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1. Introduction

The main result of this paper is an algorithm, which inputs a characteristic decom-
position of a radical differential ideal I w.r.t. one ranking and computes a characteristic
decomposition of I w.r.t. another ranking. Previously, the problem of efficient transfor-
mation of differential characteristic sets from one ranking to another has been addressed
in (Boulier, 1999; Boulier et al., 2001; Golubitsky, 2004) in case of prime differential
ideals. Our algorithm is different from these approaches in that its most computation-
ally expensive part is performed by a purely algebraic algorithm. Another difference is
that the proposed algorithm does not assume that the ideals in the given characteristic
decomposition are characterizable w.r.t. the target ranking.

More precisely, the algorithm first applies a bound (described below), in order to de-
termine the number of times one needs to differentiate the given polynomials, so that the
target characteristic decomposition could be computed using only algebraic operations. In
other words, at the first step, the algorithm reduces the given differential-algebraic prob-
lem to a purely algebraic one. The latter problem can be solved using efficient modular
methods, e.g. (Dahan et al., 2006), which are not directly generalizable to the differential
case due to the difficulties of working over differential fields of positive characteristics.
Moreover, in the algebraic case, the complexity of computing a characteristic decompo-
sition (or transforming it to a different ordering on variables) is known to be polynomial
in the maximal degree of input polynomials and exponential in the number of variables
(Szántó, 1999, Theorem 4.1.7), while for the differential case no complexity bounds are
known. Our reduction “almost” allows to obtain a complexity bound for the ordinary
differential case. It remains to estimate the complexity of the following algebraic problem:
given a characterizable algebraic ideal w.r.t. one ranking, and another ranking, decom-
pose it into ideals that are characterizable w.r.t. both rankings. We propose an algorithm
for computing such bi-characteristic decomposition but do not estimate its complexity.

The bound, on which the above reduction is based, is the following: in the ordinary
case, for any ranking on derivatives, the orders of the elements of the canonical charac-
teristic set of a characterizable differential ideal do not exceed the order of the ideal. Here
the order of a characterizable differential ideal is defined as the maximum of orders of its
minimal prime components. In turn, the order of a prime differential ideal is defined as
the sum of orders of the elements of any characteristic set of this ideal w.r.t. an orderly
ranking. The order of a prime differential ideal is independent of the choice of the orderly
ranking and the characteristic set w.r.t. this ranking.

This bound is the main technical tool of the paper. We prove it in three steps. First,
we prove that, for any prime differential ideal and an arbitrary ranking, there exists
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a characteristic set, such that the orders of its elements are bounded by the order of
the ideal (this is the main step, see Theorem 27). Second, we generalize this existence
statement to the case of characterizable differential ideals (see Theorem 29). Finally, in
Theorem 31 we show that the bound actually holds for canonical characteristic sets of
characterizable differential ideals.

The problem of bounding the orders of elements of a differential characteristic set has
been previous addressed in (Sadik, 2000, 2006). Our result generalizes (Sadik, 2000, The-
orem 24), which gives the same bound for elimination rankings. The bound for arbitrary
rankings has been stated in (Sadik, 2006, Theorem 1) without proof, as a consequence of
the results of (Sadik, 2000). It would indeed easily follow from (Sadik, 2000, Theorem 25),
yet the latter theorem turned out to be incorrect, as we show on a counter-example (see
Example 28). It appears that the case of general rankings does not reduce immediately
to the case of elimination rankings and requires a detailed proof (see Theorem 27).

The paper is organized as follows. In Section 2, the necessary differential-algebraic
notation is introduced. In Sections 3 and 4, the algebraic algorithm for converting char-
acteristic decompositions from one ranking to another is presented. In Section 5, we
prove some basic properties of canonical characteristic sets, preparing for the proof of
the bound in Section 6. Finally, in the appendix (Section 7) we show how to compute
the canonical characteristic set from any other known representation of a characterizable
differential ideal.

2. Preliminaries

Differential algebra studies systems of polynomial differential equations from the alge-
braic point of view. The approach is based on the concept of differential ring introduced
by J.F. Ritt. Recent tutorials on the constructive theory of differential ideals are pre-
sented in (Hubert, 2003b; Sit, 2002). The classical references for the basic notions we are
using are (Kolchin, 1973; Ritt, 1950).

A differential ring is a commutative ring with unity endowed with a set of derivations
∆ = {δ1, . . . , δm}. The case of m = 1, that is, ∆ = {δ}, is called ordinary. If R is an
ordinary differential ring and y ∈ R, we denote δky by y(k). Construct the multiplicative
monoid Θ =

{
∂k1

1 ∂k2
2 · · · ∂km

m

∣∣ ki > 0
}

of derivative operators. Let Y = {y1, . . . , yn}
be a set whose elements are called differential indeterminates. The elements of the set
ΘY = {θy | θ ∈ Θ, y ∈ Y } are called derivatives. Derivative operators from Θ act on
derivatives as θ1(θ2yi) = (θ1θ2)yi for all θ1, θ2 ∈ Θ and 1 6 i 6 n.

The ring of differential polynomials in differential indeterminates Y over a differential
field k is a ring of commutative polynomials with coefficients in k in the infinite set of
variables ΘY . This ring is denoted by k{y1, . . . , yn}. We consider the case of char k = 0
only. Let u be a derivative in k{y1, . . . , yn} and u = θyi for a derivative operator θ =
δk1
1 δk2

2 · · · δkm
n ∈ Θ and a differential indeterminate yi ∈ {y1, . . . , yn}. The order of u is

defined as ordu = ord θ = k1 + . . . + km. If f is a differential polynomial then ord f
denotes the maximal order of derivatives appearing effectively in f .

A ranking is a well-order ≤ on the set of derivatives compatible with differentiation,
that is, for any derivatives u, v and derivation δ ∈ ∆, u ≤ v implies δu ≤ δv and u < δu
(Kolchin, 1973). A ranking ≤ is said to be orderly iff ordu < ord v implies u < v for
all derivatives u and v. A ranking ≤ is called an elimination ranking iff yi < yj implies
θ1yi < θ2yj for all θ1, θ2 ∈ Θ.
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For a fixed ranking ≤ and a differential polynomial f , denote its leader, rank, initial,
and separant by uf = ld f , rk f , if , and sf , respectively. For a set F of differential
polynomials, the sets of leaders, ranks, initials, and separants of the elements of F are
denoted ldF , rkF , IF , SF , respectively. Let also HF = IF ∪SF . For the differential and
radical differential ideals generated by F in k{y1, . . . , yn}, we use notations [F ] and {F},
respectively.

In this paper, we often treat a differential polynomial f as an algebraic polynomial
over the field k, whose variables are derivatives effectively present in f . We say that
a differential polynomial f is algebraically reduced w.r.t. a differential polynomial g, if
degug

f < degug
g; polynomial f is called differentially reduced w.r.t. g, if f is alge-

braically reduced w.r.t. g and does not contain proper derivatives of ug. Algebraically
autoreduced and differentially autoreduced sets of differential polynomials are defined
accordingly. The differential analogue of an algebraically triangular set (which is a set of
differential polynomials with distinct leaders) is a weak d-triangular set (Hubert, 2003b,
Definition 3.7): a set C of differential polynomials is called weakly d-triangular, if C is
algebraically triangular and ld C is differentially autoreduced.

For an algebraically triangular set A, the algebraic pseudo-remainder of f w.r.t. A is
denoted algrem(f,A); for a weak d-triangular set C, the differential pseudo-remainder of
f w.r.t. C, defined via (Hubert, 2003b, Algorithm 3.13), is denoted d-rem(f, C). Since,
in this paper, differential versions of the above definitions occur more often than the
algebraic ones, we will sometimes omit the descriptor “differential” for brevity.

A ranking on derivatives induces well-orders on the set of ranks and on the set of all
finite sets of ranks (Kolchin, 1973). Given that every autoreduced set is finite (Kolchin,
1973), this implies that every family of autoreduced sets has one of the least rank. For a
differential ideal I, its autoreduced subset of the least rank is called a characteristic set
of I (Kolchin, 1973, page 82).

An algebraically autoreduced set in k{y1, . . . , yn} may be infinite. A ranking induces
a total order on the set of all sets of ranks (including the infinite ones), which is not
necessarily a well-order. Consequently, not every family of algebraically autoreduced sets
has one of the least rank. However, every set of differential polynomials does have an alge-
braically autoreduced subset of the least rank. For an algebraic ideal J in k{y1, . . . , yn},
an algebraically autoreduced subset of J of the least rank is called an algebraic charac-
teristic set of J . An algebraic characteristic set of a finitely generated algebraic ideal is
finite.

