . . ,∂m and x1, . . . ,xm ∈ K be such
that ∂i(x j) = δi, j, where δi, j is the Kroenecker delta defined as

δi, j =

{
0 if i 6= j
1 if i = j

(in particular, ∆ is independent over K). Then, for every non-zero p ∈ K{y}, there exists c ∈ K such
that p(c) 6= 0.

Proof. Consider K as a vector space over the field K∆(x1, ...,xm). If {eα}α∈A is a basis, we can
write p = ∑

n
i=1 qiei, where qi ∈ K∆(x1, ...,xn){y} and we have relabeled the basis elements for ease

of notation. Since p is a non-zero polynomial, there must be some component qi that is non-zero. If
qi does not vanish everywhere, then p does not vanish everywhere. Thus it suffices to prove the
proposition for p under the assumption K = K∆(x1, ...,xm).

Note that each xi is transcendental over K∆(x1, ...,xi−1,xi+1, ...,xm). For example, if P(y) ∈
K∆(x2, ...,xm){y} were the non-zero polynomial of least degree such that P(x1) = 0, then we would
have ∂1x1 = −P′(x1)/P(d)(x1), where P′(y) is P(y) with the coefficients replaced by their image
under ∂1 and P(d)(y) is the partial derivative of P(y) with respect to y. Note that degP(d) < degP, so
P(d)(x1) 6= 0 by minimality. However, ∂1x1 = 1 while P′(x1) = 0 because K∆(x2, ...,xm) is constant
with respect to ∂1. Thus, each simplified fraction of polynomials in x1, ...,xn over K∆ is a unique
element of K∆(x1, ...,xn).

View each coefficient of p as a simplified fraction whose numerator and denominator are each in
K∆[x1, ...,xm]. For each i = 1, ...,m, let fi = max{k ∈ N | xk

i divides a denominator of a coefficient
of p}. Let g = ∏

m
i=1 x fi . Let D be the highest order of any derivation appearing in p, and let N be

the highest power of any monomial appearing in p. Now we write

(g · p)(y) = ∑
J

[
aJ ∏

d1,...,dm

(∂d1
1 ...∂dm

m y)J(d1,...,dm)

]
,

where the index of the product runs over all m-tuples with entries no greater than D, the index of
the sum runs over all functions J : {0, ...,D}m→{0, ...,N}, and each aJ is an element of K whose
denominator is not divisible by xi in K∆[x1, ...,xm].
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For each ( j1, ..., jm) ∈ {0, ...,D}m, let c j1,..., jm be a transcendental constant. Let

c = ∑
j1,..., jm

c j1,..., jmx j1
1 ...x jm

m .

Now form the expression p̃(c j1,..., jm) = (g · p)(c)(x1 = ...= xm = 0) by replacing x1 through xm by
0. This is an element of K∆[c j1,..., jm], the polynomial ring over K∆ in (D+1)m indeterminates. We
see that p̃(c j1,..., jm) is equal to

∑
J

aJ(x1 = ...= xm = 0) ∏
d1,...,dm

(d1!...dm!cd1,...,dm)
J(d1,...,dm).

Since this is a polynomial in several variables, if we can show that p̃ 6= 0, then since K∆ is
infinite, we can find b j1,..., jm ∈ K∆ such that p̃(b j1,..., jm) 6= 0. Thus, as a function on K∆, (g ·
p)(∑ j1,..., jm b j1,..., jmx j1

1 ...x jm
m ) is not the zero function and hence is a non-zero polynomial. However,

it may be that for all J, aJ(x1 = ...= xm = 0) = 0. We circumvent this problem as follows.
Write

(g · p)(y) = xδ1
1 (p1(y)+q1(y)),

where xδ1
1 is the largest power of x1 dividing every numerator of every coefficient in g · p, p1 and

q1 are elements of K{y}, and x1 divides every numerator every coefficient in q1 but no numerator
of any coefficient in p1. To show that g · p 6= 0, it suffices to show that p1 +q1 6= 0, and for this it
suffices to show that there is an α ∈ K such that p1(α)(x1 = 0) is not zero.

For each 1≤ i≤m−1, write pi(y) = xδi+1
i+1 (pi+1(y)+qi+1(y)), where xδi+1

i+1 is the largest power of
xi+1 dividing every term of pi, xi+1 divides every term of qi+1 and divides no term of pi+1. Hence
we have

g · p = xδ1
1

(
xδ2

2

(
...
(
xδm−1

m−1 (x
δm
m (pm +qm)+qm−1)+ ...

)
+q2

)
+q1

)
.

Now to show g · p 6= 0, it suffices to show the existence of an α ∈ K such that pm(α)(x1 = ... =
xm = 0) 6= 0.

For all coefficients ãJ appearing in pm, ãJ(x1 = ...= xm = 0) 6= 0. So by the above, there exist
b j1,..., jm ∈ K∆ such that pm(∑b j1,..., jmx j1

1 ...x jm
m ) 6= 0. �

This proof hints how to solve Exercise 19; First, prove, using the fact that K∆ is infinite, that ∆

is independent if and only if, for all p 6= 0 ∈ K[∂1y, . . . ,∂my] there exists c ∈ K such that p(c) 6= 0.
Then generalize this case.

3.1. Differential Nullstellensatz. We recall the strong and weak polynomial Nullstellensatz:

Theorem (Strong Nullstellensatz). Let K be an algebraically closed field. Then, for all sets
F ⊂ K[y1, . . . ,yn] and f ∈ K[y1, . . . ,yn], f ∈

√
(F) if and only if, for all (a1, . . . ,an) ∈ Kn, if

F(a1, . . . ,an) = 0, then f (a1, . . . ,an) = 0.

Theorem (Weak Nullstellensatz). Let K be an algebraically closed field. Then

{(a1, . . . ,an) ∈ Kn |F(a1, . . . ,an) = 0}=∅ ⇐⇒ 1 ∈ (F).

Note that for both the strong and weak Nullstellensatz, we require K to be algebraically closed.

Definition 3.4. K is existentially closed if for all F ⊂ K[y1, . . . ,yn], if there exist L ⊃ K and
(a1, . . . ,an)∈Ln such that F(a1, . . . ,an)= 0, then there exists (b1, . . . ,bn)∈Kn such that F(b1, . . . ,bn)=
0.
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K is algebraically closed if and only if K is existentially closed.

Definition 3.5. (K,∆) is called differentially closed if it is existentially closed, i.e., if, for all
F ⊂ K{y1, . . . ,yn}, if there exist L⊃ K and (a1, . . . ,an) ∈ Ln such that F(a1, . . . ,an) = 0, then there
exist (b1, . . . ,bn) ∈ Kn such that F(b1, . . . ,bn) = 0.

Remark. If K is differentially closed, then K is algebraically closed.

