Differential transcendence and difference equations

Thomas Dreyfus \(^1\)
Joint work with Boris Adamczewski \(^2\)
and Charlotte Hardouin \(^3\)

\(^1\)CNRS, Strasbourg University, France
\(^2\)Lyon 1 University, France
\(^3\)Toulouse 3 University, France
Classification of numbers vs functions

\[\mathbb{Q} \leftrightarrow \mathbb{C}(z) \]

\[\mathbb{Q} \leftrightarrow \mathbb{C}(z) \cap \text{holonomic} \]

\[\mathbb{Q} \leftrightarrow \mathbb{C}(z) \cap \text{differentially algebraic} \]

\[\mathbb{C} \leftrightarrow \mathbb{C}((z^{1/\ell})) = \bigcup_{\ell=1}^{\infty} \mathbb{C}((z^{1/\ell})) \]
Classification of functions

• We say that $f \in \overline{\mathbb{C}(z)}$ if $\exists 0 \neq P \in \mathbb{C}(z)[X]$ such that

$$P(f) = 0.$$

Example: $z^{1/2}$

• We say that f is holonomic if $\exists c_0, \ldots, c_n \in \mathbb{C}(z), c_n \neq 0$, such that

$$c_0 f + \cdots + c_n \partial^n_z(f) = 0.$$

Example: $\exp(z), \log(z), \ldots$

• We say that f is differentially algebraic if $\exists n \in \mathbb{N}$, $0 \neq P \in \mathbb{C}(z)[X_0, \ldots, X_n]$, such that

$$P(f, \ldots, \partial^n_z(f)) = 0.$$

Example: $\wp(z)$, some walks in the quarter plane

• We say that f is differentially transcendental otherwise

Example: $\Gamma(z), \zeta(z)$
Some functions are differentially transcendental, for instance:

- $\Gamma(z)$;
- $f_1(z) := \sum_{n=0}^{\infty} \frac{(1-a)^2(1-aq)^2\cdots(1-aq^{n-1})^2}{(1-q)^2(1-q^2)^2\cdots(1-q^n)^2} z^n$, where $q \in \mathbb{C}^*$ is not a root of unity, $a \not\in q^{\mathbb{Z}}$ and $a^2 \in q^{\mathbb{Z}}$;
- $f_2(z) = \sum_{n \geq 0} z^{2n}$.

They are solutions of difference equations $\Gamma(z + 1) = z\Gamma(z)$, $f_2(z^2) = f_2(z) - z$, and

$$f_1(q^2 z) - \frac{2az - 2}{a^2 z - 1} f_1(qz) + \frac{z - 1}{a^2 z - 1} f_1(z) = 0.$$
Differential algebraicity and difference equations

On the other hand, there are differentially algebraic functions solutions of difference equations:

- $\exp(z)$, solution of $\exp(z + 1) = e \exp(z)$;
- $\theta_q(z) = \sum_{n \in \mathbb{Z}} q^{-n(n-1)/2} z^n$, solution of $\theta_q(qz) = z \theta_q(z)$;
- $\log(z)$, solution of $\log(z^2) = 2 \log(z)$.
Let \(y \in F \), solution of

\[
a_0 y + a_1 \rho(y) + \cdots + \rho^n(y) = 0, \quad a_i \in \mathbb{C}(z). \tag{E}
\]

Case S
\(F = \mathbb{C}((z^{-1})) \),
\(\rho : y(z) \mapsto y(z + h), \ h \in \mathbb{C}^* \).

Case Q
\(F = \mathbb{C}((z^{1/\ast})) \),
\(\rho : y(z) \mapsto y(qz), \ q \in \mathbb{C}^*, \text{ not a root of unity} \).