Let I be an ideal in a commutative ring R and S be a multiplicative subset of R \ {0}
and containing 1. Then I : S∞ is defined as {a ∈ R|∃s ∈ S∞ : sa ∈ I}. If I is a differential
ideal then I : S∞ is also a differential ideal (see Kolchin (1973)). For a finite set S of
differential polynomials denote by S∞ the multiplicative set containing 1 and generated
by S. A differential ideal I is called characterizable (Hubert, 2000, Definition 2.6), if there
exists a characteristic set A of I such that I = [A] : H∞A . Any such characteristic set
A is called a characterizing set of I. Algebraic characterizable ideals and their algebraic
characterizing sets are defined accordingly. Characterizable ideals are radical (Hubert,
2000, Theorem 4.4).

A characteristic set of a characterizable differential ideal may not be unique. Summa-
rizing (Boulier and Lemaire, 2000, Section 2.2.6), we define the canonical characteristic
set of a characterizable differential ideal. This construction also follows from (Hubert,
2003a, Section 5.4) and (Hubert, 2003b, Theorem 5.5).
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Let A be an autoreduced set in k{y1, . . . , yn} = k{Y }, and let k[N ][L] be the polyno-
mial ring associated with A, where L is the set of leaders of polynomials in A and N is
the set of non-leaders, that is, N = ΘY \ΘL. Note that the set N may be infinite when
∆ 6= ∅.
Definition 1 A characteristic set C = C1, . . . , Cp of a differential ideal I is called canon-
ical if the following conditions are satisfied for every i = 1, . . . , p:

(1) the initial iCi
depends only on non-leaders N of C;

(2) the polynomial Ci does not have factors in k[N,L] belonging to I, other than Ci

itself;
(3) the leading coefficient of Ci w.r.t. the induced lexicographic ordering <lex on mono-

mials over N ∪ L is equal to 1.
The above definition is slightly different from that of (Boulier and Lemaire, 2000).

In Section 5, we will prove correctness of the above definition and some properties of
canonical characteristic sets. An interested reader can also find in Section 7 an algorithm
for computing the canonical characteristic set from any other known representation of a
characterizable differential ideal.

3. Transformation of characteristic sets of prime differential ideals

As above, let k{Y } be a ring of ordinary differential polynomials in n indeterminates
with the derivation δ. Let C be a characteristic set of a prime differential ideal I in
k{Y } w.r.t. a ranking ≤. We propose an algorithm that computes a characteristic set
of I w.r.t. any other ranking ≤′ algebraically. More precisely, using a bound on the
orders of derivatives occurring in the canonical characteristic set D of I w.r.t. the target
ranking, we find a sufficient differential prolongation of C (described below), which defines
a prime algebraic sub-ideal Ī in I containing D. After that, it remains to compute an
algebraic characteristic set of Ī w.r.t. the target ranking and extract from it a differential
characteristic set of I.

3.1. A bound for characteristic sets of prime differential ideals

First, given a characteristic set C of a prime differential ideal I w.r.t. an arbitrary
ranking ≤, we would like to obtain a bound on the orders of derivatives occurring in a
characteristic set of I w.r.t. another given ranking ≤′. For ≤ orderly and ≤′ arbitrary,
such a bound is given in Section 6. If ≤ is not orderly, we first obtain a bound for the
orders of the elements of an orderly characteristic set D of I, and then apply the bound
from Section 6.

Indeed, D can be computed from C with the help of the Rosenfeld-Gröbner algorithm
applied to the system F0 = C, H0 = HC (where the initials and separants of C in HC
are taken w.r.t. ≤). Since I is prime, one of the regular components (A,H) computed by
the Rosenfeld-Gröbner algorithm will coincide with I, and the characteristic set of the
corresponding regular ideal [A] : H∞ w.r.t. ≤′ can be extracted from the lexicographic
Gröbner basis of the algebraic ideal (A) : H∞ via the algorithm given in (Boulier et al.,
1995, Theorem 6). A more efficient algorithm, which uses the fact that the given ideal is
prime and thus avoids the computation of redundant regular components, is presented
in (Boulier et al., 2001).

Let M be the maximal order of derivatives occurring in C. The only place where the
Rosenfeld-Gröbner algorithm differentiates polynomials is the computation of differential
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pseudo-remainders. However, for an orderly ranking, the order of a polynomial cannot
increase as a result of pseudo-reduction. Thus, the orders of derivatives occurring in the
characteristic set D do not exceed M . In fact, the same applies to any other characteristic
set of I w.r.t. the same orderly ranking: the leading derivatives of all characteristic sets
of I w.r.t. the same ranking coincide, and the orders of non-leading derivatives occurring
in a polynomial f cannot exceed the order of the leader of f w.r.t. an orderly ranking.

Now we will use the following
Lemma 2 The number of elements in a characteristic set C of a prime differential ideal
I in the ring of ordinary differential polynomials k{y1, . . . , yn} does not depend on the
ranking.

Proof. If d is the differential dimension of P then the number of elements of C is equal
to n − d by (Cluzeau and Hubert, 2003, Theorem 4.11) which does not depend on the
choice of a differential ranking. 2

Remark 3 The above lemma does not hold in the partial differential case. For example
(borrowed from Boulier et al. (2001)), a characteristic set of the prime differential ideal

[u2
x − 4u, uxyvy − u+ 1, vxx − ux]

in k{Y } with derivations ∆ = {∂/∂x, ∂/∂y} may have 3 or 4 elements, depending on
the ranking.

For the above example, it takes a while to compute the characteristic set of the ideal
w.r.t. the elimination ranking u > v using the Rosenfeld-Gröbner algorithm in Maple
(Golubitsky, 2006). Consider another example that requires less computational effort.
Example 4 Consider the following prime differential ideal:

P = [uyy, vxx + y · ux + u] .

This set of generators forms a characteristic set of P w.r.t. the elimination ranking with
v > u. However, if we change the ranking to u > v, then the following set containing 3
elements will be a characteristic set of P :

vxxyyy,

y2 · vxxxxyy − 2y · vxxxxy + 2y · vxxxyy + 2vxxxx − 2vxxxy + vxxyy,

2u− y3 · vxxxyy + 2y2 · vxxxy − 2y · vxxx + 2vxx.

Applying Lemma 2, we obtain the following bound on the order of I (see Section 6):

ord I :=
∑
D∈D

ordD 6 |C| ·max
C∈C

ordC. (1)

This bound is likely to be non-optimal. As in (Golubitsky et al., 2008, Section 4), for a
differential indeterminate yi ∈ Y and a set of differential polynomials F , mi(F ) = myi

(F )
denotes the highest order of a derivative of y occurring in F , or zero, if yi does not occur
in F . It is possible that the results of (Ritt, 1950, Chapter VII), together with Lemma 2,
imply the following bound, which is better: let m1 > m2 > . . . > mn be the numbers
my(C), y ∈ Y , arranged in non-increasing order, then

ord I 6
|C|∑
i=1

mi.
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For this bound, which so far is a conjecture, one needs to verify that Ritt’s proof holds
for non-elimination rankings and also adapt it for ideals specified by characteristic sets,
rather than sets of generators.

According to Theorem 31 (see Section 6.4), the orders of derivatives occurring in the
canonical characteristic set of I w.r.t. any ranking do not exceed the order of I. Thus,
the number

M1 = |C| ·max
C∈C

ordC

bounds the orders of derivatives occurring in the canonical characteristic set of I w.r.t.
any (not necessarily orderly) target ranking ≤′. Let

M(F ) =
∑
y∈Y

my(F ).

Note that the bound (n − 1)! ·M(C) obtained in (Golubitsky et al., 2008, Section 4) is
also a bound for the orders of derivatives occurring in the characteristic set of I w.r.t.
≤′ computed by the Rosenfeld-Gröbner algorithm. In fact, invariant I5 in the proof of
(Golubitsky et al., 2008, Proposition 13), together with Lemma 2, yields a better bound

M2 =
(n− 1)!

(n− |C| − 1)!
·M(C).

In most cases, M2 > M1, but in some, especially for small values of n, it may happen
that M2 < M1. This again suggests that none of the two bounds is optimal. Leaving the
important problem of obtaining an optimal bound for future research, we summarize the
bounds obtained so far in the following
Lemma 5 Let C be a characteristic set of an ordinary prime differential ideal I w.r.t.
a ranking ≤. Then ord I and the orders of derivatives occurring in the canonical charac-
teristic set of I w.r.t. another ranking ≤′ do not exceed

MC := min(M1,M2) = min
(
|C| ·max

C∈C
ordC,

(n− 1)!
(n− |C| − 1)!

·M(C)
)
.