Definition 3.6. (L,∆) is called a differential closure of (K,∆) if L⊃ K and, for every differentially
closed (M,∆) with M ⊃ K, there exists a differential homomorphism ϕ : L→M such that ϕ|K = id.

Theorem 3.3 (Differential Nullstellensatz). Let K be a differentially closed field. For all F ⊂
K{y1, . . . ,yn} and f ∈K{y1, . . . ,yn}, f ∈{F} if and only if, for all (a1, . . . ,an)∈Kn, if F(a1, . . . ,an)=
0, then f (a1, . . . ,an) = 0.

Proof. (⇒) follows from f q = ∑
r
i=1 biθi fi for fi ∈ F .

(⇐) We will prove this for f 6= 0, for when f = 0 then f ∈ {F}. We will use the Rabinowitsch
trick: Consider the radical differential ideal

{F,1− f t} ⊂ K{y1, . . . ,yn, t}.

If F(a1, . . . ,an) = 0, then (1− f t)(a1, . . . ,an,1) = 1 6= 0. Therefore,

(?)
{

F = 0
1− t f = 0

has no solutions in Kn+1. We will show later that (?) implies that 1 ∈ [F,1− t f ] (Weak Differential
Nullstellensatz), but we will use this fact here. Hence,

(??) 1 = ∑
i, j

bi, jθi, j f j +∑
q

cqθq(1− t f )

for some bi, j,cq ∈ K{y1, . . . ,yn}, θi, j,θi ∈Θ. Since f 6= 0, replace t by 1
f in (??) to get

1 = ∑
i, j

bi, j(y1, ...,yn,1/ f )θi, j f j.

There exists k such that, for all i, j,

f kbi, j(y1, ...,yn,1/ f ) ∈ K{y1, . . . ,yn}.

Thus f k ∈ [F ] and therefore f ∈ {F}.
�

Proof (Weak Differential Nullstellensatz). Let I ⊂ K{y1, . . . ,yn} and 1 /∈ I. We will show that
there exists (a1, . . . ,an) ∈ Kn such that, for all f ∈ I, f (a1, . . . ,an) = 0. Let M ⊃ I be a max-
imal differential ideal containing I. By Corollary 1.1, M is prime. We will find a zero of
M. Let L = Quot

(
K{y1, . . . ,yn}/M

)
, and let M = {g1, . . . ,gs}. Let b1, . . . ,bn be the images of

y1, . . . ,yn in L. Now, for all i, gi(b1, . . . ,bn) = 0 in L. Since K is differentially closed, there exists
(a1, . . . ,an) ∈ Kn with gi(a1, . . . ,an) = 0 for all i. �

Before we give a proof for Theorem 3.1, we first remark that, when |∆| ≥ 2, α is differential
algebraic over K ; trdegK(K〈α〉)< ∞.
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Example 3.4. Let K =Q(α,∂xα,∂2
xα, . . .) and ∆ = { ∂

∂x ,
∂

∂y} with derivations defined by

∂x(∂
i
xα) = ∂

i+1
x α i≥ 0

and
∂y(α) = 0.

We see that α is differential algebraic over Q, but trdegQ(K) = ∞.

Proof (Theorem 3.1). Fix an orderly ranking. Since α is differential algebraic over K, there exists
p 6= 0 ∈ K{y} such that

(2) p(α) = 0 and Sp(α) 6= 0

(see Lemma 2.2). Let up = θ1y. Our goal will be to estimate the growth of trdegKK(θβ |ordθ≤ s)
as s→ ∞. (2) implies that δ1(p(α)) = 0 where p = Ipunp

p + . . .. However,

δ1(p(α)) = Sp(α)δ1(θ1(α))+ expressions with θ(α) where θ < δ1θ1,

which further implies that δ1θ1(α) ∈ K(θ(α) |θ < δ1θ1). It can be shown by induction (do this!)
that

(3) θ2δ1θ1(α) ∈ K(θ(α) |θ < θ2δ1θ1).

Let r1 = ord(δ1θ1). Then, (3) implies that, for all r ≥ r1,

K(θ(α) |θ ∈Θ(r)) = K(θ(α) |θ ∈Θ(r)\Θ(r− r1)δ1θ1),

where Θ(r) = {θ |ord(θ)≤ r}.
Similarly, there exists g 6= 0 ∈ K〈α〉{y} such that g(β) = 0 and Sg(β) 6= 0, and there exists θ3

such that
θ3(β) ∈ K〈α〉(θ(β) |θ < θ3).

Moreover, there exists q such that

θ3(β) ∈ K(θ′(α),θ(β) |ord(θ′)≤ q,θ < θ3).

Therefore, for all θ̃,

θ̃θ3(β) ∈ K(θ′(α),θ(β) |ord(θ′)≤ q+ord(θ̃) and θ < θ3).

Furthermore, for all s≥ ord(θ3) and q+ s≥ r1,

L(s) := K
(
θ(β) |θ ∈Θ(s)

)
⊂ K

(
θ
′(α),θ(β) |θ′ ∈Θ(q+ s) and θ ∈Θ(s)\Θ(s−ord(θ3)) ·θ3

)
= K

(
θ
′(α),θ(β)|θ′ ∈Θ(q+ s)\Θ(q+ s− r1) ·δ1θ1 and θ ∈Θ(s)\Θ(s−ord(θ3)) ·θ3

)
=: M(s).

To calculate |Θ(s)|, we need to count

{(i1, . . . , im) | i1 + . . .+ im ≤ s}.
Put s ones as such:

i1︷ ︸︸ ︷
11 · · ·

∣∣∣∣
i2︷︸︸︷

1 · · ·
∣∣∣∣ · · · ∣∣∣∣

im︷︸︸︷
1 · · ·

∣∣∣∣ · · ·1︸ ︷︷ ︸
s

,
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and we see m “thick lines.” We know from this that there are(
s+m

m

)
choices. So,

|Θ(s)|= f (s) =
(

m+ s
m

)
=

(s+m)!
m!s!

=
(s+m) · . . . · (s+1)

m!
,

which is a polynomial in s of degree m. We also have

|Θ(q+ s)\Θ(q+ s− r1)|+ |Θ(s)\Θ(s−ord(θ3))|

=

(
q+ s+m

m

)
−
(

q+ s− r1 +m
m

)
+

(
s+m

m

)
−
(

s−ord(θ3)+m
m

)
= h(s),

and one can show (do this!) that deg(h) = m−1. Therefore, there exists s such that the number
of generators in L(s) over K is greater than the number of generators in M(s) over K. Thus,
{θ(β) |ord(θ)≤ s} is algebraically dependent over K, as all transcendence bases of a given finitely
generated extension have the same number of elements. �

Theorem 3.4 (Exercise 19). ∆= {∂1, . . . ,∂m} is independent over (K,∆) ⇐⇒ for all p 6= 0∈K{y}
there exists c ∈ K such that p(c) 6= 0.