Case M
\(F = \mathbb{C}((z^{1/\ast})) \),
\(\rho : y(z) \mapsto y(z^p), \ p \in \mathbb{N}_{\geq 2} \).
Let $y \in F$, solution of

$$a_0 y + a_1 \rho(y) + \cdots + \rho^n(y) = 0.$$ \hfill (E)

Theorem

If y is holonomic, then $y \in \mathbb{C}(z)$.

\rightarrow Case S: Schäfke/Singer, Case Q Ramis, Case M, Bézivin
\rightarrow See also Bézivin/Gramain
Let $y \in F$, solution of

$$\rho(y) = ay + b, \quad a, b \in \mathbb{C}(z).$$

Theorem

Either $y \in \mathbb{C}(z)$, either y is differentially transcendental.

→ *Case S: Adamczewski/D/Hardouin, Case Q Ishizaki, Case M, Randé*

→ *See also Hölder, Hardouin/Singer, Moore, Nishioka, Nguyen...*
Let $y \in F$, solution of

$$a_0 y + a_1 \rho(y) + \cdots + \rho^n(y) = 0. \quad (E)$$

Theorem

Assume that the difference Galois group of (E) contains $\text{SL}_n(\mathbb{C})$. Either $y = 0$, either y is differentially transcendental.

→ Case S: Arreche/Singer, Cases Q and M D/Hardouin/Roques

→ See also Arreche/D/Roques and Arreche/Singer
Let $y \in F$, solution of

$$a_0 y + a_1 \rho(y) + \cdots + \rho^n(y) = 0. \quad (E)$$

Theorem (Adamczewski/D/Hardouin)

Either $y \in \mathbb{C}(z)$, either y is differentially transcendental.
1 Difference Galois theory

2 Proof in the $n = 2$ case

3 Proof in the general case
Difference Galois theory
Let $0 \neq y \in F$, solution of

$$a_0 y + a_1 \rho(y) + \cdots + \rho^n(y) = 0, \quad (E)$$

with

$$a_i \in \mathbb{C}(z), \quad a_0 \neq 0.$$

Case S \hspace{1cm} K = \mathbb{C}(z), \ F = \mathbb{C}((z^{-1})),
\rho : y(z) \mapsto y(z + h), \ h \in \mathbb{C}^*.

Case Q \hspace{1cm} K = \mathbb{C}(z^{1/\ast}), \ F = \mathbb{C}((z^{1/\ast})),
\rho : y(z) \mapsto y(qz), \ q \in \mathbb{C}^*, \text{ not a root of unity.}

Case M \hspace{1cm} K = \mathbb{C}(z^{1/\ast}), \ F = \mathbb{C}((z^{1/\ast})),
\rho : y(z) \mapsto y(z^p), \ p \in \mathbb{N}_{\geq 2}.
Let us see (E) as a system:

\[
\rho(Y) = AY,
\]

\[
A = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1 \\
-a_0 & -a_1 & \cdots & \cdots & -a_{n-1}
\end{pmatrix}
\in \text{GL}_n(\mathbb{C}(z)).
\]

Proposition

There exists a unique ring extension \(R | K \), such that

- \(\exists U \in \text{GL}_n(R) \) such that \(\rho(U) = AU \).
- the first column of \(U \) is \((y, \ldots, \rho^{n-1}(y))\);
- \(R = K[U, \det(U)^{-1}] \);
- the only difference ideals of \(R \) are \((0)\) and \(R \).
Let

\[G = \{ \sigma \in \text{Aut}(R|K) \mid \sigma \rho = \rho \sigma \}. \]

Theorem

The image of

\[G \rightarrow \text{GL}_n(\mathbb{C}) \]
\[\sigma \mapsto U^{-1} \sigma(U), \]

is an algebraic subgroup of \(\text{GL}_n(\mathbb{C}) \).
A useful property

For $B, T \in \text{GL}_n(K)$, define

$$T[B] := \rho(T)BT^{-1}.$$

We have

$$\rho(Y) = BY \iff \rho(TY) = T[B]TY.$$

Theorem (van der Put/Singer)

- G/G° is cyclic, where G° is the identity component of G;
- $\exists T \in \text{GL}_n(K)$ such that $T[A] \in G(K)$.