3.2. Differential prolongation: the prime case

Assume that ld≤ C =
{
y

(d1)
1 , . . . , y

(dk)
k

}
. Let mi = MC , 1 6 i 6 k. Compute the set

A = Differentiate&Autoreduce
(
C, {mi}ki=1

)
(for the algorithm Differentiate&Autoreduce, see (Golubitsky et al., 2008, Algorithm 2,
Section 4.1)). Informally speaking, the set A can be thought of as a result of an au-
toreduction of a differential prolongation of the input set C = {C1, . . . , Ck}, i.e., of the
set

C̃ =
{
δjCi | 1 6 i 6 k, 0 6 j 6 mi − di

}
.

In particular, we have rkA = rk C̃. See Algorithm 1 for the formal specification of Differ-
entiate&Autoreduce.

Let D be the canonical characteristic set of I w.r.t. ≤′. Every polynomial in D, as an
element of I, reduces w.r.t. C and ≤ to zero. Since the orders of derivatives occurring in
D do not exceed MC , every polynomial in D algebraically reduces to zero w.r.t. A. That
is, D ⊂ (A) : H∞A . The algebraic ideal Ī = (A) : H∞A is equal to the intersection of I
with the ring

R = k [ΘY \Θ ld≤ C ∪ ld≤A] .
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Algorithm 1 Differentiate&Autoreduce(C, {mi})
Input: a weak d-triangular set C = C1, . . . , Ck with ld C = y

(d1)
1 , . . . , y

(dk)
k ,

and a set of non-negative integers {mi}ki=1, mi > mi(C)

Output: set A =
{
Aj

i

∣∣ 1 6 i 6 k, 0 6 j 6 mi − di

}
satisfying

• rkAj
i = rkC(j)

i

• Aj
i are reduced w.r.t. C \ {Ai}

• mi(A) 6 mi, i = 1, . . . , k
• mi(A) 6 mi(C) +

∑k
j=1(mj − dj), i = k + 1, . . . , n

• A ⊂ [C] ⊂ [A] : H∞A
• HA ⊂ H∞C + [C], HC ⊂ (H∞A + [A]) : H∞A

or {1}, if it is detected that [C] : H∞C = (1)

Indeed, A ⊂ R. Vice versa, every element of I ∩R algebraically reduces w.r.t. A to zero
and therefore belongs to (A) : H∞A .

Since I is prime, so is Ī. Applying one of the existing efficient algorithms (for instance,
see (Boulier et al., 2001) or (Dahan et al., 2006)) to the set A, we compute the canonical
algebraic characteristic set B of Ī w.r.t. the target ranking ≤′. We know that the algebraic
ideal Ī contains the canonical characteristic set D of the differential ideal I w.r.t. ≤′. In
the following section, we will show that, in fact, D ⊆ B.

3.3. Extracting a differential characteristic set

The following two lemmas hold in the partial differential case. We assume that a
ranking is fixed.
Lemma 6 Let k{Y } be a ring of partial differential polynomials, and let K be an arbi-
trary subset of k{Y }\k. Let C be a differential characteristic set of K and A an algebraic
characteristic set of K. Let T be a weak d-triangular subset of A of the least rank. Then
rk T ≤ rk C.

Proof. Suppose that a polynomial 0 6= f ∈ C is differentially reduced w.r.t. T . Then,
since T is a weak d-triangular subset of A of the least rank, f is algebraically reduced
w.r.t. A. Due to the fact that A is an algebraic characteristic set of K, we have f = 0,
contradiction. Thus, no element of C is differentially reduced w.r.t. T , which implies that
rk T ≤ rk C. 2

Lemma 7 Let I be a prime differential ideal, let C be the canonical characteristic set
of I, and let J = I ∩ k[V ], where V ⊂ ΘY , be an algebraic ideal containing C. Then
the canonical algebraic characteristic set (as in Definition 1) D of J contains C; more
precisely, C is the weak d-triangular subset of D of the least rank.

Proof. Since D is triangular, its weak d-triangular subset of the least rank is unique.
Let T be the weak d-triangular subset of D of the least rank. Since D is an algebraic
characteristic set of the prime ideal J , we have HD ∩ J = ∅. Moreover, HD ⊂ k[V ],
therefore HD ∩ I = ∅ and, hence, HT ∩ I = ∅. Since T ⊂ I and I is prime, this implies

[T ] : H∞T ⊂ I. (2)
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Algorithm 2 Convert Prime (C, ≤, ≤′)
Input: a prime differential ideal P = [C] : H∞C ⊂ k{y1, . . . , yn}

with a characteristic set C w.r.t. the input ranking ≤

with leading variables y1, . . . , yk and

a target ranking ≤′.

Output: canonical characteristic set of P w.r.t. ≤′.

MC := min
(
|C| ·max

C∈C
ordC, (n−1)!

(n−|C|−1)! ·M(C)
)

mi := MC, 1 6 i 6 k

A := Differentiate&Autoreduce
(
C, {mi}ki=1

)
D := Canonical Algebraic CharSet ((A) : H∞A , ≤′)

return minimal d-triangular subset (D, ≤′)

Let
A = {d-rem(f, T \ {f}) | f ∈ T }.

We have A ⊂ [T ] ⊂ I; we will show that set A is differentially autoreduced and rkA =
rk T .

First, show that rkA = rk T . Indeed, suppose that for some f ∈ T and g = d-rem(f, T \
{f}), we have rk g < rk f . Since T is a weak d-triangular set, ld f 6∈ Θ ld(T \ {f}). Thus,
(Golubitsky et al., 2008, Lemma 4) applies and tells us that if ∈ [T ] : H∞T . Hence,
according to (2), if ∈ I. This contradicts with the fact that HT ∩ I = ∅.

Now, since g is reduced w.r.t. T \ {f}, rk g = rk f , and rkA = rk T , g is also reduced
w.r.t. A \ {g}. That is, the set A is autoreduced. By Lemma 6, rk T ≤ rk C. Therefore,
rkA ≤ rk C. Since A is an autoreduced subset of I, while C is an autoreduced subset of
I of the least rank, we have rkA ≥ rk C. Thus, rkA = rk T = rk C.

Let D̄ = (D \T )∪C. Set D̄ is algebraically autoreduced, has the same rank as D, and
satisfies the requirements of canonicity: for every f ∈ D̄, the initial of f does not depend
on the leaders of D̄, f is monic and has no factors in k[N(D̄)], where N(D̄) = N(D) =
V \ ldD is the set of non-leaders of D (or D̄). Since the canonical characteristic set is
unique, we have D̄ = D and C = T . This concludes the proof. 2

Returning to the notation from the previous section and applying the above lemma,
we obtain that the canonical characteristic set D of I is equal to the weak d-triangular
subset of B of the least rank w.r.t. ≤′. This concludes the computation of the canonical
characteristic set of I w.r.t. the target ranking, which we summarize in Algorithm 2.

4. Transformation of characteristic decompositions of radical differential
ideals

We generalize the algebraic method for transforming characteristic sets of a prime
differential ideal from one ranking to another to the case of a characterizable differential
ideal. Since an ideal characterizable w.r.t. one ranking may not be characterizable w.r.t.
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another one, we need to reformulate the problem: given a characterizable differential ideal
I with a characteristic set C w.r.t. a ranking ≤, compute a characteristic decomposition
of I w.r.t. another ranking ≤′ algebraically. By analogy with the prime case, an algebraic
computation here means finding a sufficient differential prolongation of C, which defines
a characterizable algebraic sub-ideal Ī in I, such that a differential characteristic decom-
position of I w.r.t. ≤′ can be extracted from an algebraic characteristic decomposition
of Ī w.r.t. ≤′.

We note that, given a characteristic decomposition of a radical differential ideal w.r.t.
one ranking, we can obtain its characteristic decomposition w.r.t. another ranking alge-
braically by solving the above problem for each characterizable component.

All results of this section hold in the partial differential case, except for the bound in
Section 4.2, which so far is known only for the ordinary case.

4.1. Differential prolongation

Definition 8 Let F be a (possibly infinite) subset in a ring k{Y } of partial differential
polynomials with a set of derivations ∆. A set G ⊂ ΘF is called a differential prolongation
of F , if F ⊂ G and the complement of G, ΘF \G, is invariant w.r.t. differentiation, i.e.,
for all f ∈ ΘF \G and δ ∈ ∆, δf ∈ ΘF \G.

