CLUE: Exact maximal reduction of kinetic models by constrained lumping of differential equations

Alexey Ovchinnikov, Isabel Pérez Verona, Gleb Pogudin, Mirco Tribastone

Abstract

Detailed mechanistic models of biological processes can pose significant challenges for analysis and parameter estimations due to the large number of equations used to track the dynamics of all distinct configurations in which each involved biochemical species can be found. Model reduction can help tame such complexity by providing a lower-dimensional model in which each macro-variable can be directly related to the original variables.

We present CLUE, an algorithm for exact model reduction of systems of polynomial differential equations by constrained linear lumping. It computes the smallest dimensional reduction as a linear mapping of the state space such that the reduced model preserves the dynamics of user-specified linear combinations of the original variables. Even though CLUE works with nonlinear differential equations, it is based on linear algebra tools, which makes it applicable to high-dimensional models. Using case studies from the literature, we show how CLUE can substantially lower model dimensionality and help extract biologically intelligible insights from the reduction.

An implementation of the algorithm and relevant resources to replicate the experiments herein reported are freely available for download at https://github.com/pogudingleb/CLUE.

1 Introduction

Kinetic models of biochemical systems hold the promise of being able to unravel mechanistic insights in living cells as well as predict the behavior of a biological process under unseen circumstances, which is a fundamental premise for many applications including control and synthesis.

In order to obtain an accurate model, however, it is often necessary to incorporate a substantial amount of detail about the specific mechanisms of interaction between the different components of a biological system. In many cases, this may lead to an overall representation which hinders physical intelligibility. For example, a mechanistic description of protein phosphorylation—a basic, ubiquitous process in signaling pathways [Pawson and Scott, 2005]—may yield models with a combinatorially large number of variables, particularly in the case of multisite phosphorylation [Salazar and Höfer, 2009].

Model reduction represents a promising class of methods designed for obtaining a lower-dimensional representation that retains some dynamical features of interest to the modeler. The substantial body of research available is motivated by the fact that it is a cross-cutting concern throughout many scientific and engineering disciplines to be able to effectively work with simple but accurate models of complex systems. Specifically, for applications to systems biology the availability of a smaller model can be particularly beneficial in order to reduce the number of kinetic parameters [Danø et al., 2006], whose measurements and calibration is a well-known hindrance, see, e.g., [Babtie and Stumpf, 2017].

Techniques based on balanced truncation and singular value decomposition can dramatically lower the dimensionality of a model with small approximation errors [Antoulas, 2005]. Since the reduced model preserves the input/output behavior, it can be conveniently used in place of the original model to speed up the computation time of a numerical simulation. However, the coordinate transformation typically destroys
the structure, leading to a loss of physical interpretability of the model. This is recognized as an important property to be maintained in applications to systems biology, especially if the model is used to validate mechanistic hypotheses [Schmidt et al., 2008, Sunnaker et al., 2011, Apri et al., 2012].

For models of biochemical systems, many reduction methods are based on exploiting time-scale separation [Okino and Mavrovouniotis, 1998]. One of the most well-known approaches is quasi-steady-state approximation [Segel and Slemrod, 1989], in which, roughly speaking, “fast” variables can be approximated as reaching their stationary values such that they can be replaced by constants (solutions of the associated system of equations) in the dynamical model for the “slow” variables. Another class of reduction techniques based on sensitivity analysis studies how model parameters and variables affect the desired output, suggesting the elimination of the least influential ones [Snowden et al., 2017].

Exact model reduction aims at lowering dimensionality without introducing approximation errors in the reduced model. Conservation analysis detects linear combinations of variables that remain constant at all times [Vallabjajosyula et al., 2005]. Exact lumping is a more general approach whereby it is possible to write a self-consistent system of dynamical equations for a set of macro-variables, where each macro-variable represents a combination of the original ones [Okino and Mavrovouniotis, 1998]. Linear lumping, known as early as in the work by Wei and Kuo [1969], expresses such combinations as a linear mapping on the original state variables. To maintain some degree of physical interpretability, the lumping may be restricted only to a part of the state space. Li and Rabitz [1991] allow the specification of linear combination of variables that ought to be preserved. More recently, Cardelli et al. [2017a] presented a lumping algorithm that identifies a partition of the state variables such that in the lumped system each macro-variable represents the sum of the original variables of a block. Specialized criteria for exact linear lumping have also been studied for classes of biochemical models for signaling pathways, e.g., [Borisov et al., 2005, Conzelmann et al., 2006, Feret et al., 2009], for example by analyzing higher-level descriptions such as rule-based systems from which ordinary differential equation (ODE) models can be generated [Danos and Laneve, 2004, Blinov et al., 2004].

Here we present CLUE, an algorithm for constrained linear lumping, applicable to models as ODEs with polynomial derivatives. The constraints represent the linear combinations of state variables that ought to be maintained in the reduced model, similarly to Li and Rabitz [1991]. The algorithm hinges on the fundamental observation by the same authors [Li and Rabitz, 1989, 1991] that exact lumpings correspond to the subspaces that are invariant under the Jacobian of the ODE system. For finding these subspaces, Li and Rabitz [1989, 1991] suggest two ways: (i) produce a finite set of constant matrices such that every common invariant subspace of these matrices would be invariant for the Jacobian (but not necessarily vice versa); and (ii) find eigenvectors and eigenvalues of the Jacobian symbolically, and explore their combinations. In the former approach, the obtained set of matrices might be too restrictive, so a lumping might not be found even if there is one. The latter approach is limited to small sized systems because it involves finding symbolic expressions to the eigenvalues of a nonconstant matrix (the Jacobian of the system) and requires human intervention for exploring various combinations of these eigenvectors (for example, [Li and Rabitz, 1989, §4, Example 2]).

Our main contribution is twofold. First, we provide a set of constant matrices whose common invariant subspaces are exactly the invariant subspaces of the Jacobian. This allows us to obtain a fully algorithmic method for finding a constrained lumping based purely on linear algebra. Second, we improve the algorithm by eliminating redundant computation from the invariant subspace generation and by using modular computation to avoid intermediate expression swell. This enables the analysis of models with several thousands of equations on commodity hardware. Together, our results allow us to study large-scale biochemical models, of which we present a number of case studies, showing the degree of lumpability achieved as well as the physical interpretation of the reduced system.