Proof in the $n = 2$ case
Assume \(n = 2 \). Let \(G \subset \text{GL}_2(\mathbb{C}) \) be the Galois group. Then, either

- \(G \) is conjugated to a subgroup of \(\left(\begin{array}{cc}
\ast & \ast \\
0 & \ast
\end{array} \right) \),

- \(G \) is conjugated to a subgroup of \(\left(\begin{array}{cc}
\ast & 0 \\
0 & \ast
\end{array} \right) \cup \left(\begin{array}{cc}
0 & \ast \\
\ast & 0
\end{array} \right) \),

- \(G \) contains \(\text{SL}_2(\mathbb{C}) \).
Case 1

Assume that y is diff. alg. Then, $\exists T = (t_{i,j}) \in \text{GL}_2(K)$ such that

$$\rho(TU) = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} TU.$$

Let $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = T \begin{pmatrix} y \\ \rho(y) \end{pmatrix}$ be the first column of TU. Then

- $v_2 = t_{2,1}y + t_{2,2}\rho(y)$.
- $v_2 \in F$ is diff. alg.
- $\rho(v_2) = cv_2$.
- Order one case $\Rightarrow v_2 \in K$.
- Affine order one case $\Rightarrow y \in K$.
Assume that y is diff. alg. Then, $\exists T = (t_{i,j}) \in \text{GL}_2(K)$ such that

$$\rho(TU) = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} TU.$$

Let \(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = T \begin{pmatrix} y \\ \rho(y) \end{pmatrix} \) be the first column of TU. Then

- $v_1 \in F$ is diff. alg.
- $v_1 = t_{1,1}y + t_{1,2}\rho(y)$.
- $\rho^2(v_1) = b\rho(a)v_1$.
- Order one case with ρ^2 implies $v_1 \in K$.
- Affine order one case $\Rightarrow y \in K$.
Assume that G contains $SL_2(\mathbb{C})$.

By

- Arreche/Singer (Case S),
- D/Hardouin/Roques (Cases Q and M),

y is diff. tr.
Proof in the general case

The case $n = 1$ is

- Adamczewski/D/Hardouin, (Case S);
- Ishizaki (Case Q);
- Randé (case M).

From now, we assume $n \geq 2$.
Irreducibility of G

Definition

We say that $G \subset \text{GL}_n(\mathbb{C})$ is irreducible if it acts irreducibly on \mathbb{C}^n. We say that G is reducible otherwise.

Proposition

The following are equivalent:

- G is reducible.
- $\exists T \in \text{GL}_n(K), 0 < r < n, \text{ such that }$

$$T[A] = \begin{pmatrix} B_1 & B_2 \\ 0 & B_3 \end{pmatrix}, \quad B_1 \in \text{GL}_r(K).$$
Definition

When G is irreducible, we say that G is imprimitive if $\exists r \geq 2$, and V_1, \ldots, V_r, some \mathbb{C}-vector spaces satisfying

(i) $\mathbb{C}^n = V_1 \oplus \cdots \oplus V_r$.

(ii) $\forall g \in G$, the mapping $V_i \mapsto g(V_i)$ is a permutation of the set $\{V_1, \ldots, V_r\}$.

We say that G is primitive otherwise.

Lemma

If G is irreducible and connected then G is primitive.
For $\ell \geq 1$ let

$$A[\ell] = \rho^{\ell-1}(A) \times \cdots \times A.$$

Note that

$$\rho(Y) = AY \Rightarrow \rho^{\ell}(Y) = A[\ell]Y.$$

Lemma

There exist $\ell \geq 1$ and a ring extension $R|K$, such that

- $\exists U \in \mathbb{GL}_n(R)$ such that $\rho^{\ell}(U) = A[\ell]U$.
- the first column of U is $(y, \ldots, \rho^{n-1}(y))$;
- $R = K[U, \det(U)^{-1}]$;
- the only ρ^{ℓ} ideals of R are (0) and R.
- $G[\ell]$, the Galois group of $\rho^{\ell}(Y) = A[\ell]Y$ is connected.
Lemma (Singer/Ulmer)

If $G \subset SL_n(\mathbb{C})$ is irreducible and primitive, then G is semi simple.