A particular case of a differential prolongation of a weak d-triangular set F is F
itself. If F = C is autoreduced and coherent then, according to (Kolchin, 1973, Lemma
6, page 137) and (Hubert, 2000, Lemma 6.1 and Theorem 6.2), the differential ideal
I = [C] : H∞C is prime, respectively characterizable iff the algebraic ideal J = (C) : H∞C is
prime, respectively characterizable. The ideal J can be considered either as an algebraic
ideal in the ring of differential polynomials k{Y } or as an ideal in the polynomial subring
k[ZC ], where ZC = L ∪N , L = ld C, N = ΘY \ΘL, since the fact that C is autoreduced
implies C ⊂ k[ZC ]. The Rosenfeld Lemma states that

[C] : H∞C ∩ k[ZC ] = (C) : H∞C ,

where the latter ideal is considered in k[ZC ]. Moreover, a set D is a differential charac-
teristic set of I iff D is an algebraic characteristic set of J (if the latter is considered
in k[ZC ], otherwise we need to impose an additional requirement that D is differentially
autoreduced). In particular, the canonical characteristic sets of I and J (differential and
algebraic, respectively) coincide (for this statement, it does not matter in which ring to
consider J , since the canonical characteristic set of an ideal is the same regardless of the
ring in which the ideal is considered).

Now, if we consider a differential prolongationD of C and the corresponding polynomial
subring k[ZD], where ZD = L̄ ∪N , L̄ = ldD, N = ΘY \ΘL = ΘY \ΘL̄, then D is not
necessarily a subset of k[ZD]:
Example 9 Let C = y′, x+ y with the elimination ranking y < x and a prolongation

D = y′, x+ y, x′ + y′, x′′ + y′′.

Then
L̄ = y′, x, x′, x′′, N = y.

Hence, we have that x′′ + y′′ /∈ k[ZD]. Also,

[C] : H∞C ∩ k[ZD] = (y′, x+ y, x′, x′′)

and x′′ /∈ (D) : H∞D .
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Therefore, we need to distinguish between two ideals ID := (D) : H∞D in k{Y } and
ĪD := I ∩ k[ZD] in k[ZD]. The algebraic ideal ĪD depends only on the set of leaders L̄ of
the differential prolongation of C. In other words, for any characterizing set C̃ of I and
its differential prolongation D̃ with ld D̃ = ldD = L̄, we have ĪD̃ = ĪD. We call ĪL̄ := ĪD
a prolongation ideal of the ideal I.

Next, we study properties of prolongation ideals. The following lemma gives a criterion
for a prolongation ideal to be prime or characterizable.
Lemma 10 Let C be a coherent autoreduced set, and let D be a differential prolongation
of C. Then the differential ideal 1 /∈ I = [C] : H∞C is prime, respectively characterizable,
iff the corresponding prolongation ideal ĪD is prime, respectively characterizable.

Proof. If I is prime then its restriction I ∩ k[ZD] = ĪD is also prime. If ĪD is prime
than its restriction ĪD ∩ k[ZC ] = (C) : H∞C is prime and, thus, I is prime. Let I be a
characterizable differential ideal. We will show that the set A given by formula (3) in
Lemma 11 characterizes the prolongation ideal ĪD. We have

ĪD ⊂ (A) : H∞A .

Indeed, by (Golubitsky et al., 2008, Lemma 4), the sets A and D have the same ranks,
whence they have the same sets of reduced polynomials. In particular, since D is a differ-
ential prolongation of the characteristic set C, the ideal ĪD has no non-zero polynomials
reduced w.r.t. D, and hence w.r.t. A.

Now note that (A) : H∞A ⊂ I and A ⊂ k[ZD]. Hence, ĪD = (A) : H∞A and A is a
characteristic set of ĪD. Thus, ĪD is characterizable. Since C ⊂ k[ZD] and (C) : H∞C =
I ∩ k[ZC ], we have

(C) : H∞C = (A) : H∞A ∩ k[ZC ].
2

The next lemma establishes a relation between characteristic sets of a characterizable
differential ideal I and algebraic characteristic sets of its prolongation ideals.
Lemma 11 Let C be a characteristic set of the differential ideal 1 /∈ I = [C] : H∞C , let
L̄ be a differential prolongation of L = ld C, and let ĪL̄ be the corresponding prolongation
ideal. Then a characterizing set A of ĪL̄ can be obtained from C as

A := {algrem(f,B \ {f}) | f ∈ B, ld f ∈ L̄}, (3)

where B is any triangular subset of ΘC satisfying ldB = ld L̄.
Vice versa, given a characterizing set A of ĪL̄, let T be a weak d-triangular subset of

A of the least rank. If T is differentially autoreduced, then it is a characterizing set of
I. In particular, if A is the canonical characteristic set of ĪL̄, then T is the canonical
characteristic set of I.

Proof. Since I is characterizable, ĪL̄ is also characterizable by Lemma 10 and A is its
characteristic set. The other way follows from Lemma 6. 2

In the ordinary case, the triangular set B considered in the above lemma is unique.
Moreover, the set A can be equivalently obtained as

A := Differentiate&Autoreduce(C, {mi}),

11



where the numbers {mi} are the maximal orders of derivatives of the leading differential
indeterminates of C occurring in the prolongation L̄. It is preferable to compute A in
this way, because Differentiate&Autoreduce provides a bound on the orders of non-leading
derivatives occurring in A, which can be used for establishing complexity estimates for
the entire transformation algorithm.

A generalization of Algorithm Differentiate&Autoreduce to the partial case is an inter-
esting open problem. Moreover, in the partial case, there may be uncountably infinitely
many triangular subsets of ΘC whose leaders coincide with ld ΘC. Thus, not every such
set can be enumerated by an algorithmic procedure. However, it is easy to write a pro-
cedure that would enumerate a particular subset of ΘC, given C; this procedure makes
computation of the set of algebraic pseudo-remainders algorithmic as well. If one would
like to choose the subset B in a systematic way, we suggest to use the ideas from the
theory of monomial involutive divisions (Gerdt and Blinkov, 1998).

According to (Hubert, 2003b, Theorem 4.13), there is a one-to-one correspondence
between the minimal prime components of a characterizable differential ideal [C] : H∞C
and the minimal prime components of the corresponding algebraic ideal (C) : H∞C . The
following lemma generalizes this result to prolongation ideals.
Lemma 12 Let C be a characteristic set of the differential ideal I = [C] : H∞C , let L̄ be a
differential prolongation of L = ld C, and let ĪL̄ be the corresponding prolongation ideal.
Let

I = P1 ∩ . . . ∩ Pk

be the minimal prime decomposition of I, and let (P̄i)L̄ be the prolongation ideals corre-
sponding to Pi, i = 1, . . . , k. Then

ĪL̄ =
(
P̄1

)
L̄
∩ . . . ∩

(
P̄k

)
L̄

is the minimal prime decomposition of ĪL̄.

Proof. Since ĪL̄ = I ∩ k[ZL̄],

ĪL̄ = (P1 ∩ k[ZL̄]) ∩ . . . ∩ (Pk ∩ k[ZL̄]) =
(
P̄1

)
L̄
∩ . . . ∩

(
P̄k

)
L̄

is a prime decomposition of the ideal ĪL̄. Suppose that it is not minimal. Then, since
(C) : H∞C = ĪL̄ ∩ k[ZC ],

(C) : H∞C =
((
P̄1

)
L̄
∩ k[ZC ]

)
∩ . . . ∩

((
P̄k

)
L̄
∩ k[ZC ]

)
is a prime decomposition of the ideal (C) : H∞C , which is also not minimal. But the latter
contradicts the fact that (P̄i)L̄ ∩ k[ZC ] = Pi ∩ k[ZC ], 1 6 i 6 k, and

(C) : H∞C = (P1 ∩ k[ZC ]) ∩ . . . ∩ (Pk ∩ k[ZC ])

is the minimal prime decomposition. 2

4.2. A bound for characteristic sets of prime components

Let I = [C] : H∞C be a characterizable differential ideal with a characteristic set C
w.r.t. a ranking ≤. Let L = ld≤ C, and let L̄ be a differential prolongation of L. From the
previous section we know that the prolongation ideal ĪL̄ is characterizable (Lemma 10)
and its minimal prime components correspond to the minimal prime components of I
(Lemma 12). We would like to find a sufficient differential prolongation L̄ such that the
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minimal prime components of ĪL̄ contain differential characteristic sets of the correspond-
ing minimal prime components of I w.r.t. any other ranking ≤′.

First of all, according to (Hubert, 2003b, Theorem 4.13), a differential characteristic
set of a minimal prime component of I coincides with an algebraic characteristic set of
the corresponding minimal prime component of the ideal (C) : H∞C . This implies that
every minimal prime component P of I has a characteristic set CP satisfying the bound
my(CP ) 6 my(C) on the orders of derivatives of any differential indeterminate y ∈ Y
occurring in CP .

For the ordinary case, as was shown in Section 3.1, we thus have a bound MC on the
orders of derivatives occurring in the canonical characteristic sets of the minimal prime
components of I w.r.t. any other ranking ≤′. For the partial differential case, such a
bound is not known, but let us assume that we can compute such a bound MC also for
the partial case 5 . We need to assume that MC > my(C) for all y ∈ Y .