2 Approach and method

Definition 1 (Lumping). Consider a system of ODEs with polynomial right-hand side in the form

$$\dot{x} = f(x),$$ \hspace{1cm} (1)

where $x = (x_1, \ldots, x_n)^T$, $f = (f_1, \ldots, f_n)^T$, and $f_1, \ldots, f_n \in \mathbb{R}[x]$. We say that a linear transformation $y = Lx$ with $y = (y_1, \ldots, y_m)^T$, $L \in \mathbb{R}^{m \times n}$, and rank $L = m$ is a lumping of (1) if there exist $g = (g_1, \ldots, g_m)^T$ with
for every solution x of (1). We say that m is the dimension of the lumping. The variables y in the reduced system are called macro-variables.

Example 1. Consider the system

$$
\begin{align*}
\dot{x}_1 &= x_1^2 + 4x_2x_3 + 4x_3^2, \\
\dot{x}_2 &= 4x_3 - 2x_1, \\
\dot{x}_3 &= x_1 + x_2.
\end{align*}
$$

We claim that the matrix

$$
L = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 2
\end{pmatrix}
$$

gives a lumping of (2) of dimension two. Indeed,

$$
\begin{pmatrix}
\dot{y}_1 \\
\dot{y}_2
\end{pmatrix} = \begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2 + 2x_3
\end{pmatrix} = \begin{pmatrix}
(\dot{x}_2 + 2x_3)^2 \\
2x_2 + 4x_3
\end{pmatrix} = \begin{pmatrix}
y_2^2 \\
y_2
\end{pmatrix},
$$

so we can take $g_1(y_1, y_2) = y_2^2$ and $g_2(y_1, y_2) = 2y_2$.

The lumping matrix of (3) turns out to exactly preserve the solution of variable x_1. In general, one considers a vector x_{obs} of combinations of the original variables that are to be recovered in the reduced system; that is, x_{obs} is a vector of linearly independent forms in x such that $x_{\text{obs}} = Ax$. Then we say that a lumping $y = Lx$ is a constrained linear lumping if each entry of x_{obs} is a linear combination of the entries of y.

Example 2. Using the system (2), setting

$$
x_{\text{obs}} = Ax, \quad \text{with} \quad A = \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 2
\end{pmatrix},
$$

yields that the from Eq. (3) is a constrained linear lumping because

$$
x_{\text{obs}} = \begin{pmatrix}
x_1 \\
x_1 + x_2 + 2x_3
\end{pmatrix} = \begin{pmatrix}
y_1 \\
y_1 + y_2
\end{pmatrix}.
$$

Instead, setting $x_{\text{obs}} = (x_2)$ does not give a constrained lumping for L because $(0, 1, 0)$ does not belong to the row space of L.

For a given vector x_{obs}, there may be more than one constrained linear lumping. We define two lumpings $y_1 = L_1x$ and $y_2 = L_2x$ to be equivalent if there exists an invertible matrix T such that $L_1 = TL_2$. It is possible to prove that, for every nonzero vector x_{obs}, there exists a unique (up to equivalence) lumping of the smallest possible dimension.

Let $J(x)$ be the Jacobian matrix of f. From [Li and Rabitz, 1989], L is a lumping of (1) if and only if the row space of $LJ(x)$ is contained in the row space of L for all x. The universal quantifier in this characterization can be handled in different ways (e.g., see [Li and Rabitz, 1989, §3] and [Brochot et al., 2005, pages 722-723]). We eliminate it as follows. Since the entries of $J(x)$ are polynomials in x, we can write $J(x)$ as

$$
J(x) = \sum_{i=1}^{N} J_{mi},
$$

where m_1, \ldots, m_N are distinct monomials in x and J_1, \ldots, J_N are matrices over \mathbb{R}. Then, the fact that the row space of $LJ(x)$ is contained in the row space of L for every x is equivalent to the containment of the row space of L_i in the row space of L for every $i = 1, \ldots, N$ (proved in the supplementary material, see Lemma A.1; the equivalence does not hold for the method from [Li and Rabitz, 1989, §3], see Remark A.1). This leads to the following algorithm: we start with matrix A and add products of its rows with the matrices J_1, \ldots, J_N as long as the dimension of the row space grows. This is detailed in Algorithm 1.
Algorithm 1 Simplified algorithm for finding a constrained lumping of the smallest possible dimension

Input a system $\dot{x} = f(x)$ of n ODEs with a polynomial right-hand side and an $s \times n$ matrix A over \mathbb{R} of rank $s > 0$;

Output a matrix L such that $y := Lx$ is a constrained lumping with observables Ax of smallest possible dimension.

(Step 1) Compute $J(x)$, the Jacobian matrix of $f(x)$.

(Step 2) Represent $J(x)$ as $J_1m_1 + \ldots + J_Nm_N$, where m_1, \ldots, m_N are distinct monomials in x, and J_1, \ldots, J_N are nonzero matrices over \mathbb{R}.

(Step 3) Set $L := A$.

(Step 4) Repeat

(a) for every M in J_1, \ldots, J_N and row r of L, if rM does not belong to the row space of L, append rM to L.

(b) if nothing has been appended on the previous step, exit the repeat loop and go to (Step 5).

(Step 5) Return L.

Example 3. We illustrate Algorithm 1 by applying it to the system in Eq. (2) by choosing $A = (1, 0, 0)$ (thus corresponding to recovering x_1 in the reduced system). The Jacobian matrix of $f(x)$ in Eq. (2) is

$$J(x) = \begin{pmatrix} 0 & 2x_2 + 4x_3 & 4x_2 + 8x_3 \\ -2 & 0 & 4 \\ 1 & 1 & 0 \end{pmatrix},$$

which can be decomposed as $J_1m_1 + J_2m_2 + J_3m_3$, where $m_1 = 1$, $m_2 = x_2$, $m_3 = x_3$, and

$$J_1 = \begin{pmatrix} 0 & 0 & 0 \\ -2 & 0 & 4 \\ 1 & 1 & 0 \end{pmatrix}, \quad J_2 = \begin{pmatrix} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad J_3 = \begin{pmatrix} 0 & 4 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Starting with $L = (1, 0, 0)$, for $r = (1, 0, 0)$ we compute the products:

$$rJ_1 = (0, 0, 0), \quad rJ_2 = (0, 2, 4), \quad rJ_3 = (0, 4, 8).$$

Since rJ_1 belongs to the row space of L while rJ_2 does not, we set

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \end{pmatrix}.$$

The third vector, rJ_3, is proportional to the second row of the new L, so we skip it. Since a new row, $(0, 2, 4)$, has been added in part (a) of (Step 4), we do not exit the loop. Setting now $r = (0, 2, 4)$, we get

$$rJ_1 = (0, 4, 8), \quad rJ_2 = (0, 0, 0), \quad rJ_3 = (0, 0, 0).$$

Since all these vectors belong to the row space of L, the iteration terminates and the as-computed L gives the lumping of the smallest dimension from which we can recover the original quantities specified through A. This L is not equal to the one in (3) but is equivalent to it in the above sense.