Before we prove this theorem, we first state and prove a proposition that will help. Note that we
are in charK = 0, so K ⊃Q is infinite.

Proposition 3.2. For all finite Ω⊂Θ (say, |Ω|= q, i.e., Ω= {θ1, . . . ,θq}), there exist b1, . . . ,bq ∈K
such that det(θib j) 6= 0 ⇐⇒ for all 0 6= p ∈ K[θy|θ ∈Ω], there exists c ∈ K such that p(c) 6= 0.

Proof. (⇐) Consider:

(4) det

∣∣∣∣∣∣
θ1y1 . . . θ1yq

... . . . ...
θqy1 . . . θqyq

∣∣∣∣∣∣= m11θ1y1−m21θ2y1 + . . .±mq1θqy1,

where mi1 is the determinant of the q−1×q−1 matrix obtained by deleting the ith row and 1st
column. By induction, there exist b2, . . . ,bq ∈ K such that mi1(b2, . . . ,bq) 6= 0 for some i. Then,
substituting (b2, . . . ,bq) into (4) yields a non-zero polynomial in y1.

(⇒) Let p 6= 0∈K[θ1y, . . . ,θqy]. By assumption, there exist b1, . . . ,bq ∈K such that det(θib j) 6= 0.
So, let B = (θib j). B is invertible since det(B) 6= 0. Let C = B−1. Define z1, . . . ,zq by z1

...
zq

=C

 θ1y
...

θqy

 .

Then,  θ1y
...

θqy

= B

 z1
...

zq

 .
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So, z1, . . . ,zq are algebraically independent over K. Therefore, there exists P 6= 0 ∈ K[Z1, . . . ,Zq]
such that P(z1, . . . ,zq) = p(θ1y, . . . ,θqy). Since Q is infinite, there exist c1, . . . ,cq ∈ Q such that
P(c1, . . . ,cq) 6= 0. Consider

c = ∑c jb j.

Then,
θi(c) = ∑θi(b j)c j,

and therefore  θ1(c)
...

θq(c)

= B

 c1
...

cq


If we let z1 = c1, . . . ,zq = cq, then θ1(c)→ θ1(y), . . . ,θq(c)→ θq(y). So, p(c) = P(c1, . . . ,cq) 6=
0. �

Proof (Theorem 3.4). (⇐) one can utilize the above proof to show this direction.
(⇒) Let b1, . . . ,bm ∈ K be such that det(∂ib j) 6= 0. Let (ai j) = (∂ib j)

−1. We will show that, for
all s≥ 0, Θ(s) is independent over K. That is, we will show that

det(∂i1
1 · . . . ·∂

im
m (

bi1
1 · . . . ·bim

m

i1! · . . . · im!
) | i1 + . . .+ im ≤ s) 6= 0.

It will be left as an exercise to show this. Hint: introduce ∂′1, . . . ,∂
′
m defined by ∂′1

...
∂′m

= (ai j)

 ∂1
...

∂m

 .

Notice that ∂′i(b j) = 1 if i = j and 0 if i 6= j. Then, show that

det(∂i1
1 · . . . ·∂

im
m (

bi1
1 · . . . ·bim

m

i1! · . . . · im!
)) = 1.

�

4. ALGORITHMS AND OPEN PROBLEMS

4.1. Algorithms. The following is due to Ritt, Kolchin, Boulier, and Hubert:
Given: F ⊂ K{y1, . . . ,yn}, ∆ = {∂1, . . . ,∂m} and a ranking >.

Output: finite sets C1, . . . ,Cq such that, for all i:
(a) There exists a radical differential ideal Ii such that Ci is a characterstic set of Ii.
(b) f ∈ Ii ⇐⇒ f reduces to 0 with respect to Ci.
(c) {F}= I = I1∩ . . .∩ Iq.

This procedure is called RosenfeldGroebner in MAPLE.

Example 4.1. Consider K{x,y}. Let I = (xy) and C = xy. Suppose x < y. Then, y reduces to 0.

Kolchin showed that, if I is prime and C is a characteristic set of I, then f ∈ I ⇐⇒ f reduces to
0 with respect to C . The Ritt-Kolchin algorithm can find Ii in the previous algorithm such that each
Ii is a prime differential ideal (however, this requires factorization over field extensions).
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4.2. Open Problems.

(1) Give a reasonable complexity estimate of the previous algorithm.
(2) Effective Differential Nullstellensatz is a way to test whether a system of differential

polynomials is consistent or, more formally,

1 ∈ {F} ⇐⇒ 1 ∈ (θF |ord(θ)≤ h(n,m,O,d)),

where F ⊂ K{y1, . . . ,yn} is a set of differential polynomials, m is the number of deriva-
tions, O = ord(F), and d = deg(F). The bounding function h was found by Golubitsky,
Kondratieva, Ovchinnikov, and Szanto. However, one needs to improve upon this bound.

(3) Find an (explicit) upper bound for the effective differential Nullstellensatz.
(4) The Ritt Problem: Find an irredundant decomposition for the last part of the algorithm

above. There are two equivalent statements that one can prove. First, given a characteristic
set of a prime differential ideal P, find F such that P = {F}. Second, test whether {F} is
prime. This has been resolved in some cases, for example, when |F |= 1.

(5) Jacobi’s bound.
(6) Dimension conjecture.

5. DIFFERENTIAL GALOIS THEORY

Unless otherwise stated, K will be an ordinary differential field with charK=0.

5.1. Linear Differential Equations. We begin with three ways to view linear differential equa-
tions:

(First View) The first way to view it is via differential modules, which are related to Tannakian Categories.

Definition 5.1. A finite-dimensional K-vector space M is a called a differential module if it
is supplied with a map ∂ : M→M satisfying:
(a) For all m,n ∈M, ∂(m+n) = ∂(m)+∂(n), and
(b) For all a ∈ K and m ∈M, ∂(a ·m) = ∂(a)m+a∂(m).

Example 5.1. Let M be any finite-dimensional vector space, and let ∂ : M→M be such that
∂(m) = 0 for all m ∈M. M is a differential module, provided that ∂(a) = 0 for all a ∈ K.

Let {e1, . . . ,en} be a K-basis of M. Then, for all i, there exist a1i, . . . ,ani ∈ K such that

(5) ∂(ei) =
n

∑
j=1
−a jie j.

We also know that, for any m ∈ M, there exist a1, . . . ,an ∈ K such that m = ∑
n
i=1 aiei.