Let
L̄ = {θu | u ∈ L, ord θu 6 MC} (4)

be the differential prolongation of L up to the order MC . According to Lemma 12, the
minimal prime components of ĪL̄ contain all polynomials of the corresponding minimal
prime components of I of order less than or equal to MC . Thus, they also contain the
canonical characteristic sets of the corresponding minimal prime components of I w.r.t.
any other ranking ≤′. In what follows, we will denote the above differential prolongation
ĪL̄ simply by Ī. Applying Lemma 11, we compute a characteristic set of Ī w.r.t. ≤.

4.3. Algebraic bi-characteristic decomposition

So, we have the differential ideal I which is characterizable w.r.t. the ranking ≤ and
would like to give a characteristic decomposition of I w.r.t. ≤′ . We have constructed the
prolongation algebraic ideal Ī which is characterizable w.r.t. ≤ with a characteristic set
A given by formula (3). Let

Ī = J̄1 ∩ . . . ∩ J̄k (5)
be a bi-characteristic decomposition of Ī w.r.t. ≤ and ≤′. That is, each component J̄i,
1 6 i 6 k, is an algebraic ideal characterizable w.r.t. both rankings with the canonical
characteristic sets Ai and Bi w.r.t. ≤ and ≤′, respectively.

Let us discuss how one can construct such a decomposition. Algorithm 3 does the
following. Given a characterizable algebraic ideal I with the characterizing set C w.r.t.
≤s, it first computes its (possibly redundant) algebraic characteristic decomposition w.r.t.
≤t via the procedure

Algebraic-characteristic-decomposition(C,≤s,≤t).

This procedure can be performed, for example, by applying the Triade algorithm (Moreno
Maza, 1999), which is implemented in the RegularChains library in Maple (Lemaire
et al., 2005). A parallel implementation of this algorithm, on a shared memory machine
in Aldor is also in progress (Moreno Maza and Xie, 2006).

If one of the characterizable components turns out to be equal to I (note that equality
of characterizable algebraic ideals can be checked, e.g., by computing their Gröbner

5 Of course, MC can be obtained by computing characteristic sets of the prime components w.r.t. the
target ranking, but this would clearly defeat our purpose: we need a bound that can be computed from

C relatively easily.
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Algorithm 3 Algebraic-Bicharacteristic-Decomposition (C,≤,≤′)
Input: characterizing set C of a characterizable algebraic ideal I

w.r.t. an ordering ≤ on variables and another ordering ≤′

Output: a finite set T = {(Ci,Di) | i ∈ I}, where

for every i ∈ I, Ci and Di are algebraic characterizing sets

of the same ideal Ii w.r.t. ≤ and ≤′, respectively, and

I = ∩i∈IIi

≤s:=≤, ≤t:=≤′

C := {C}, T := ∅

while C 6= ∅ do

U := C, C := ∅

for C ∈ U do

J := (C) : H∞C w.r.t. ≤s

D :=Algebraic-characteristic-decomposition(C,≤s,≤t)

if ∃ D ∈ D such that J = (D) : H∞D w.r.t. ≤t then

if ≤s=≤ then T := T ∪ {(C,D)} else T := T ∪ {(D, C)}

else C := C ∪D

end if

end for

if ≤s=≤ then ≤s:=≤′, ≤t:=≤ else ≤s:=≤, ≤t:=≤′

end while

return T

bases), then I is bi-characterizable; in this case the algorithm terminates and outputs T
consisting of a single pair (C,D) of characterizing sets of I w.r.t. ≤ and ≤′, respectively.
If all characterizable components of I contain it strictly, then, for each characterizable
component, we compute its characteristic decomposition w.r.t. ≤ and repeat the above
strategy.

Correctness of the algorithm follows from the fact that, at each iteration of the while-
loop, C ∪ T provides a characteristic decomposition of I w.r.t. ≤s and T satisfies the
requirements of the output. Termination follows from the Noetherian property of the
polynomial ring, i.e., that every sequence of strictly nested polynomial ideals is finite.

We note that the components J̄i, for which ld≤Ai 6= ld≤A, are redundant, i.e., they
can be excluded from the right-hand side of (5) without affecting the intersection. Indeed,
if

Ī = P̄1 ∩ . . . ∩ P̄l
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is the minimal prime decomposition of Ī, and

J̄i = Q̄i,1 ∩ . . . ∩ Q̄i,li

are the minimal prime decompositions of J̄i, 1 6 i 6 k, then a component J̄i is redundant,
if none of P̄j , 1 6 j 6 l, can be found among Q̄i,t, 1 6 t 6 li. But this is the case if
ld≤Ai 6= ld≤A, since by (Hubert, 2003b, Theorem 4.13) the characteristic sets of P̄j

have leaders ld≤A, while the characteristic sets of Q̄i,t have leaders ld≤Ai. Therefore,
we can assume that for all i, 1 6 i 6 k,

ld≤Ai = ld≤A.

We prove then that every minimal prime component of J̄i is a minimal prime component
of Ī. Indeed, every Q̄i,t is a prime ideal containing Ī. Suppose that Q̄i,t is not minimal,
i.e., there is a minimal prime component P̄j of Ī such that P̄j ( Q̄i,t. But the latter strict
inclusion is impossible according to the following Lemma 13 and Remark 14.
Lemma 13 Let P and Q be two prime differential ideals whose characteristic sets w.r.t.
≤ have the same sets of leaders. Then P ⊆ Q implies P = Q.

Proof. Let C1 and C2 be these characteristic sets. We have P = [C1] : H∞C1 and Q = [C2] :
H∞C2 . Consider the restricted ideals p = (C1) : H∞C1 and q = (C2) : H∞C2 in the Noetherian
ring k[L,N(C1, C2)], where N(C1, C2) is the set of non-leading variables appearing in
both C1 and C2. From (Hubert, 2000, Theorem 3.2) it follows that both p and q are of
dimension |N(C1, C2)|.

Take any f ∈ p. It is partially reduced w.r.t. both C1 and C2 (which are coherent and
autoreduced) and belongs to P ⊂ Q. By the Rosenfeld lemma f ∈ q. Hence, p ⊂ q. Since
the ideals p and q are prime and their Krull dimensions are equal to the same number
|N(C1, C2)|, we obtain p = q.

Thus, C2 ⊂ p ⊂ P . Moreover, the elements of HC2 do not belong to Q ⊇ q = p; since
they are partially reduced w.r.t. C2 (and, therefore w.r.t. C1, given that ld C1 = ld C2), by
the Rosenfeld Lemma, the elements of HC2 do not belong to P . Thus,

Q = [C2] : H∞C2 ⊆ P : H∞C2 = P,

which, together with the given inclusion P ⊆ Q implies P = Q. 2

Remark 14 In the above lemma, one can assume that the set of derivations is empty,
hence the statement also holds for algebraic ideals.

To summarize, for every bi-characterizable component J̄i, there exists a subset Ti ⊂
{1, . . . , l} such that

J̄i =
⋂

j∈Ti

P̄j

is the minimal prime decomposition of J̄i. Moreover, equality (5) implies that

l⋃
i=1

Ti = {1, . . . , l}.
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4.4. Constructing differential characterizable components from the algebraic ones

Fix any of the above algebraic bi-characterizable components J̄ = J̄i, where 1 6 i 6 k;
we have a set of indices T = Ti ⊂ {1, . . . , l} such that

J̄ =
⋂
j∈T

P̄j .

As above, let A = Ai and B = Bi be the canonical characteristic sets of J̄ w.r.t. ≤ and
≤′, respectively. According to Lemma 12, each minimal prime component P̄j of Ī is a
prolongation ideal of the corresponding minimal prime component Pj of I, that is,

P̄j = Pj ∩ k
[
L̄ ∪N

]
,

where I =
⋂l

j=1 Pj is the minimal prime decomposition of I. Since B is a characterizing
set of J̄ w.r.t. ≤′, the initials and separants of B w.r.t. ≤′ are not zero-divisors modulo
J̄ , that is, they do not belong to the minimal prime components P̄j , j ∈ T . Since B, as
well as HB, is a subset of k

[
L̄ ∪N

]
, we have, therefore,

HB ∩ Pj = ∅

for all j ∈ T . Let T ⊂ B be the weak d-triangular subset of B of the least rank w.r.t. ≤′.
Since HT ⊂ HB, we also have

HT ∩ Pj = ∅
for all j ∈ T . Thus, we have

[T ] : H∞T ⊂ Pj

for all j ∈ T . In particular, this implies that

[T ] : H∞T 6= (1).

Let D be the result of differential autoreduction of T w.r.t. ≤′, that is,

D = {d-rem(f, T \ {f}) | f ∈ T }.