3 Implementation

The CLUE algorithm was implemented in Python using the SymPy library [Meurer et al., 2017]. The source code and all examples from Section 4 are available at https://github.com/pogudingleb/CLUE.
Algorithm 2 Finding the smallest invariant subspace

Input an $s \times n$ matrix A over field K and a list M_1, \ldots, M_ℓ of $n \times n$ matrices over K;

Output an $r \times n$ matrix L over K such that

- the row span of A is contained in the row span of L.
- for every $1 \leq i \leq \ell$, the row span of span of LM_i is contained in the row span of L;
- r is the smallest possible.

(Step 1) Let L be the reduced row echelon form of A.

(Step 2) Set P be the set of indices of the pivot columns of L.

(Step 3) While $P \neq \emptyset$ do

(a) For every $j \in P$ and every $1 \leq i \leq \ell$

 i. Let r be the row in L with the index of the pivot being j.

 ii. Reduce rM_i with respect to L. If the result is not zero, append it as a new row to L.

 iii. Reduce other rows with respect the new one in order to bring L into the reduced row echelon form.

(b) Let \tilde{P} be the set of indices of the pivot columns of L.

(c) Set $P := \tilde{P} \setminus P$.

(Step 4) Return L.

For our implementation, we keep the general framework of Algorithm 1 but replace (Step 3) and (Step 4), the most time-consuming parts, with a more efficient algorithm. (Step 3) and (Step 4) of Algorithm 1 solve the following problem: given a set of n-dimensional vectors and a set of $n \times n$ matrices, find a basis of the smallest vector space that is invariant under the matrices and that contains the vectors.

We present and implement two algorithms, Algorithm 2 and 3. The latter is faster but requires that all input matrices have rational entries; this turned out to be the case for the majority of the models we considered. Therefore, our implementation uses Algorithm 3 for systems with rational coefficients and Algorithms 2 for other cases (e.g., if coefficients involve $\sqrt{2}$, like in [Li and Rabitz, 1989, §4]). Algorithm 2 is a result of applying the following observations to (Step 3) and (Step 4) of Algorithm 1:

- If we maintain L in the reduced row echelon form, we can test whether a vector rM belongs to the row space of L in $O(n^2)$ instead of computing rank, e.g., in $O(n^3)$ using Gaussian elimination or in $O(n^{2.373})$ using more advanced algorithms [Bürgisser et al., 1997, Section 16.5].
- We do not need to consider all the products of the from rM but only the ones corresponding to the pivots of L added at the previous iteration of the loop. The largest number of products considered is reduced from about $n^2N/2$ to at most nN; for justification and details, see the proof of Proposition A.1.

In CLUE, we also take advantage of the fact that the input matrices are almost always very sparse.

Since the algorithm is to find an exact reduction, all computations in the case of rational coefficients in Algorithm 2 are performed over rational numbers with long arithmetic. Although the rationals in the output are typically simple (at most two digits in the numerator and denominator), the intermediate results might contain huge ones. For example, in the analysis of the model from [Barua et al., 2009] (available in the online repository), we have encountered rationals with more than 10000 digits.

We overcome this difficulty by running Algorithm 2 several times modulo different primes such that the size of matrix entries is bounded by the prime. For each run, we reconstruct a possible output over rational numbers using rational reconstruction (see [von zur Garthen and Gerhard, 2013, § 5.10]) and verify its correctness. We proceed with the next prime until the output is correct. This is detailed in Algorithm 3. In the Supplementary Materials (Proposition I.1), we show that the algorithm returns a correct result after considering finitely many primes. In our implementation, we go through the primes starting with $2^{31} - 1$. 5
Algorithm 3 Finding the smallest invariant subspace (modular)

Input $s \times n$ matrix A and a list M_1, \ldots, M_ℓ of $n \times n$ matrices over \mathbb{Q};

Output an $r \times n$ matrix L over \mathbb{Q} such that:

- the row span of A is contained in the row span of L.
- for every $1 \leq i \leq \ell$, the row span of LM_i is contained in the row span of L;
- r is the smallest possible.

(Step 1) Repeat the following:

(a) Pick a prime number p that does not divide any of the denominators in A, M_1, \ldots, M_ℓ and has not been chosen before.

(b) Compute the reductions $\tilde{A}, \tilde{M}_1, \ldots, \tilde{M}_\ell$ modulo p.

(c) Run Algorithm 2 on $\tilde{A}, \tilde{M}_1, \ldots, \tilde{M}_\ell$ as matrices over \mathbb{F}_p and denote the result by \tilde{L}.

(d) Apply the rational reconstruction algorithm ([von zur Gathen and Gerhard, 2013, § 5.10], [Wang et al., 1982]) to construct a matrix L over \mathbb{Q} such that the reduction of L mod p equals \tilde{L}.

(e) Check whether the row span of L contains the row span of L and is invariant under M_1, \ldots, M_ℓ. If yes, exit the loop.

(Step 2) Return the matrix L from step (d) of the last iteration of the loop.

In all practical examples we considered, one prime was enough. One could accumulate the results for different primes and use Chinese remaindering [von zur Gathen and Gerhard, 2013, § 5.4]. We do not do this because it would be harder to filter out “bad primes”. The correctness of Algorithms 2 and 3 is proved in Proposition A.1 and Supplementary Materials (Proposition I.1), respectively. We report the performance of CLUE on a set of benchmarks in Supplementary Materials (Section III).