Now, consider the differential equation

(6) ∂(y) = 0.
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m ∈M satisfies (6) if and only if ∂(∑n
i=1 aiei) = 0. But then we have:

∂(
n

∑
i=1

aiei) =
n

∑
i=1

∂(ai)ei +
n

∑
i=1

ai∂(ei)

=
n

∑
i=1

∂(ai)ei +
n

∑
i=1

ai ·
n

∑
j=1
−a jie j

=
n

∑
i=1

∂(ai)ei−
n

∑
i, j=1

ai ja jei,

and by factoring out ei in that last equality above, we see that the above holds if, for all i,
∂(ai) = ∑ j ai ja j, which occurs if and only if

(7)

 ∂(a1)
...

∂(an)

=

 a11 . . . a1n
... . . . ...

an1 . . . ann

 ·
 a1

...
an



So, to find m ∈M such that ∂(m) = 0 is equivalent to finding a1, . . . ,an ∈ K satisfying (7).
To introduce notation, if

∂

 a1
...

an

=

 ∂(a1)
...

∂(an)

 ,

we can rewrite (7) as

(8) ∂(Y ) = AY.

Now, let { f1, . . . , fn} be another basis of M with

(e1, . . . ,en) = ( f1, . . . , fn)B

for some change of basis matrix B ∈ GLn(K). So, m = ∑i bi fi and

 b1
...

bn

= B ·

 a1
...

an


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Then, (8) will transform into a new differential equation:

∂

 b1
...

bn

= ∂(B

 a1
...

an

) = ∂(B) ·

 a1
...

an

+B∂

 a1
...

an


= ∂(B)B−1

 b1
...

bn

+BA

 a1
...

an


= ∂(B)B−1

 b1
...

bn

+BAB−1

 b1
...

bn


= (BAB−1 +∂(B)B−1)

 b1
...

bn


So, (8) becomes:

(9) ∂(Y ) = (BAB−1 +∂(B)B−1)Y.

Definition 5.2. The transformation from (8) to (9) is called a gauge transformation, and (8)
and (9) are said to be gauge equivalent (their solutions differ by an invertible matrix).

(Second View) In the first part we were given a differential module and produced a differential equation.
Now, given a differential equation ∂(Y ) = AY, A ∈Mn(K), we will produce a differential
module.

Let M = Kn and {e1, . . . ,en} be the standard basis (Recall, the vector ei in the standard
basis has a 1 in the ith spot and zeros elsewhere). Define ∂(ei) as we did in (5) and extend
this to a derivation on M by

∂(aei) = ∂(a)ei +a∂(ei)

for all a ∈ K.

Exercise 20. Show that the construction in the Second View is well defined.

(Third View) The third view discusses our usual notion of scalar differential equations. Let a0, . . . ,an−1 ∈
K. The equation

(10) y(n)+an−1y(n−1)+ . . .+a1y′+a0y = 0

is a homogeneous scalar linear differential equation of order n.

Example 5.2. (a) y′′− xy = 0, called the Airy Equation.
(b) y′− y = 0, of which we know the exp function satisfies.
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From (10), we wish to construct something similar to (8). To start, let

y1 = y
y2 = y′

...
yn = y(n−1)

⇒

∂(y1) = y2
∂(y2) = y3

...
∂(yn−1) = yn

∂(yn) =−an−1yn− . . .−a0y1

From this change of variables, we get:

(11) ∂

 y1
...

yn

=


0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . . . . 0 1
−a0 −a1 . . . −an−2 −an−1


 y1

...
yn

 .

In (11), the matrix is called the companion matrix of (10).

Example 5.3. The companion matrix of the Airy Equation in (5.2) is(
0 1
x 0

)
.

Now, to go from a system to a scalar equation we introduce the cyclic vector method.

Definition 5.3. Given a differential module M, a vector e ∈M is called cyclic if

span(e,∂(e), . . . ,∂p(e)) = M

for some p.

Lemma 5.1. If there exists a ∈ K such that ∂(a) 6= 0, then M has a cyclic vector.

Suppose now that we are given ∂(Y ) = AY such that the corresponding differential module
has a cyclic vector e. Then, {e,∂(e), . . . ,∂(n−1)(e)} is a basis of M.

Exercise 21. Prove the above statement (i.e., why can we remove ∂n(e) through ∂p(e) when
there may be other ∂i for 1≤ i≤ n−1 that we should have removed to make the set linearly
independent).

Using this basis, we obtain a matrix:

∂(e) = 1 ·∂(e)
...

∂(∂n−2(e)) = 1 ·∂n−1(e)
∂(∂n−1(e)) = a0e+ . . .+an−1∂n−1(e)

yields matrix⇒


0 0 0 . . . −a0
−1 0 0 . . . −a1
0 −1 0 . . . −a2
. . . . . . . . . . . . . . .
0 . . . . . . −1 −an−1


By changing the basis to f1 = e, f2 = ∂(e), f3 = ∂2(e), f4 = ∂3(e), etc.

Definition 5.4. y ∈ Kn is called a solution of ∂(Y ) = AY if ∂(y) = Ay for some A ∈Mn(K).

Lemma 5.2. Let v1, . . . ,vm be solutions of (8). Then v1, . . . ,vm are linearly independent over
K ⇐⇒ v1, . . . ,vm are linearly independent over K∆ = {c ∈ K |∂(c) = 0}.
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Proof. (⇒) should be clear.
(⇐) Let v1, . . . ,vm be linearly dependent over K. We will show that they are linearly dependent

over K∆. By induction, we may assume that {v2, . . . ,vm} are linearly independent (otherwise,
they would be linearly dependent over K∆ by inductive assumption, implying that {v1, . . . ,vm} are
linearly dependent over K∆). Then, there exist unique a2, . . . ,am ∈ K such that

v1 =
m

∑
i=2

aivi.

We then have the following:

0 = ∂(0) = ∂(v1−
m

∑
i=2

aivi)

= ∂(v1)−
m

∑
i=2

∂(ai)vi−
m

∑
i=2

ai∂(vi)

= Av1−
m

∑
i=2

∂(ai)vi−
m

∑
i=2

aiAvi

= Av1−
m

∑
i=2

∂(ai)vi−A
m

∑
i=2

aivi

= Av1−
m

∑
i=2

∂(ai)vi−Av1

=−
m

∑
i=2

∂(ai)vi,

and by the inductive hypothesis, v2, . . . ,vm are linearly independent, implying that ∂(ai) = 0 for
1≤ i≤ m, implying that a2, . . . ,am ∈ K∆. Therefore, a nontrivial linear combination 1v1−a2v2−
. . .−amvm = 0, and v1, . . . ,vm are linearly dependent. �

Definition 5.5. Given ∂(Y ) = AY , the solution space is

V = {v ∈ Kn |∂(v) = Av}.

Corollary 5.1. V is a vector space over K∆ with dimK∆V ≤ n.