The set D is differentially autoreduced. We will show that, in fact, D = T . By definition
of differential remainder, D ⊂ [T ]. By (Golubitsky et al., 2008, Lemma 4), since [T ] :
H∞T 6= (1), we have rk≤′ D = rk≤′ T and, moreover, HD ⊂ H∞T + [T ]. Therefore,

[D] : H∞D ⊂ [T ] : H∞T ⊂ Pj , j ∈ T. (6)

We will show that D is a characteristic set of the ideal [D] : H∞D w.r.t. ≤′ by proving
that every polynomial in the intersection

⋂
j∈Ti

Pj reduces w.r.t. D to zero. Given (6),
this will also imply that

[D] : H∞D =
⋂
j∈T

Pj . (7)

Take any polynomial f ∈
⋂

j∈T Pj , and let f̄ = d-rem(f,D), where the pseudo-remainder
is computed w.r.t. ≤′. Since D ⊂ [T ] ⊂ Pj , j ∈ T , we have

f̄ ∈
⋂
j∈T

Pj .

Let Fj be the canonical characteristic set of Pj w.r.t. ≤′, and let F̄j be the canonical
algebraic characteristic set of the corresponding prolongation ideal P̄j . We have shown
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in Section 4.2 that P̄j contains Fj . Thus, from Lemma 7 it follows that Fj is the weak d-
triangular subset of F̄j of the least rank w.r.t.≤′. On the other hand, since P̄j is a minimal
prime component of J̄ , according to (Hubert, 2003b, Theorem 4.13), ld≤′ F̄j = ld≤′ B.
This implies that

ld≤′ Fj = ld≤′ T = ld≤′ D.
That is, the fact that f̄ is reduced w.r.t. D implies that it is partially reduced w.r.t. Fj .
By the Rosenfeld Lemma,

f̄ ∈ (Fj) : H∞Fj
⊂ (F̄j) : H∞F̄j

= P̄j , j ∈ T

i.e., f̄ ∈ J̄ . Now, the fact that f̄ is reduced w.r.t. D implies that it is algebraically reduced
w.r.t. B. Since the latter is a characteristic set of J̄ , we obtain f̄ = 0 and the required
equality (7).

Now we see that the ideal [D] : H∞D is characterizable w.r.t. ≤′. The canonical char-
acteristic set of this ideal w.r.t. ≤′ is contained in each minimal prime component of the
ideal (D) : H∞D , therefore it is also contained in every P̄j , j ∈ T , and hence in J̄ . The
ideal J̄ is contained in [D] : H∞D . Thus, by Lemma 7, the canonical characteristic set of
[D] : H∞D is equal to the weak d-triangular subset of B of the least rank w.r.t. ≤′. That
is, we have

D = T
which is (w.r.t. the ranking ≤′) the canonical characteristic set of the characterizable
differential ideal

[D] : H∞D .

4.5. The final characteristic decomposition

In the previous section, we have shown that for each bi-characterizable component
J̄i, 1 6 i 6 l, of Ī with the canonical characteristic set Bi w.r.t. ≤′, if Di is the weak
d-triangular subset of Bi of the least rank, then it is the canonical characteristic set of
the ideal [Di] : H∞Di

. We have also shown that

[Di] : H∞Di
=
⋂

j∈Ti

Pj .

Thus, since
⋃l

i=1 Ti = {1, . . . , l}, the following intersection

l⋂
i=1

[Di] : H∞Di

is a characteristic decomposition of I = P1∩. . .∩Pl w.r.t. ≤′. This concludes the algebraic
computation of a characteristic decomposition of I w.r.t. the target ranking, which we
summarize in Algorithm 4.

Now, in order to convert a characteristic decomposition

I =
p⋂

i=1

[Ci] : H∞Ci

of a radical differential ideal I w.r.t. ≤ to a ranking ≤′, one just applies Algorithm 4 to
each characterizable component [Ci] : H∞Ci

and then collects all the results together in a
single intersection.
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Algorithm 4 Convert Characterizable (C, ≤, ≤′)
Input: set C which characterizes the ideal [C] : H∞C w.r.t. the input ranking ≤

and has leading variables y1, . . . , yk and a target ranking ≤′.

Output: characteristic decomposition of [C] : H∞C w.r.t. ≤′.

MC := min
(
|C| ·max

C∈C
ordC, (n−1)!

(n−|C|−1)! ·M(C)
)

mi := MC, 1 6 i 6 k

A := Differentiate&Autoreduce
(
C, {mi}ki=1

)
D := Bi-characterizable Canonical Decomposition ((A) : H∞A , ≤, ≤′)

C := {minimal d− triangular subset (D,≤′) | D ∈ D}

return C

5. Canonical characteristic sets

In this section, we prove correctness of the definition of the canonical characteristic set
(see Definition 1) and list some properties of this set, preparing ourselves for the proof
of the bound in the next section. Throughout this section we assume that a ranking is
fixed.

The difference of our definition from that of (Boulier and Lemaire, 2000) is that
we did not require the canonical characteristic set to be a characterizing set of the
differential ideal. Thus, (Boulier and Lemaire, 2000) implies the existence of the canonical
characteristic set (for characterizable differential ideals) in the sense of Definition 1. Its
uniqueness is shown in (Boulier and Lemaire, 2000, Theorem 3). We prove this below for
arbitrary differential ideals.

We have also replaced the set NC of non-leaders effectively occurring in C by the
set N = ΘY \ ΘL of all non-leaders (where L is the set of leaders of C). This replace-
ment yields an equivalent definition, which is more convenient, because it provides the
ring k(N)[L] independently of the choice of the characteristic set C, while the field of
coefficients k(NC) of the polynomial ring k(NC)[L] depends on C. 6

Proposition 15 Let C be a characteristic set of a characterizable differential ideal I,
whose initials do not depend on the leaders of C. Then C characterizes the ideal I, that
is, I = [C] : H∞C .

Proof. By (Hubert, 2000, Theorems 3.2 and 4.5), for every minimal prime component
P of I, the set of leaders of any characteristic set D of P coincides with ld C. Since the
initials of C do not depend on the leaders of C, they are reduced w.r.t. D and, hence, do
not belong to P . Thus, the initials of C are not zero-divisors modulo I.

Hence, the initials of C are not zero-divisors modulo the algebraic ideal Ī = I∩ [N ∪L],
that is, Ī : I∞C = I. By the Rosenfeld Lemma, Ī ⊆ (C) : I∞C . Since C ⊂ Ī, we obtain
therefore

Ī ⊆ (C) : I∞C ⊆ Ī : I∞C = Ī .

6 The idea of constructing a canonical field of coefficients by considering the infinite set of all non-leading

derivatives was communicated to the first author by E. Hubert.
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Since I is characterizable, it is radical, whence so is Ī = I ∩k[N ∪L]. Thus, by (Hubert,
2000, Proposition 3.3), we have

Ī = (C) : I∞C = (C) : H∞C ,

that is, Ī = (C) : H∞C is a characterizable algebraic ideal characterized by C. According
to (Hubert, 2000, Lemma 6.1), the latter implies that the differential ideal [C] : H∞C is
also characterizable and characterized by C.

Let A be a characterizing set for I, that is, A is a characteristic set of I such that
[A] : H∞A = I. Since C is a characteristic set of I, we have

I ⊆ [C] : H∞C .

In particular,
A ⊂ I ⊆ [C] : H∞C .

Thus, for all f ∈ [C] : H∞C , we have

f̄ = d-rem(f,A) ∈ [C] : H∞C .

Since C characterizes [C] : H∞C , either f̄ = 0, or f̄ is reducible w.r.t. C. But the latter is
impossible, because rkA = rk C (since both are characteristic sets of I), and f̄ is reduced
w.r.t. A. Therefore, f̄ = 0, which means that every f ∈ [C] : H∞C reduces w.r.t. A to zero
and

[C] : H∞C ⊆ [A] : H∞A = I.

This concludes the proof. 2

The following statement can be obtained by combining Lemmas 3.5 and 3.9 from
(Hubert, 2000), yet it appears to be easier to prove it directly.
Proposition 16 Let C be a characteristic set of a differential ideal I, whose initials do
not depend on the leaders of C. Then B = {f/if | f ∈ C} is the reduced Gröbner basis
of the zero-dimensional algebraic ideal J generated by I ∩ k[N ∪L] in k(N)[L] w.r.t. the
lexicographic ordering on monomials over L induced by the ranking.