4 Examples

In this section, we show the applicability of CLUE to the reduction of biological models through a number of case studies published in the literature, including some taken from the BioModels repository [Li et al., 2010]. We additionally compare CLUE against the forward equivalence from [Cardelli et al., 2017a]. Forward equivalence identifies a partition of an ODE system with polynomial derivatives which induces a lumping where each macro-variable is equal to the sum of variables in each partition block. Using established terminology for lumping methods [Wei and Kuo, 1969, Okino and Mavrovouniotis, 1998, Snowden et al., 2017], forward equivalence can be understood as a form of proper lumping because each original variable contributes exactly to one macro-variable of the reduced system. By contrast, in general, constrained linear lumping yields an improper lumping matrix because the linear combination can be arbitrary. Similarly to constrained linear lumping, for forward equivalence there exists the notion of coarsest partition. This is the partition with the smallest number of blocks, thus leading to a reduced ODE system of the smallest dimension. In addition, forward equivalence can be computed with respect to constraints, which are encoded as an initial partition of variables. The algorithm for computing the coarsest partition iteratively splits each block of the initial partition until the criteria for forward equivalence are satisfied. For the comparison, we used ERODE [Cardelli et al., 2017b], which implements the reduction algorithm for forward equivalence. To the best of our knowledge, ERODE is the only publicly available software tool that supports exact lumping for polynomial differential equations. For each case study, both CLUE and forward equivalence were initialized so as to preserve the same observables in the reduced models.

For this study, we computed reductions that were independent from the specific choice of the kinetic parameters used in the model. This was done as follows. Given the original model in the form $\dot{x} = f(x, k)$, where k is the vector of mass-action kinetic parameters, we considered an extended ODE system with the additional set of equations $\dot{k} = 0$. This ensures that the reduction is independent from the initial conditions of the extended variables, hence of the choice of the original parameters.
Table 1: Results for the case studies in Section 4 comparing CLUE with forward equivalence (FE) for the reduction of the state variables (Vars) and the kinetic parameters (Params).

Table 1 summarizes the results analyzed in more detail in the next subsections; for each model we report the reductions in both the state variables and the number of kinetic parameters.

4.1 Modular decomposition of signaling pathways

Using two different examples, we illustrate how CLUE can decompose models of signaling pathways if only certain observables of interest are chosen. Figure 1(A) depicts a quorum sensing network for AI2 biosynthesis and uptake pathways in *E. coli* [Li et al., 2006]; the biochemical model is available in the BioModels repository as MODEL8262229752. The substrate Methionine (Met) transforms into S-adenosylmethionine (SAM). The blue branch of the pathway is involved in the production of AI2. The green branch depicts decarboxylation of SAM, which ultimately produces MTR and Adenine. The dynamics of both branches are mediated by Pf.

The original model has 21 variables, one for each biochemical species depicted in the pathway. By fixing the output signal AI2 as the variable to be preserved, CLUE reduces the system to 15 variables. An inspection of the reduced model reveals that CLUE removes the biochemical species depicted as green boxes in Fig. 1(A), while the remaining variables are not aggregated further. Overall, this leads to a reduced model that can be interpreted as the network in Fig. 1(B). The reduction can be explained by the fact that none of the eliminated variables contribute to the dynamics of the chosen observables. This is because the interactions between the green pathway and the blue one occur only through Pf, which acts a catalyst in all the reactions in which it is involved.

The largest reduction by forward equivalence that preserves AI2 has 19 variables. It only aggregates Adenine, MTR, and Spermidine in the same block, while keeping all the other variables separated. This reduction is, however, a trivial one because these are end products of the pathways that do not interact with any other species. Mathematically, this results in the differential equation of an end-product variable not featuring the variable itself in the right-hand side. As a consequence, end-product variables can always be rewritten in terms of a lumped variable that represents their sum.
A similar pattern of modular decomposition arises in a pathway of cartilage breakdown from [Proctor et al., 2014], illustrated in Fig. 2(A). The model is available in the BioModels repository as BIOMD0000000504. The system comprises three modules: an Interleukin-1 (IL1) signaling pathway, an OSM signaling pathway, and a circuit of activation of proMMPs that concludes with the degradation of Aggrecan and Collagen.

In the first module, IL1 binds its receptor (ISMR) to start a cascade of phosphorylation events (not shown) that activates cJun. After dimerization, cJun upregulates collagenases MMP\(_{1,3,13}\) and phosphatases MKP1, PP44 and DUSP16. In the second module, OSM binds to the receptor OSMR; the pathway concludes with the phosphorylation of cFos. The active cFos can reversibly bind to phosphorylated cJun in a complex cJun-cFos which acts as transcription factor and upregulates the transcription factor SP1, TIMPs\(_{1,3}\), cFos, cJun, a generic MMP\(_{\text{Activator}}\) and all the upregulated components from IL1 module. In the third module, the Aggrecan-Collagen complex separates due to the interaction with ADAMTS4, and
the units of Aggrecan in the complex transform into fragments (AggFrag). The units of Collagen interact with several Activators (collagenases such as MMP_{1,3,13} or MMP_{Act}) that destroy the protein structure, producing collagen fragments (CollFrag).

The original model consists of 74 variables. By preserving the phosphorylated molecules of cFos and cJun, which are some of the species of interest in the study by Proctor et al. [2014], CLUE removes the pathway for the decomposition of the Aggrecan-Collagen complex, together with the mRNA variants of MMP_{1,3,13}, TIMP_{1,3}, and SP_{1}. The reduced model with 43 variables can be interpreted as the network in Fig. 2 (B). Again, CLUE simplifies branches of the pathway that do not affect the dynamics of the observables. The reduction by forward equivalence, instead, collapses only the variables corresponding to the species Aggrecan, AggFrag, Collagen, and CollFrag, providing a model with 71 variables. Differently from the previous example, this block collapses end species (AggFrag and CollFrag) together with an input species (Aggrecan) which is assumed to have no dynamics (i.e., zero derivative), as well as a species (Collagen) that undergoes degradation.

4.2 Multisite protein phosphorylation

Here we study a basic mechanism of protein phosphorylation, a fundamental process in eukaryotic cells [Gunawardena, 2005], to show how CLUE can help cope with the combinatorial growth of mechanistic models for proteins with multiple sites [Salazar and Höfer, 2009]. We consider a model phosphorylation/dephosphorylation of a substrate with \(m \) independent and identical binding sites, taken from [Sneddon et al., 2011]. Each site can be in four different states: phosphorylated and unbound, unphosphorylated and unbound, phosphorylated and bound to a phosphatase, unphosphorylated and bound to a kinase. Thus, the model is described by \(4^m + 2 \) variables to track all possible protein configurations, in addition to the concentrations of the free kinase and phosphatase.