The proof of this will be left as an exercise. Also, in Galois Theory of Linear Differential
Equations written by Singer and Van der Put, do all exercises in section 1.14. An inhomogeneous
differential equation is one of the form:

y(n)+an−1y(n−1)+ . . .+a1y′+a0y = b.

To make this homogeneous one can divide by b and differentiate the above.

5.2. Picard-Vessiot Theory. Unless otherwise noted, K∆ is algebraically closed.

Definition 5.6. A differential ring R is called a Picard-Vessiot (PV) ring of ∂(Y ) = AY over K if:
(1) R is a simple differential ring, i.e., there are no nonzero proper differential ideals.
(2) There exists Z ∈ GLn(R) such that ∂(Z) = AZ.
(3) R is generated over K as a K−algebra by the entries of Z and 1/detZ.

31



Definition 5.7. Quot(R) is called a Picard-Vessiot extension of K for ∂(Y ) = AY .

Definition 5.8. The Differential Galois Group of ∂(Y ) = AY with a chosen PV extension L is

G = {σ : L→ L}

such that:
(1) σ is an automorphism,
(2) σ(a) = a for all a ∈ K,
(3) σ(∂(b)) = ∂(σ(b)) for all b ∈ L.

5.3. Existence of PV Rings. Let K be an ordinary differential field of characteristic 0, and let
C = K∂ be an algebraically closed field.

Proposition 5.1. Let R be a simple differential ring that is a finitely generated K−algebra. Then R
is an integral domain and, for L = Quot(R), we have L∂ =C.

Proof. First, we will show that, if a 6= 0 ∈ R is not nilpotent, then a is not a zero divisor. Let
I = {b ∈ R | there exists n with anb = 0}. I is a differential ideal. Indeed, for b1,b2 ∈ I,

an1b1 = 0 and an2b2 = 0⇒ an1b1 +an2b2 = 0,

which further implies that

amax(n1,n2)(b1 +b2) = 0,

so b1 +b2 ∈ I. rb ∈ I as well for all r ∈ R since, if anb = 0, then anrb = 0. Furthermore,

0′ = (anb)′ = nan−1a′b+anb′,

and multiplying by a we get an+1b′ = 0. Hence, I is a differential ideal. By assumption, R is simple,
so I = R or I = (0). If I = R, then, more specifically, each a ∈ R is nilpotent if we choose b = 1.
This contradicts our assumption, and therefore I = (0) and a is not a zero divisor.

Now, we will show that there are no nilpotent elements in R. Let J = {a ∈ R |a is nilpotent}. J is
a differential ideal (Show this!). Again, R is simple, and since 1 /∈ J, we have J = (0).

We will now show that L∂ = C. Let a ∈ L such that a′ = 0. First we show that a ∈ R. Let
a= {b ∈ R |ba ∈ R}, which is a differential ideal. Indeed, for b1,b2 ∈ a, we have

b1a+b2a = (b1 +b2)a ∈ R

and rb1a ∈ R for all r ∈ R, showing that b1 +b2 and rb1 are contained in a. Moreover,

(b1a)′ = b′1a+b1a′ = b′1a+0 = b′1a ∈ R,

which implies that b′1 ∈ a. Again, R is a simple ring, and a 6= (0), so 1 ∈ a⇒ a ∈ R. Now suppose
a ∈ L∂ but a /∈C. For every c ∈C, consider the ideal (a− c)⊂ R. This is a differential ideal, and
since a 6= c, (a− c) 6= (0). Since R is simple, we have, therefore, 1 ∈ (a− c). In particular, a− c is
invertible in R. We now state a lemma of which proof will be given later:

Lemma 5.3. Let an integral domain R be a finitely generated k−algebra for any general field k.
Let x ∈ R be such that S = {c ∈ k |x− c is invertible} is infinite. Then x is algebraic over k.
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Using Lemma (5.3), we have that a is algebraic over K. Let p ∈ K[x] be the minimal polynomial
of a over K, i.e., p = xn +an−1xn−1 + . . .+a0. So,

an +an−1an−1 + . . .+a0 = 0⇒ a′n−1an−1 + . . .+a′0 = 0,

further implying that all a′i = 0 or deg(p′)< deg(p). Since p is minimal, we have that all a′i = 0
and a is algebraic over C. Since, by assumption, C is algebraically closed, we have a ∈C. �

Proof (Of Lemma (5.3). Let x be transcendental over k. Let R = k[x1, . . . ,xn], xi ∈ R, and x1 = x
with x1, . . . ,xp a transcendence basis of F = k(x1, . . . ,xn) over k. By the [algebraic] primitive
element theorem, there exists y ∈ F such that F = k(x1, . . . ,xp,y) with y algebraic over k(x1, . . . ,xp).
Let P ∈ k(x1, . . . ,xp)[X ] be the minimal polynomial of y over k(x1, . . . ,xp). Then, there ex-
ists G ∈ k[x1, . . . ,xp] such that G is divisible by all the denominators of P and xp+1, . . . ,xn ∈
k[x1, . . . ,xp,y,G−1]. In particular,

R⊂ k[x1, . . . ,xp,y,G−1].

Since S is infinite, there exist c1, . . . ,cp ∈ S such that G(c1, . . . ,cp) 6= 0.Then, there exists a
k−algebra homomorphism

k[x1, . . . ,xp,y,G−1]→ Falg,

the algebraic closure of F , such that xi 7→ ci, fixing R pointwise. However, x1− c1 is invertible in R,
contradicition. �

5.4. Construction and Uniqueness of a PV Extension. Given A ∈Mn(K) and Y ′ = AY , consider
R1 = K[x11, . . . ,xnn,

1
det(xi j)

].

Example 5.4. For n = 1, we get R1 = K[x11,
1

x11
]. For n = 2, we get

R1 = K[x11,x12,x21,x22,1/(x11x22− x12x21)].

Define ∂ on R1 by ∂((xi j)) = A(xi j). Let I be a maximal differential ideal of R1 and let R = R1/I,
which is a simple differential ring, and let Z ∈ GLn(R) = π((xi j)) where π is the projection
π : R1 → R1/I. Thus, R is a PV ring of Y ′ = AY over K. Therefore, PV extensions always
exist for Y ′ = AY with the given conditions.

To show uniqueness, Let R be a differential K−algebra and Z1,Z2 ∈GLn(R) be such that Z′1 =AZ1
and Z′2 = AZ2. A simple calculation shows:

(Z−1
2 Z1)

′ = Z−1
2 AZ1 +(Z−1

2 )′Z1 = Z−1
2 AZ1−Z−1

2 Z′2Z−1
2 Z1 = Z−1

2 AZ1−Z−1
2 AZ1 = 0,

which implies that Z−1
2 Z1 = c for some constant c, so Z1 = Z2c.