Proof. Every element of the ideal I ∩ k[N ∪ L] algebraically pseudo-reduces w.r.t. C to
zero. Since the initials of C are in k(N), the ideal J is generated by B in k(N)[L]. Also,
the leading monomials of B w.r.t. the induced lexicographic ordering are elements of rk C,
whence B is autoreduced w.r.t. the induced lexicographic ordering, B is a Gröbner basis
(since its leading monomials are pairwise relatively prime), and the ideal J in k(N)[L]
is zero-dimensional by (Adams and Loustanau, 1996, Theorem 2.2.7). 2

Corollary 17 Let C be a characteristic set of a differential ideal I, whose initials do
not depend on the leaders of C. Then any other characteristic set of I, whose initials do
not depend on the leaders, can be obtained via multiplying/dividing the elements of C by
some polynomials from k[N ].
Corollary 18 If a canonical characteristic set C exists for a differential ideal I, it is
unique, and every other characteristic set of I, whose initials do not depend on the
leaders, can be obtained via multiplying the elements of C by some polynomials from
k[N ].
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The following property of canonical characteristic sets will be used further in Lemma 26
and will help us to obtain the bound on the orders of the elements of canonical charac-
teristic sets. The next section will tell about this in detail.
Proposition 19 Let C = C1, . . . , Cp be the canonical characteristic set of a characteri-
zable differential ideal I. Let v be a derivative appearing in some Ci, 1 6 i 6 p. Then,

∂Ci

∂v
/∈ I.

Proof. Suppose that
∂Ci

∂v
∈ I. Then v appears effectively in the initial iCi

. Indeed,

suppose that v is not in iCi , then
∂Ci

∂v
is not reducible w.r.t. C. This contradicts the fact

that C is a characteristic set of I and
∂Ci

∂v
∈ I. Now, since v appears effectively in iCi

,
the set

C′ = C \ {Ci} ∪
{
∂Ci

∂v

}
is autoreduced and has the same rank as C, hence C′ is a characteristic set of I. Moreover,

the initial of
∂Ci

∂v
is equal to

∂iCi

∂v
, hence it does not depend on the leaders of C. Yet

∂Ci

∂v
is not a multiple of Ci, which contradicts Corollary 18. 2

6. Main tool: bounds for the orders of characteristic sets

Here are the main steps towards the bound for the orders of elements of the canonical
characteristic set of a characterizable differential ideal:
• existence of a bounded characteristic set for prime differential ideals (Section 6.2),
• extension of the existence result to characterizable ideals (Section 6.3),
• reduction to canonical characteristic sets (Section 6.4).
The first step is the most technically difficult one and requires preparation. The last two
steps are easier.

6.1. Preparation

Let R = k{y1, . . . , yn} with ∆ = {δ}. So, we are in the ordinary case. Differential di-
mension of a differential ideal I is the maximal number q such that I ∩k{yi1 , . . . , yiq} =
{0}. Recall that the order of a differential polynomial f is the maximal order of deriva-
tives appearing effectively in f . Fix any differential ranking. Let A = A1, . . . , Ap be an
autoreduced set. Define the order of A by the following equality:

ordA = ordA1 + . . .+ ordAp.

Let an orderly differential ranking be fixed. If C is a characteristic set of a prime differ-
ential ideal P then, by definition, the order of the ideal P equals ord C and denoted by
ordP .

Denote by P (s) the set of elements of P whose order is less than or equal to s. The
set P (s) is a prime algebraic ideal in the corresponding polynomial ring. According to
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(Kolchin, 1973, II.12, Theorem 6) or (Kondratieva et al., 1999, Theorems 5.4.1, 5.4.4)
the dimension of P (s) is a polynomial in s for s > h = ordP . More precisely,

dimP (s) = q(s+ 1) + ordP,

where q is the differential dimension of the ideal P . Moreover, q = n − p, where p is
the number of elements of a characteristic set of the ideal P w.r.t. any orderly ranking.
Thus, the numbers ordP and p do not depend on the choice of an orderly ranking. We
are going to define the order of a characterizable differential ideal, and we should be very
careful because of the following example.
Example 20 Consider the radical differential ideal {x(x+y′)} = I characterizable w.r.t.
the elimination ranking x >el y. While I = [x] ∩ [x+ y′] and the leaders of x and x+ y′

w.r.t. the ranking are the same, the orders of the components are different. This is because
the ideal I is not characterizable w.r.t. any orderly ranking.

Hence, we give the following definition.

Definition 21 For a characterizable differential ideal I =
k⋂

i=1

Pi, where Pi are minimal

differential prime components of I, define

ord I = max
16i6k

ordPi.

Remark 22 The theory of differential dimensional polynomials is due to Johnson (1969);
Kolchin (1973). Carrà Ferro and Sit continued to develop this subject (Carrà Ferro, 1987,
1989; Sit, 1978). Many of the results concerning differential dimension polynomials are
summarized in (Kondratieva et al., 1999). The latter book also presents algorithms for
computing these polynomials.
Lemma 23 (Sadik, 2000, Proposition 17) Consider a prime differential ideal P of dif-
ferential dimension q and order h. For every subset {yi1 , . . . , yiq+1} of {y1, . . . , yn}, the
ideal P contains a differential polynomial in the indeterminates {yi1 , . . . , yiq+1} of order
less than or equal to h.

It is not possible to bound the orders of elements of an arbitrary characteristic set.
For example, consider the ideal [x] ∈ k{x, y} and the elimination ranking with x > y.
Then the set y(q)x is a characteristic set of the ideal [x] for any q > 0. In order to avoid
this problem, the concept of irreducible characteristic set is introduced in (Sadik, 2000)
right before (Sadik, 2000, Lemma 19) for prime differential ideals:
Definition 24 Let A = A1, . . . , Ap be an autoreduced set and Vi−1 be the set of all
derivatives appearing in the polynomials A1, . . . , Ai−1, Ii−1 := IA1,...,Ai−1 , and Ui be the
set of derivatives from Ai that are not in Vi−1. Consider the unique factorization domain

Ri = Quot(k[Vi−1] / (A1, . . . , Ai−1) : I∞i−1)[Ui],

where Quot means the total ring of quotients. The set A is called irreducible if Ai is
irreducible in Ri for all i, 1 6 i 6 p.

The key property of irreducible characteristic sets, which we need for the proof of
our bound, is formulated in (Sadik, 2000, Lemma 20). In addition, our proof of the
bound will require existence of a characteristic set satisfying the statement of the above
Proposition 19, which is a property of canonical characteristic sets. Lemma 26 below
provides the necessary combination of the two properties. Note that it does not imply
that the canonical characteristic set must be irreducible, which, in fact, is not always the
case:
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Example 25 Consider the ideal I = {x2−t, (zx+1)y+1} ⊂ k{x, t, z, y} and any ranking
such that y > z > x > t. The set x2 − t, (zx+ 1)y+ 1 is an irreducible characteristic set
of I. The canonical characteristic set of I, which is equal to x2 − t, (z2t− 1)y + zx− 1,
is not irreducible because

(z2t− 1)y + zx− 1 = (z2x2 − 1)y + zx− 1 =
= (zx− 1)(zx+ 1)y + (zx− 1) =
= (zx− 1)((zx+ 1)y + 1)

in the polynomial ring Quot
(
k[x, t]/(x2 − t)

)
[y, z].

Lemma 26 Let A = A1, . . . , Ap be an irreducible characteristic set of a prime differen-
tial ideal P in k{y1, . . . , yn}. Let i ∈ {1, . . . , p}, and let y(s)

t be a derivative appearing in
Ai and not appearing in A1, . . . , Ai−1. Then

∂Ai

∂y
(s)
t

/∈ P.

Proof. Suppose that the second condition is failed for an irreducible characteristic set
A1, . . . , Ap, which exists by (Sadik, 2000, Lemma 19). Let z be a derivative that does

not appear in A = A1, . . . , Ai−1 but does appear in Ai and satisfies
∂Ai

∂z
∈ P . Take the

canonical characteristic set C1, . . . , Cp of the ideal P . Consider the unique factorization
domain (see Definition 24):

Ri = Quot(k[Vi−1] / (A1, . . . , Ai−1) : I∞i−1)[Ui],

The derivative z is an indeterminate in this ring. Since A is irreducible, the polynomial
Ai is irreducible in Ri. The polynomial Ci is reducible to zero w.r.t. A. Hence Ci is
reducible to zero w.r.t. Ai in Ri, since A1, . . . , Ai−1 is a characteristic set of the prime
ideal

(A1, . . . , Ai−1) : I∞i−1.

Then, there exists a polynomial Di ∈ Ri such that

iAi
Ci = DiAi,

because Ci and Ai have the same rank. Since DiAi is divisible by Ci, Ai is irreducible,
iAi does not depend on the leading variable of Ai, and, again, Ai and Ci have the same
rank, we have Ci = EiAi for some factor Ei of Di. Thus, the polynomial Ci must contain
the derivative z. Since the polynomial f = iCi

Ai − iAi
Ci ∈ P is reduced w.r.t. Ai, we

have
f ∈ J := (A1, . . . , Ai−1) : I∞i−1.