![Figure 3: Application of CLUE to a protein phosphorylation model with \(m = 2 \) identical and independent binding sites. A) Model components: empty/full circles denote whether the site is unphosphorylated/phosphorylated; binding of a kinase or phosphatases is denoted by the color of the square. B) Graphical representation of the four macro-variables obtained by CLUE; the yellow background groups variables that appear in more than one macro-variable; we write ‘2x’ under variables which are counted twice.](image-url)

For \(m = 2 \) independent sites, CLUE reduces the model from 18 to 6 variables if observing the free kinase (or the free phosphatase). In the reduced model, two macro-variables represent the free kinase and phosphatase, respectively. The other macro-variables are linear combinations of the protein configuration (Fig. 3). An inspection of the aggregation shows that three of these macro-variables represent the total concentration of a specific binding-site configuration: free and phosphorylated (Fig. 3-B1); free and bound to a kinase (Fig. 3-B2); phosphorylated and bound to a phosphatase (Fig. 3-B3). Thus, if the two binding sites have the same configuration, the corresponding variable is counted twice. Also, the aggregation results in an improper lumping as there are variables that contribute to more than one macro-variable. The last
macro-variable, instead, escaped physical intelligibility as it represents the difference between the free substrate with unphosphorylated sites and protein configurations that appear in the aforementioned lumps. Interestingly, running CLUE for models with larger number of binding sites until \(m = 7 \) always returned a six-dimensional reduced model that obey the patterns similar to the one illustrated in Fig. 3 (models for larger \(m \) could not be analyzed with our prototype implementation due to memory issues). Instead, forward equivalence detects the assumption of the binding sites being identical [Cardelli et al., 2017a, Table S1]. Each macro-variable represents complexes equal up to permutation of the identities of the binding sites, leading to a polynomial growth in \(m \) of the number of variables in the reduced model.

![Figure 4](image_url)

Figure 4: (A) Components in a model for RTK signaling adapted from [Borisov et al., 2008]: a bivalent Ligand (L), two adapter proteins A and B and a receptor with three binding sites: ligand binding site in the extracellular region (brown); protein binding sites in the intracellular region (red/blue circles). (B) macro-variables obtained in the reduced model.

4.3 Aggregation for ordered phosphorylation mechanisms

We now consider an example of ordered phosphorylation, taken from [Borisov et al., 2008], in a receptor tyrosine kinase (RTK) signaling pathway where receptor autophosphorylation via dimerization is preceded by ligand binding. Figure 4(A) shows the molecular complexes involved in the pathway. The receptor interacts with a bivalent ligand and two adapter proteins, A and B. Protein A has a single site that binds to the receptor. Protein B is a scaffold protein with three binding sites: one extracellular site dedicated to receptor-binding and two intracellular tyrosine residues. The phosphorylation state of the tyrosine residues in B is independent of the state of the receptor-binding site. Upon phosphorylation of the intracellular sites, the receptor can bind the adapter proteins A and B.

The model, originally expressed in the rule-based language BioNetGen [Blinov et al., 2004], has 213 variables. Applying CLUE to preserve the concentration of free ligand yields a reduced model where 150 variables are removed and the remaining 63 are lumped into four macro-variables, depicted in Fig. 4-B. These represent: the free ligand (Fig. 4-B1); all configurations of the free receptor regardless of the phosphorylation state of the intracellular terminals or of protein binding (Fig. 4-B2); all variables that represent the bound ligand (Fig. 4-B3) and the dimerized form (Fig. 4-B4) regardless of the intracellular states. Instead, forward equivalence gives 66 variables, aggregating B-bound receptor units regardless of the phosphorylation state of B.

5 Conclusion

We presented CLUE, an algorithm for the reduction of polynomial ODEs by exact lumping, with the possibility to fix original variables (or their linear combinations) to be recovered in the reduced system. From a practical viewpoint, the specification of such constraints allows the preservation of the dynamics of key biochemical species of interest to the modeler. Importantly, although it is acknowledged that linear lumping
may lead to loss of structure in the reduced model, e.g., [Snowden et al., 2017], the reductions presented here admitted a biochemical interpretation in most cases. From a computational viewpoint, CLUE casts the analysis of polynomial equations into a linear-algebra framework, allowing reductions for models of dimension over than 15,000 variables using a prototype implementation. This makes CLUE a general-purpose tool that adds to the wide range of existing methods. In particular, since it reduces exactly, it can be used as a pre-processing for techniques that seek more aggressive reductions using approximate methods, or as a complementary method to those that use orthogonal model properties, e.g. time-scale separation.

Funding

This work has been supported by the National Science Foundation [CCF-1563942 and 1564132, DMS-1760448, 1853650, and 1853482] and by the MIUR PRIN project “SEDUCE”, no. 2017TWRCNB.

References

Appendix A: Proofs for Algorithms 1 and 2

Let $\text{Mat}_{m,n}(\mathbb{K})$ denote the space of $m \times n$ matrices over a field \mathbb{K}. For $M \in \text{Mat}_{m,n}(\mathbb{K})$, $\text{rspan}_\mathbb{K}(M)$ denotes the row span of M over \mathbb{K}.

Lemma A.1 is used by Algorithm 1 to pass from the invariance under the Jacobian to the invariance under a finite set of constant matrices.

Lemma A.1. Let $M(x) \in \text{Mat}_{n,n}(\mathbb{K}[x])$, where $x = (x_1, \ldots, x_r)$ and char $\mathbb{K} = 0$. We write $M(x) = M_1 m_1 + \ldots + M_N m_N$ so that $M_1, \ldots, M_N \in \text{Mat}_{n,n}(\mathbb{K})$ and m_1, \ldots, m_N are distinct monomials in x. Then, for a vector subspace $V \subset \mathbb{K}^n$, the following are equivalent:

1. V is invariant under $M(x^*)$ for every $x^* \in \mathbb{K}^r$;
2. V is invariant under M_i for every $1 \leq i \leq N$.

Proof. Assume that V is invariant under M_1, \ldots, M_N. Since, for every $x^* \in \mathbb{K}^r$, $M(x^*)$ is an \mathbb{K}-linear combination of M_1, \ldots, M_N, V is invariant under $M(x^*)$ as well.