Proposition 5.2. Let R1 and R2 be PV rings of Y ′ = AY over K. Then, R1 and R2 are isomorphic as
differential K−algebras (K∂ is assumed to be algebraically closed).

Proof. Let R3 = (R1⊗K R2)
/

I, where I is a maximal differential ideal of R1⊗K R2, and (r1⊗ r2)
′ =

r′1⊗ r2 + r1⊗ r′2 (check that this is well defined). The maps

ϕ1 : R1→ R3, r1 7→ r1⊗1+ I

and
ϕ2 : R2→ R3, r2 7→ 1⊗ r2 + I
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are differential K-algebra homomorphisms (check this!). Since Kerϕi is a differential ideal of Ri,
1 6∈ Kerφi, Kerϕi = (0), and Ri ∼= ϕi(Ri) as differential K−algebras for i = 1,2. We will now show
that ϕ1(R1) = ϕ2(R2).

Let Z1 ∈ GLn(R1) and Z2 ∈ GLn(R2) be fundamental solution matrices of Y ′ = AY . Since ϕi is a
differential homomorphism, we have:

(ϕi(Zi))
′ = Aϕi(Zi).

Moreover, ϕi(Zi) ∈ GLn(R3). Therefore, there exists B ∈ GLn(R∂
3) such that ϕ1(Z1) = ϕ2(Z2)B.

Since K∂ is algebraically closed, R∂
3 = K∂. Therefore, B ∈GLn(K∂). Since ϕi is a K−algebra homo-

morphism, ϕ1(Z1)=ϕ2(Z2B). We know that ϕ1(detZ1)= detϕ1(Z1)= detϕ2(Z2B)= det(ϕ2(Z2)) ·
detB, so ϕ1(1/detZ1) = 1/detϕ1(Z1) = 1/(detB · ϕ2(detZ2)) = ϕ2(1/(detB · detZ2)) ∈ ϕ2(R2).
Since ϕ1(R1) is generated by ϕ1(Z1) and φ1(1/detZ1) over K, we have ϕ1(R1)⊂ ϕ2(R2). Similarly,
ϕ2(R2)⊂ ϕ1(R1). Thus, ϕ1(R1) = ϕ2(R2). �

Example 5.5. Consider the case of one equation. Let K be a ordinary differential field of character-
istic 0, a ∈ K, and y′ = ay. We have two cases:

(1) If b ∈ K and there exists n ∈ {1,2, . . .} such that b′ = nab, then b = 0.

Let R = K[x, 1
x ] where x′ := ax. We will show that R is a simple differential ring. Let

I ⊂ R be a maximal differential ideal. Then, there exists p ∈ K[x] such that I = (p),

p = xm +am−1xm−1 + . . .+a1x+a0,

where ai ∈ K, 0≤ i≤ m−1. p′ ∈ I where

p′ = maxm +
(
(m−1)aam−1 +a′m−1

)
xm−1 + . . .+(a′1 +a)x+a′0.

Since deg(ma · p− p′)< deg(p),

ma · p− p′ = 0.

Therefore,
ma ·a0 = a′0⇒ a0 = 0.

However, I is a maximal differential ideal, implying I is a prime ideal, but p is reducible,
contradiction.

(2) There exists b 6= 0 ∈ K such that there exists n≥ 1 such that b′ = nab. Let n≥ 1 be minimal
such that b′ = nab. let f = xn−b and I = ( f ) ⊂ R1 = K[x, 1

x ] where, again, x′ := ax. We
have:

f ′ = naxn−b′ = naxn−nab = na(xn−b) ∈ I,

implying that I is a differential ideal. Further, I is maximal. Indeed, let J ) I where J ⊂ R is
a differential ideal. Let J = (g). This means that:

g = xm +am−1xm−1 + . . .+a1x+a0

for m < n. Since J is a differential ideal, g′ ∈ J where

g′ = maxm + . . .+a′0⇒ ma ·g−g = 0⇒ ma ·a0 = a′0.
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However, m < n, contradiction. Therefore,

Quot(R1/I) = K[x]/(xn−b).

5.5. Galois Group and its Properties. Let R be a PV ring of Y ′= AY over K with K∂ algebraically
closed. Let L = Quot(R), and let σ ∈G =Galois Group. Let Z ∈GLn(R) be a fundamental solution
matrix. In particular, Z′ = AZ. Apply σ to Z:

(σ(Z))′ = σ(Z′) = σ(AZ) = σ(A)σ(Z) = Aσ(Z).

Moreover, since Z is invertible, σ(Z) is invertible, and we have that σ(Z) is a fundamental solution
matrix of Y ′ = AY . Hence, there exists Bσ ∈ GLn(K∂) such that σ(Z) = Z ·Bσ. We therefore have a
map:

ρ : G→ GLn(K∂), ρ : σ 7→ Bσ.

Exercise 22. Prove ρ is an injective group homomorphism, and therefore ρ(G)∼= G.

Theorem 5.1 (The Fundamental Theorem of Differential Galois Theory). Let K be a differential
field such that K∂ =C is algebraically closed. Let A ∈Mn(K) and L be a Picard-Vessiot extension
for Y ′ = AY over K. Let G be the differential Galois group of L over K. The fixed field of G, denoted
by LG, is defined by

LG = {a ∈ L |σ(a) = a∀σ ∈ G}.
Then, LG = K.

Proof. Let a
b ∈ L/K, that is, a 6= c · b for all c ∈ K and b 6= c · a for all c ∈ K. Therefore, the set

{a,b} is linearly independent over K. In particular, a,b 6= 0.

Consider d = a⊗b−b⊗a ∈ R⊗K R, where R is a PV ring (recall, L = Quot(R)). Since R is an
integral domain, R has no nilpotent elements.

Claim. R⊗K R has no nilpotent elements.

Indeed, let α ∈ R⊗K R such that α 6= 0 and α is nilpotent. As a PV ring, R is finitely generated
over K. Since R is a vector space over K, we may choose a basis {ei}∞

i=1 of R over K. Then, there
exist {ai}∞

i=1 ⊂ R with finitely many nonzero elements such that

α =
∞

∑
i=1

ai⊗ ei

that is a finite sum. Since α 6= 0, there exists some j such that a j 6= 0. Since a j is not nilpotent, there
exists a maximal ideal m⊂ R with a j /∈m (show this!). Therefore, the image of α under the map

R⊗K R−→ R/m⊗K R

is nonzero and nilpotent. Since m is maximal, F = R/m is a field. By the Nullstellensatz, F is an
algebraic field extension over K. Since R is finitely generated over K, this is a finite extension of K.