Theorem (Arreche/Singer)

Assume that G is semi simple. Then, y is diff. tr.
Proof in the irreducible case

Let $\ell \geq 1$, such that $G[\ell]$ is connected.

Proposition (Adamczewski/D/Hardouin)

If $G[\ell]$ is irreducible, then y is differentially transcendental.

Sketch of proof.

$G[\ell]$ is primitive. If $G[\ell] \subset SL_n(\mathbb{C})$ then it is semi simple. If not, consider the system $\rho^\ell(Y) = \det(A[\ell])^{-1/n} A[\ell] Y$. Its Galois group is

- irreducible,
- primitive,
- inside $SL_n(\mathbb{C})$.

It is then semi simple. Semi simple implies y diff. tr.
Proof in the general case

Let us prove the result by an induction on n.

The case $n = 1$ is already treated.

Fix $n \geq 2$ and assume the result is proved for order r equations with $r < n$.

Consider an order n equation. Let $\ell \geq 1$, such that $G[\ell]$ is connected.

If $G[\ell] \subset \text{GL}_n(\mathbb{C})$ is irreducible, then y is diff. tr.
Assume that $G_{[\ell]}$ is reducible. Assume that y is diff. alg. and let us prove that $y \in K$.

Let $T \in \text{GL}_n(K)$, $0 < r < n$ minimal, such that

$$T[A_{[\ell]}] = \begin{pmatrix} B_1 & B_2 \\ 0 & B_3 \end{pmatrix}, \quad B_1 \in \text{GL}_r(K).$$

Then, TU is solution of

$$\rho^{\ell}(TU) = \begin{pmatrix} B_1 & B_2 \\ 0 & B_3 \end{pmatrix} TU.$$

Let $(v_1, \ldots, v_n)^\top = T(y, \ldots, \rho^{n-1}(y))^\top \in F^n$. Every v_i is diff alg.
Sketch of proof in the reducible case (2/3)

\[\rho^\ell(TU) = \begin{pmatrix} B_1 & B_2 \\ 0 & B_3 \end{pmatrix} TU. \]

Induction hypothesis \(\Rightarrow v_{r+1}, \ldots, v_n \in K. \)

Lemma

\(r = 1. \)

Sketch of proof.

- We have \(\rho(v_1, \ldots, v_r)^\top - B_1(v_1, \ldots, v_r)^\top \in K^r. \)
- \(v_1, \ldots, v_r \in F \) are diff. alg.
- Parametrized diff. Galois theory \(\Rightarrow \exists (w_1, \ldots, w_r)^\top \) diff. alg. such that \(\rho(w_1, \ldots, w_r)^\top = B_1(w_1, \ldots, w_r)^\top. \)
- The Galois group of \(\rho^\ell(Y) = B_1 Y \) is irreducible and connected.
- Irreducible case \(\Rightarrow r = 1. \)
Sketch of proof in the reducible case (3/3)\[\rho^\ell(TU) = \begin{pmatrix} B_1 & B_2 \\ 0 & B_3 \end{pmatrix} TU. \]

- Remind that \(v_2, \ldots, v_n \in K \) and \(B_1 \in \mathbb{C}^* \).
- Then, \(\rho^\ell(v_1) - B_1 v_1 \in K \).
- Affine order one case implies \(v_1 \in K \).
- Then, \(T^{-1}(v_1, \ldots, v_n)^\top = (y, \ldots, \rho^{n-1}(y))^\top \in K^n \). \(\square \)