Assume that V is invariant under $M(x^*)$ for every $x^* \in \mathbb{K}^r$. Consider $v \in V$. Since $\forall x^* \in \mathbb{K}^r \ M(x^*) v \in V$, for every $1 \leq i \leq r$, $\frac{\partial}{\partial x_i^*} M(x^*) v \in V$ as well. Consider one of M_1, \ldots, M_N, say M_1. Let $m_1 = x_1^{d_1} \ldots x_r^{d_r}$. Iterating the argument with derivative, we obtain

$$\forall x^* \in \mathbb{K}^r \quad \frac{\partial^{d_1 + \ldots + d_r}}{\partial x_1^{d_1} \ldots \partial x_r^{d_r}} M(x^*) v \in V.$$

Taking $x^* = 0$, we deduce that $M_1 v \in V$. \hfill \qed

Remark A.1. A different approach to replacing the Jacobian with a finite set of constant matrices was suggested in [Li and Rabitz, 1989, Sect. 3(A)]:

1. Write the Jacobian $J(x) = \sum a_{ij}(x) E_{ij}$, where E_{ij} is the matrix with one in the (i,j)-th cell and zeroes everywhere else;
2. Combine together summands with proportional $a_{ij}(x)$ obtaining a representation $J(x) = \sum b_j(x) B_j$ with constant B_j;
3. Return B_j’s.

Consider the system

$$\begin{cases}
\dot{x}_1 = (x_2 + x_3)^2 + (x_2 + x_4)^2, \\
\dot{x}_2 = x_3 = x_4 = 0
\end{cases}$$

with the observable x_1. Then the procedure from [Li and Rabitz, 1989, Section 3(A)] will lead to the following decomposition

$$J(x) = 2(2x_2 + x_3 + x_4) E_{12} + 2(x_2 + x_3) E_{13} + 2(x_2 + x_4) E_{14}.$$

The smallest subspace containing $(1,0,0,0)$ and right-invariant under E_{12}, E_{13}, E_{14} is the whole space, so this approach will not produce a nontrivial lumping. On the other hand, using Lemma A.1, we arrive at

$$J(x) = 2x_2 (2E_{12} + E_{13} + E_{14}) + 2x_3 (E_{12} + E_{13}) + 2x_4 (E_{12} + E_{14}).$$

The matrices $2E_{12} + E_{13} + E_{14}, E_{12} + E_{13},$ and $E_{12} + E_{14}$ have a common proper invariant subspace containing $(1,0,0,0)$, and this yields a nontrivial lumping:

$$y_1 = x_1, \quad y_2 = x_2 + x_3, \quad y_3 = x_2 + x_4.$$

Proposition A.1. Algorithm 2 is correct.
Proof. Bringing a matrix to the reduced row echelon form does not change the row span, and adding extra rows might only enlarge it, so the row span of the output of Algorithm 2 contains the row span of A.

Now we will show that the row span of the output of the algorithm is invariant under M_1, \ldots, M_N. We denote the values of L and P before the i-th iteration of the while loop (Step 3) by L_i and P_i, respectively. We set L_0 and P to be the $0 \times n$ matrix and \emptyset, respectively. We will show by induction on k that, for every $k \geq 0$ and every $1 \leq i \leq \ell$, we have
\[\text{rspan}_K(L_k M_i) \subset \text{rspan}_K(L_{k+1}). \] (5)
The case $k = 0$ is true. Assume that the statement is true for all numbers less than some $k > 0$. Let L_+ be the matrix consisting of the rows of L_k with the pivot columns in P_k, and let L_- be the matrix consisting of the remaining rows. Fix $1 \leq i \leq \ell$. Then $\text{rspan}_K(L_+ M_i) \subset \text{rspan}_K(L_{k+1})$ because the rows of L_+ will be processed in the next iteration of the while loop. By the construction, $\text{rspan}_K(L_{k-1}) \subset \text{rspan}_K(L_k)$. The rows of L_{k-1} and L_+ are linearly independent because they form a (nonreduced) row echelon form after permuting rows and columns. Therefore, $\text{rspan}_K L_k = \text{rspan}_K L_+ + \text{rspan}_K L_{k-1}$. This implies
\[\text{rspan}_K(L_- M_i) \subset \text{rspan}_K(L_+ M_i) + \text{rspan}_K(L_{k-1} M_i). \]

The inductive hypothesis implies that
\[\text{rspan}_K(L_-) \subset \text{rspan}_K(L_+ M_i) + \text{rspan}_K(L_{k-1} M_i). \]

Therefore, $\text{rspan}_K(L_k M_i) \subset \text{rspan}_K(L_{k+1})$.

Assume that there were N iterations of the while loop. Then we consider one extra iteration. Since $P = \emptyset$, this iteration will not do anything, so $L_{N+2} = L_{N+1}$. Therefore, $\text{rspan}_K(L_{N+1} M_i) \subset \text{rspan}_K(L_{N+1})$ for every $1 \leq i \leq \ell$ due to (5). This implies that rspan_K of the output of the algorithm is invariant under M_1, \ldots, M_N.

To prove the minimality of r, consider V, the smallest subspace of \mathbb{K}^n invariant under M_1, \ldots, M_N and containing the rows of the input matrix A. We will show by induction on i that $\text{rspan}_K(L_i) \subset V$. Since $\text{rspan}_K(L_1) = \text{rspan}_K(A), \text{rspan}_K(L_1) \subset V$. Assume that the statement is true for some $i \geq 1$. At the i-th iteration of the while loop, we consider vectors of the form $r M_i$, where $r \in \text{rspan}_K(L_i)$. Since $r \in V$ and V is M_i-invariant, these vectors also belong to V. Consequent computation of the row echelon form does not change the row span. Hence, the row span of the output is invariant under M_1, \ldots, M_N and contained in V, so it coincides with V. This proves the minimality of r.

\[\square \]
Supplementary materials
CLUE: Exact maximal reduction of kinetic models by constrained lumping of differential equations
Alexey Ovchinnikov, Isabel Pérez Verona, Gleb Pogudin, Mirco Tribastone

This document is structured as follows:

- In Section I, we will prove the correctness and termination of Algorithm 3, in which we will use the correctness of Algorithm 2 established in the main paper (see Proposition A.1).
- In Section II, we reprove the criterion for lumping in terms of the Jacobian of the system [3, Section 2] for the sake of completeness.
- In Section III, we report the runtimes of our implementation (https://github.com/pogudingleb/CLUE) on a set of benchmarks.

I Proof of correctness and termination of Algorithm 3

For the convenience of the reader while navigating between the main paper and the Supplementary materials, we recall:

Algorithm 2 Finding the smallest invariant subspace

Input an $s \times n$ matrix A over field \mathbb{K} and a list M_1, \ldots, M_ℓ of $n \times n$ matrices over \mathbb{K};

Output an $r \times n$ matrix L over \mathbb{K} such that

- the row span of A is contained in the row span of L.
- for every $1 \leq i \leq \ell$, the row span of span of LM_i is contained in the row span of L;
- r is the smallest possible.