Repeating the same arguement, we may assume that we started at the beginning with R being a
finite field extension of K, that is, F = K[x]/(p) where p is an irreducible polynomial. Therefore,

F⊗K F ∼= F⊗K K[x]/(p)∼= F [x]/(p)F [x]

which has no nilpotent elements (show this!), thus ending the claim.
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Continuing the proof, we have d = 0 or d is not nilpotent. However, d 6= 0 since, if V and W are
vector spaces over K and v1, . . . ,vn ∈V are linearly independent over K, and w1, . . . ,wn ∈W , then,
if,

v1⊗w1 + . . .+ vn⊗wn = 0 ∈V ⊗K W,

then w1 = . . .= wn = 0. Thus, d 6= 0 and therefore d is not nilpotent. Now, consider the differential
ring R⊗R[1/d] and let M be a maximal differential ideal. Let

S = (R⊗K R[1/d])/M.

As before (see Proposition 5.2), consider the differential K-algebra homomorphisms:

ϕ1 : R−→ S, r 7→ r̄⊗1
ϕ2 : R−→ S, r 7→ 1⊗ r̄.

Since R is a simple differential ring, both ϕi are injective. Since S is a simple differential ring
and a finitely generated K-algebra, and since K∂ is algebraically closed, S∂ = C = K∂. As in
Proposition 5.2, ϕ1(R) = ϕ2(R). Therefore ϕ

−1
2 ◦ϕ1 is a differential automorphism of R. Therefore,

there exists σ ∈ G such that ϕ1 = ϕ2 ◦σ. We will show that

σ(
a
b
) 6= a

b
.

For this, notice that the image d̄ of d in S is not 0. On the other hand, since

d = a⊗b−b⊗a = (a⊗1)(1⊗b)− (b⊗1)(1⊗a),

we have
d̄ = ϕ1(a)ϕ2(b)−ϕ1(b)ϕ2(a) 6= 0.

Since ϕ1 = ϕ2 ◦σ, this implies that

d̄ = ϕ2(σ(a)) ·ϕ2(b)−ϕ2(σ(b)) ·ϕ2(a)

= ϕ2(σ(a) ·b)−ϕ2(σ(b) ·a)
= ϕ2(σ(a)b−σ(b)a)

⇒ σ(a)b−σ(b)a 6= 0.

Dividing the last equations, we get σ(a)
σ(b) 6=

a
b , thus completing the proof. �

6. LINEAR ALGEBRAIC GROUPS

Definition 6.1. An affine algebraic group G is:
(1) A group, with binary operation m : G×G→ G, an identity e, and inverse i : G→ G, and
(2) an affine variety such that m and i are morphisms of affine varieties.

Example 6.1. C is an algebraic group with respect to +, where + : C×C→ C sending (a,b) 7→
a+b for all a,b ∈ C. More generally, given an algebraically closed field C (we will try to remain in
the case of charC = 0), we define

Ga(C) := (C,+,0),
the additive group of C.

Definition 6.2. An algebraic subgroup of an affine algebraic group is a subgroup and a subvariety.
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Example 6.2. Continuing Example 6.1, we want to find the subgroups of Ga(C) (recall that the
coordinate ring of Ga(C) is C[x]).

(1) We have {0}, given by the polynomial x = 0, and
(2) Z.

Only the first of these two subgroups is an algebraic subgroup, and, as a matter of fact, {0} is the
only proper algebraic subgroup of Ga(C), as every non-zero subgroup of (C,+,0) is infinite, and
every proper subvariety of C is finite.

Example 6.3. Let C be algebraically closed (charC = 0). Define

Gm(C) = (C∗, ·,1) = {(x,y) ∈C2|xy = 1}
This is a group. Indeed, with operation defined by (x1,y1)(x2,y2) = (x1x2,y1y2), Gm(C) is a group
with identity (1,1) and inverse (x,y)−1 = (y,x).

Example 6.4. Consider the group GLn(C), which the set of invertible n× n matrices. We can
identify this with an algebraic subgroup of (n+1)× (n+1) matrices via

{
(

A 0
0 a

)
|det(A)a = 1}

Definition 6.3. An algebraic subgroup of GLn(C) is called a linear algebraic group.

Examples of linear algebraic groups are GLn(C) and SLn(C).

Theorem 6.1. For every affine algebraic group G, there exists an imbedding ρ into GLn with ρ(G)
being an algebraic subgroup.

Let G be an algebraic group such that G = G1∪ . . .∪Gm, a disjoint union, where each Gi is an
irreducible variety. The connected component (or irreducible component) of G containing e is called
the identity component of G, denoted G0. Moreover, G0 is a normal subgroup of G, and G/G0 is
finite.

Hopf algebras appear by taking the duals to the group multiplication (G×G→ G), inverse
(G→ G), and the inclusion of the identity element into the group ({e} ↪→ G):

Definition 6.4. A Hopf Algebra A over C is a commutative, associative algebra with 1, and C-algebra
homomorphisms:

(a) ∆ : A→ A⊗C A, called comultiplication,
(b) S : A→ A, called coinverse, and
(c) E : A→C, called counit,

such that

(∆⊗id)◦∆=(id⊗∆)◦∆, m◦(S⊗id)◦∆=m◦(id⊗S)◦∆=E, (E⊗id)◦∆=(id⊗E)◦∆= id,

where m : A⊗C A→ A is the multiplication homomorphism.

Example 6.5. Let G =Gm. Its coordinate ring is A =C[x,y]/(xy−1) =C[x,1/x]. For comultipli-
cation, define

∆ : C[x,1/x] = A→ A⊗C A =C[x,1/x]⊗C C[x,1/x]
where

∆(d) = ∑ei⊗di, d ∈ A,
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such that ∆ = m∗. Now, we have a map m : Gm×Gm→Gm given by (a,b) 7→ ab for all a,b ∈C∗.
Now, we construct ∆ for all d ∈ A by

∆(d)(a,b) = m∗(d)(a,b) = d(m(a,b)) = d(ab),

that is,
d(ab) = ∑ei(a) · fi(b)

for all a,b ∈C∗. For d = x, we get x(ab) = ab, so ∆(x) = x⊗ x. For d = 1
x ,

1
x
(a,b) =

1
ab
⇒ ∆(

1
x
) =

1
x
⊗ 1

x
.

For the coinverse, take S : A→ A defined by S(d)(a) = d(1
a). To check this, notice that S(x)(a) =

x(1
a) =

1
a , and we see that

S(x) =
1
x
.

For the counit, define E : A→C by
E(d) = d(1).

Example 6.6. Let G =Ga. Its coordinate ring is given by A =C[x]. For comultiplication, define
d(m(a,b)) = d(a,b), where d(m(a,b)) = ∑ei(a) · fi(b). We get

∆(x) = x⊗1+1⊗ x.

For coinverse, S(d)(a) = d(−a). To check, for d = x,

S(x)(a) = x(−a) =−a⇒ S(x) =−x.

For counit, define
E(d) = d(0).