(Step 1) Let L be the reduced row echelon form of A.

(Step 2) Set P be the set of indices of the pivot columns of L.

(Step 3) While $P \neq \emptyset$ do

(a) For every $j \in P$ and every $1 \leq i \leq \ell$

i. Let r be the row in L with the index of the pivot being j.

ii. Reduce rM_i with respect to L. If the result is not zero, append it as a new row to L.

iii. Reduce other rows with respect the new one in order to bring L into the reduced row echelon form.

(b) Let \tilde{P} be the set of indices of the pivot columns of L.

(c) Set $P := \tilde{P} \setminus P$.

(Step 4) Return L.
Algorithm 3 Finding the smallest invariant subspace (modular)

Input $s \times n$ matrix A and a list M_1, \ldots, M_ℓ of $n \times n$ matrices over \mathbb{Q};

Output an $r \times n$ matrix L over \mathbb{Q} such that:

- the row span of A is contained in the row span of L.
- for every $1 \leq i \leq \ell$, the row span of LM_i is contained in the row span of L;
- r is the smallest possible.

(Step 1) Repeat the following

(a) Pick a prime number p that does not divide any of the denominators in A, M_1, \ldots, M_ℓ and has not been chosen before.

(b) Compute the reductions $\tilde{A}, \tilde{M}_1, \ldots, \tilde{M}_\ell$ modulo p.

(c) Run Algorithm 2 on $\tilde{A}, \tilde{M}_1, \ldots, \tilde{M}_\ell$ as matrices over \mathbb{F}_p and denote the result by \tilde{L}.

(d) Apply the rational reconstruction algorithm ([4, § 5.10], [6]) to construct a matrix L over \mathbb{Q} such that the reduction of L mod p equals \tilde{L}.

(e) Check whether the row span of L contains the row span of L and is invariant under M_1, \ldots, M_ℓ. If yes, exit the loop.

(Step 2) Return the matrix L from step (d) of the last iteration of the loop.

We also recall:

- $\text{Mat}_{m,n}(\mathbb{K})$ denotes the space of $m \times n$ matrices over a field \mathbb{K}.
- For $M \in \text{Mat}_{m,n}(\mathbb{K})$, $\text{rspan}_{\mathbb{K}}(M)$ is the row span of M over \mathbb{K}.

The following lemma is used in Proposition I.1 for showing the correctness and termination of Algorithm 3.

Lemma I.1. Let $A \in \text{Mat}_{s,n}(\mathbb{Q})$, $M_1, \ldots, M_\ell \in \text{Mat}_{n,n}(\mathbb{Q})$ and L the result of applying Algorithm 2 to these matrices. For every prime number p that does not divide the denominators of the entries of A, M_1, \ldots, M_ℓ, we denote the result of applying Algorithm 2 to the reductions of these matrices modulo p by L^*_p. Then

1. for all but finitely many primes, L^*_p is equal to L modulo p;
2. the number of rows in L^*_p does not exceed the number of rows in L.

Proof. To show (1), consider the run of Algorithm 2 on A, M_1, \ldots, M_ℓ. The operations performed with the matrix entries in the algorithm are arithmetic operations and checking for nullity. There is a finite list of nonzero rational numbers q_1, \ldots, q_N checked for nullity in the algorithm. Consider a prime number p such that the reductions of q_1, \ldots, q_N modulo p are defined and not zero. Since the arithmetic operations commute with reducing modulo p and we have chosen p so that all nullity checks will also commute with reduction modulo p, the result of the algorithm modulo p, that is L^*_p, will be equal to the reduction of L modulo p.

We now show (2). The number of rows in L is the dimension of the space generated by the rows of A and their images under all possible products of M_1, \ldots, M_ℓ. Consider the $\infty \times n$ matrix R formed from the matrices of the form AX, where X ranges over all possible products of M_1, \ldots, M_ℓ, stacked on top of each other. Let R_p be the reduction of R modulo p. For every integer r, having rank at most r can be
expressed as a system of polynomial conditions in the matrix entries (that is, all \((r+1) \times (r+1)\) minors are zero). Therefore, \(\text{rank} \, R_p \leq \text{rank} \, R\). Since the numbers of rows in \(L\) and \(L^*_p\) are equal to \(\text{rank} \, R\) and \(\text{rank} \, R_p\), respectively, the second part of the lemma is proved.

Proposition I.1. Algorithm 3 is correct and terminates in finite time.

Proof. First we will show the correctness. Consider the output of Algorithm 3, call it \(L_0\). Since the stopping criterion for the loop in (Step 1) is \(\text{rspan}_Q(A) \subseteq \text{rspan}_Q(L_0)\) and the invariance of \(\text{rspan}_Q(L_0)\) under \(M_1, \ldots, M_\ell\), it remains to prove the minimality of the number of rows in \(L_0\). Due to Proposition A.1 from the main paper (correctness of Algorithm 2), it would be equivalent to show that the number of rows in \(L_0\) is equal to the number of rows in the output of Algorithm 2 on \(A, M_1, \ldots, M_\ell\), call it \(L\). The second part of Lemma I.1 implies that the number of rows of every matrix \(\tilde{L}\) computed in (Step 1) does not exceed the number of rows in \(L\). Then the same is true for \(L_0\). Since the number of rows in \(L\) is the smallest possible, it is the same as the number of rows in \(L_0\), so the output of the algorithm will be correct.

Now we will prove the termination. Let \(N\) be the maximum of the absolute values of the numerators and denominators of the entries of \(L\). Consider a prime number \(p\) such that \(L^*_p\) (see Lemma I.1) is equal to the reduction of \(L\) modulo \(p\) and \(p > 2N^2\). Then [6] and [5, Lemma 2] imply that the result of rational reconstruction in (d) for \(L = L^*_p\) will be equal to \(L\), so the algorithm will terminate. Lemma I.1(1) implies that all but finitely many primes satisfy the above properties, so the algorithm will reach one of these numbers and terminate.

II Proof for the lumping criterion from [2]

In Lemma II.1 and Proposition II.1, we reprove the criterion for lumping in terms of the Jacobian of the system [3, Section 2] for the sake of completeness.