Exercise 23. Find ∆,S,E for G = GLn. Hint: they will look like formulae for matrix multiplication
and inverse, but with ⊗ inserted somewhere.

Theorem 6.2 (Cartier). Let A be a Hopf Algebra, charC = 0. Then A is reduced.

Theorem 6.3. Let K have charK = 0, K∂ = C be algebraically closed. Let Y ′ = AY , where
A ∈Mn(K), and L⊃ K is a PV extension of K for Y ′ = AY . Then the differential Galois group is a
linear algebraic group.

Proof. Consider K[Xi j,1/det], X ′i j = AXi j. Let M be a maximal differential ideal, and let

R = K[Xi j,1/det]/M.

Define C[Yi j,1/det] = B with the zero derivation. Let

R′ := K[Xi j,1/det]⊗C B.

Let M = ( f1, . . . , fm). R is a C-vector space with basis {eα}. Let g : R′ → R′ be the B-algebra
homomorphism induced by

g(Xi j) = (Xi j)(Yi j).
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For all fi, there exists cαi ∈ B such that

g( fi) = ∑eα⊗ cαi mod M⊗C B.

We claim that I = (cαi)⊂ B is the defining ideal. Recall that the Galois group consists of differential
automorphisms of R→ R preserving K pointwise. Moreover, G is identified with n×n matrices via

σ 7→ cσ ∈ GLn(C)

with σ ∈ G such that the homomorphism induced by

(Xi j) 7→ (Xi j)cσ

maps M into itself.
Now let A = B/I. Let H = Hom(A,C), and let cσ be such that (Xi j) 7→ (Xi j)cσ maps M into

itself, implying that σ( fi) = 0 mod M for all i⇒ cαi(cσ) = 0⇒ f (cσ) = 0 for all f ∈ I; and vice
versa. By the above, H is a group. Therefore, A is a Hopf Algebra, implying that it is reduced by
Theorem 6.2. �

Example 6.7. Consider y′ = ay over K. We know from Example 5.5 that either R = K[x] given by
x′ = ax, or R = K[x]/(xn−b) for b ∈ K. In the first case, M = (0)⇒ bi j = 0⇒ B =C[y, 1

y ]⇒ G =

Gm(C). In the second case,

M = (xn−b) = f1⇒ σ( f1) = (xy)n−b = xnyn−b mod M ≡ byn−b = b(yn−1).

Since b 6= 1, let e1 = 1,e2 = b, . . .⇒ b11 = 0,b21 = yn− 1, . . . ,bi1 = 0⇒ G has coordinate ring
C[y]/(yn−1).

Theorem 6.4. Let L be a PV extension of K and G⊂GLn(K∂) be the differential Galois group of L
over K. Then dimC(G) = trdegK(L).

6.1. Galois Correspondence. Let charK = 0, K∂ =C is algebraically closed. Let A ∈Mn(K), and
let L⊃ K be a PV extension and let G be the Galois group. Let G = {algebraic subgroups of G},
F = {all intermediate subfields of L containing K}. The correspondence

(1)
G ←→ F

given by
H 7−→ LH ,

where LH = {a ∈ L|g(a) = a,∀g ∈ H} and

F 7−→ Gal(L/F)⊂ G,

is a bijection.
(2) H is normal ⇐⇒ LH is invariant as a set under G. In this case, LH/K is a PV extension,

and G/H is the Galois group of LH over K.
(3) LG0

is a finite extension of K, so by (2), G/G0 is the Galois group.

Exercise 24. Prove that, if, in the preceding theorem, LH/K is a PV extension then LH is G invariant
as a set.
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7. LIOUVILLIAN EXTENSIONS

Definition 7.1. A differential field extension L/K is called Liouvillian if there exists K = L0 ⊂
L1 ⊂ . . .⊂ Ln = L, where Li = Li−1(ti) such that either:

(1) ti is algebraic over Li−1,
(2) t ′i ∈ Li−1 (that is, “ti =

∫
a,a ∈ Li−1”) , or

(3) t ′i/ti ∈ Li−1 (i.e., t ′i = ati,a ∈ Li−1; “ti = e
∫

a”).

Theorem 7.1. Let L/K be a PV extension of Y ′ = AY with Galois group G. Then L is Liouvillian
⇐⇒ G0 is solvable.

7.1. Kovacic’s Algorithm. As an example, consider y′′+ r1y′+ r2y = 0. Substituting y = ze−
1
2
∫

r1 ,
we get a new equation:

z′′ = rz,
where r = 1

4r2
1 +

1
2r′1− r2. The algorithm starts with an equation of the form z′′ = rz and computes

from there.

Exercise 25. The Galois group of z′′ = rz is a subgroup of SL2.

7.1.1. Airy Equation. r = x,K = C(x). The Airy equation is

(12) y′′ = xy.

We will show that the Galois group of (12) is SL2.

Theorem 7.2. If G⊂ GLn is a linear algebraic group with G0 solvable. Then either G is finite, or
G0 is diagonalizable and [G : G0] = 2, or G can be put simultaneously to an upper-triangular form.

Theorem 7.3. Consider a general y′′ = ry,r ∈ K. Let its PV extension be Liouvillian and not finite.
Then the Riccati equation u′ = u2− r has a solution in a quadratic extension of K or in K.

Proof. L is not finite, so by 7.2, there exists a quadratic extension F ⊃ K such that Gal(L/F) can be
put into an upper triangular form. This means that there exists y ∈ L such that for all g ∈ Gal(L/F),
g(y) = yCg. Then, let u = y′

y , and we have g(u) = g(y′)
g(y) = y′

y ∈ F . Then, −y′
y satisfies u′ = u2− r.

Indeed, (
−y′

y

)′
=−yy′′− (y′)2

y2 =−ry2− (y′)2

y2 =−r+
(y′)2

y2 ,

and

−
(

y′

y

)′
=

(y′)2

y2 − r.

�

An observation can be made here. If G ( SL2 is an algebraic subgroup, this implies first that G0

is solvable. It also implies that, for the Airy equation, if G 6= SL2, it is Liouvillian. Now why is it
not finite? From differential equations, y′′ = xy implies that y is defined over C. If the PV extension
L for y′′ = xy were finite, y would be algebraic over C(x). From complex analysis we know that this
implies that y is a polynomial, but y′′ = xy has no polynomial solutions other than 0. This implies
that u′ = u2− x has a solution in a quadratic extension of C(x).

Lemma 7.1. If u′ = u2− r and u2 +a1u+a2 = 0 then a′′1 +3a1a′1 +a3
1−4a1r−2r′ = 0.
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To finish with the Airy equation, one plugs r = x and arrives at a contradiction via a partial
fraction decompisition of a1. The rest of the details are in Kaplansky. Read Kovacic’s algorithm
from his 1986 paper.
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