Lemma II.1. Let \(p(x) \in \mathbb{R}[x]\), where \(x = (x_1, \ldots, x_n)\), and \(L \in \text{Mat}_{s,n}(\mathbb{R})\). Let \(V \subset \mathbb{R}^n\) be the orthogonal complement to \(\text{rspan}_R(L)\). Then \(p(x)\) can be written as a polynomial in \(Lx\) if and only if \(\forall v \in \mathbb{R}^n\) the operator \(D_v := v_1 \frac{\partial}{\partial y_1} + \ldots + v_n \frac{\partial}{\partial y_n}\) annihilates \(p(x)\).

Proof. Denote the rows of \(L\) by \(r_1, \ldots, r_s\). Assume that there exists a polynomial \(q\) in \(y_1, \ldots, y_s\) such that \(p(x) = q(Lx)\). Then

\[
\forall v \in V \quad D_v p(x) = D_v q(Lx) = (v, r_1) \frac{\partial q}{\partial y_1} (Lx) + \ldots + (v, r_s) \frac{\partial q}{\partial y_s} (Lx) = 0.
\]

To prove the lemma in the other direction, choose an orthonormal basis \(u_1, \ldots, u_\ell\) of \(V\). Since the rows of \(L\) and \(u_1, \ldots, u_\ell\) span the whole space, there exists a polynomial \(q\) in \(y_1, \ldots, y_{s+\ell}\) such that \(p(x) = q(Lx, (u_1, x), \ldots, (u_\ell, x))\). Then, for every \(1 \leq i \leq \ell\), using \(D_v(u, x) = (v, u)\), we have

\[
D_{u_i} p(x) = D_{u_i} q(Lx, (u_1, x), \ldots, (u_\ell, x)) = (u_i, u_i) \frac{\partial q}{\partial y_{s+i}} (Lx, (u_1, x), \ldots, (u_\ell, x)) = \frac{\partial q}{\partial y_{s+i}} (Lx, (u_1, x), \ldots, (u_\ell, x)).
\]

Therefore, \(q\) does not involve \(y_{s+i}\), so we get a representation of \(p\) as a polynomial in \(Lx\).

Proposition II.1. A matrix \(L \in \text{Mat}_{s,n}(\mathbb{R})\) is a lumping for a \(n\)-dimensional system \(\dot{x} = f(x)\) if and only if \(\forall x \in \mathbb{R}^n\), \(\text{rspan}_R(L)\) is invariant under \(J(x)\), the Jacobian matrix of \(f\).
Proof. We will use the notation from Lemma II.1. For \(v \in V \),

\[
D_v Lf(x) = \left(v, \left(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right) \right) Lf(x) = (LJ(x))v.
\]

Therefore, Lemma II.1 implies that \(L \) is a lumping of \(\dot{x} = f(x) \) if and only if \(\text{rspan}_{E}(LJ(x)) \) is orthogonal to \(V \) for every \(x \). The latter is equivalent to the invariance of \(\text{rspan}_{E}(L) \) under \(J(x) \) for every \(x \in \mathbb{R}^n \).

\[\square \]

III Performance

In Table 1, we report the runtimes of CLUE on the models collected in https://github.com/pogudingleb/CLUE/tree/master/examples. The runtimes are measured on a laptop with a 1.60GHz CPU and 8GB RAM. The names of the models in the table coincide with the names of the corresponding folders in the repository. In the table, “# of states” refers to the number of state variables in the ODE fed into CLUE, and this includes, in addition to the state variables of the model, the unknown scalar parameters if there are any (see the beginning of Section 4 of the main text).

For two of the models (BIOMD0000000504 and fceri_ji), we had several sets of observables, the corresponding runtimes are reported as ModelName-Index. For these models, one can observe that the runtime is smaller for the sets of observables that yield smaller reduced models.

As has been mentioned in the main text, one can do lumping using tools based on forward equivalence such as ERODE [1]. Although CLUE is guaranteed to provide at least as good lumping as ERODE (for such a comparison, see Table 1 in the main text), the latter is typically faster, for example, computation for each of the model below is performed within a couple of seconds.

<table>
<thead>
<tr>
<th>Model</th>
<th># of states</th>
<th>resulting # of states</th>
<th>runtime (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL8262229752</td>
<td>47</td>
<td>34</td>
<td>< 1</td>
</tr>
<tr>
<td>BIOMD0000000504 - 1</td>
<td>207</td>
<td>114</td>
<td>2</td>
</tr>
<tr>
<td>BIOMD0000000504 - 2</td>
<td>207</td>
<td>134</td>
<td>3</td>
</tr>
<tr>
<td>BIOMD0000000504 - 3</td>
<td>207</td>
<td>205</td>
<td>4</td>
</tr>
<tr>
<td>BIOMD0000000504 - 4</td>
<td>207</td>
<td>114</td>
<td>2</td>
</tr>
<tr>
<td>OrderedPhosphorylation</td>
<td>84</td>
<td>6</td>
<td>< 1</td>
</tr>
<tr>
<td>ProteinPhosphorylation (m = 2)</td>
<td>24</td>
<td>12</td>
<td>< 1</td>
</tr>
<tr>
<td>ProteinPhosphorylation (m = 3)</td>
<td>72</td>
<td>12</td>
<td>< 1</td>
</tr>
<tr>
<td>ProteinPhosphorylation (m = 4)</td>
<td>264</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>ProteinPhosphorylation (m = 5)</td>
<td>1032</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>ProteinPhosphorylation (m = 6)</td>
<td>4104</td>
<td>12</td>
<td>253</td>
</tr>
<tr>
<td>ProteinPhosphorylation (m = 7)</td>
<td>16392</td>
<td>12</td>
<td>3992</td>
</tr>
<tr>
<td>Barua</td>
<td>505</td>
<td>402</td>
<td>96</td>
</tr>
<tr>
<td>MODEL1001150000</td>
<td>203</td>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>fceri_ji - 1</td>
<td>380</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>fceri_ji - 2</td>
<td>380</td>
<td>338</td>
<td>63</td>
</tr>
<tr>
<td>fceri_ji - 3</td>
<td>380</td>
<td>84</td>
<td>12</td>
</tr>
<tr>
<td>fceri_ji - 4</td>
<td>380</td>
<td>120</td>
<td>16</td>
</tr>
<tr>
<td>fceri_ji - 5</td>
<td>380</td>
<td>120</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 1: Performance of CLUE on a set of benchmarks
References