Since z does not appear in A1, . . . , Ai−1, there exist generators g1, . . . , gk of the ideal J
not containing this derivative. Then there exist polynomials a1, . . . , ak such that

f = a1g1 + . . .+ akgk.

Hence,
∂f

∂z
∈ J ⊂ P . On the other hand,

∂f

∂z
=
∂Ai

∂z
iCi
− ∂Ci

∂z
iAi

+
∂iCi

∂z
Ai −

∂iAi

∂z
Ci ≡

∂Ai

∂z
iCi
− ∂Ci

∂z
iAi

(mod P ).
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Thus, from
∂Ai

∂z
∈ P and Proposition 19, we have iAi

∈ P . But the initials of a charac-
teristic set of a prime ideal cannot belong to it. Contradiction. 2

6.2. Bound for prime differential ideals

The theorem below generalizes (Sadik, 2000, Theorem 24) to arbitrary rankings. The
induction carried out in (Sadik, 2000) appears to be applicable only in case of elimination
rankings. Instead of proving the statement by induction, we construct the set C̃ and choose
a special element Ci ∈ C̃. Both statements are related to the Jacobi bound (Kondratieva
et al., 1982), but deducing them from the bound does not seem to be easier than the
elementary proof below. After Theorem 27 we give a counter-example (Example 28) to
(Sadik, 2000, Theorem 25), from which the bound could easily follow.
Theorem 27 Let P be a prime differential ideal of order h in k{y1, . . . , yn} and ≤ be
any differential ranking. Then there exists a characteristic set C = C1, . . . , Cp of the
ideal P w.r.t. the ranking ≤ such that the order in yt of each Ci does not exceed h for
all 1 6 t 6 n.

Proof. For a characteristic set C of P denote the set

{yk | θyk is not a leader of any Cj , 1 6 j 6 p, θ ∈ Θ}

by N. If for some θ ∈ Θ and t, 1 6 t 6 n, the derivative θyt is the leader of some Cj then
we will show that ord(Cq, yt) 6 h for all 1 6 q 6 p using Lemma 23. Indeed, since C is
autoreduced, we have

ord(Cq, yt) 6 ord θ, (8)

for all q, 1 6 q 6 p. Since dimP = #N, by Lemma 23 there exists a polynomial

0 6= f ∈ k{yt,N} ∩ P

of order not greater than h. This polynomial depends only on non-leading differential
indeterminates N and the leading differential indeterminate yt. Moreover, f is reducible
to zero w.r.t. C. Hence,

ord θ = ord(Cj , yt) 6 ord(f, yt) 6 h. (9)

Inequalities (8) and (9) give us
ord(Cq, yt) 6 h

for all q, 1 6 q 6 p.
Now let yt ∈ N and C be an irreducible characteristic set (see Lemma 26). Let also yCj

denote the differential indeterminate such that θyCj is the leader of Cj for some θ ∈ Θ,
that is, yCj is the leading differential indeterminate of Cj . The main idea is to reduce
the polynomial of the smallest order with respect to yCj

fj ∈ k{yCj
,N} ∩ P

given by Lemma 23 w.r.t. C. Let u = y
(r)
Cj

be the derivative of yCj of the highest order
in fj . If we represent fj as a univariate polynomial in u then denote by Ifj

its leading
coefficient. Notice that Ifj

does not have to be the initial of fj w.r.t. our ranking, but we
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still use this notation for convenience. For instance, Ifj would be the initial of fj w.r.t.
the elimination ranking yCj

> N. We emphasize that

Ifj
/∈ P.

Suppose that for some j, 1 6 j 6 p, we have

ord(Cj , yt) > h. (10)

Since fj is reducible to zero w.r.t. C, we must have

ord
(
fj , yCj

)
> ord

(
Cj , yCj

)
. (11)

Denote by “arg max ord” the set of all elements which provide the maximum of the order.
Consider

C̃ = arg max
Cj∈C

ord(Cj , yt)

and then choose Ci ∈ C̃ of the lowest possible rank. We can have many elements in C̃.
But we take the special one, Ci. Let ui = θiyi for some θi ∈ Θ and ui be the leader of
Ci for simplicity. From (10) and (11) we have

s = ord(Ci, yt) > h (12)

and
rf = ord(fi, yi) > ord(Ci, yi) = rC ,

where
fi = fi(yi,N) = Ifi

(
y

(rf )
i

)nf

+ a1

(
y

(rf )
i

)nf−1

+ . . .+ anf
.

Let us reduce each term (coefficients aj , “initial” Ifi
, and its “leader” y(rf )

i ) of fi first
by Ci. We need to differentiate Ci q times and get the remainder f̃ , where 0 6 q 6 rf−rC .
Remember that fi depends only on yi,N, and their derivatives. By reduction here we
mean the following. Any proper derivative θ of Ci is linear in θui and its initial is equal to
the separant of Ci. We simply multiply fi by a sufficient power (say, nf ) of the separant
and replace y(rf )

i and the derivatives of yi of lower order in fi by the corresponding tails.
Hence, applying further steps of reduction to the terms of f̃ w.r.t. all Cj we need to

differentiate them less than q times if Cj ∈ C̃. Indeed, the fact that Ci < Cj , as Ci has
the smallest rank in C̃, implies

ord
(
Ci, yCj

)
< ord

(
Cj , yCj

)
.

We need to differentiate them at most q times if Cj /∈ C̃. Indeed, the set C is autoreduced,
so

ord
(
Ci, yCj

)
6 ord

(
Cj , yCj

)
.

In addition, the variables to reduce can come just from derivatives of variables from Ci.
In the case of rf = rC the polynomial fi can be algebraically reduced to zero using

just Ci and elements C ∈ C\C̃ because of our choice of Ci. Moreover, the elements of C\C̃
do not contain y

(s)
t . Hence, we can apply (Sadik, 2000, Lemma 20) to get the inequality

ord(fi, yt) > ord(Ci, yt). (13)

Since ord(fi, yt) 6 h, inequality (13) contradicts to inequality (12).
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Consider the other case of rf > rC . Here, after we reduce all leaders of C from fi we
get a polynomial depending effectively on y

(s+q)
t and s + q > s. Its leading coefficient

w.r.t. the derivative y(s+q)
t is equal to

ii1C1
· . . . · iip

Cp
· sj1

C1
· . . . · sjp

Cp
· Ĩfi ·

(
∂Ci

∂y
(s)
t

)nf

, (14)

where i1, . . . , ip, j1, . . . , jp ∈ Z>0 and Ĩfi
is the remainder of Ifi

w.r.t. C. Remember that
P is a prime ideal. Hence,

ii1C1
· . . . · iip

Cp
· sj1

C1
· . . . · sjp

Cp
/∈ P, (15)

because iCj and sCj /∈ P for all j, 1 6 j 6 p. Moreover, P = [C] : H∞C and C is a
characteristic set of [C] : H∞C . Also,

Ĩfi
/∈ P, (16)

because Ifi /∈ P due to our choice of fi. By the Rosenfeld lemma, the remainder of fi we
are computing belongs to the prime algebraic ideal (C) : H∞C . Thus, according to (Sadik,
2000, Lemma 22), its leading coefficient given by (14) is reducible to zero w.r.t. C. For a
prime differential ideal the fact that an element is reducible to zero w.r.t. a characteristic
set means that the element belongs to the ideal. Using (15) and (16) we conclude that
the polynomial ∂Ci

∂y
(s)
t

belongs to P. Finally, this contradicts Lemma 26. 2

Example 28 Consider the prime differential ideal

P = [x+ z′, y + x′]

in the ring k{x, y, z}. Since the characteristic set of P w.r.t. the orderly ranking with
x > y > z is equal to z′ + x, x′ + y, the order of P is 2. On the other hand, the set

x+ z′, x′ + z′′, x′′(y − z′′), y′ + x′′

is an algebraic characteristic set of the prime ideal

P (2) := P ∩ k [x, x′, x′′, y, y′, y′′, z, z′, z′′]

with respect to the ranking on these variables induced by the elimination differential rank-
ing z < x < y. We note that according to (Sadik, 2000, Theorem 25) the set

C = x+ z′, x′′(y − z′′)

must be a characteristic set of P with respect to the elimination ranking z < x < y, but
this is not correct since C is not autoreduced.

6.3. Characterizable ideals: estimate for the bound

We do not need the ordinary case for the following result. Fix a ring of differential
polynomials k{y1, . . . , yn}.
Theorem 29 Suppose a function h from the set of prime differential ideals to the set Z>0

is such that for any prime differential ideal P there exists its characteristic set C1, . . . , Cp

with the property ordCi 6 h(P ) for all i, 1 6 i 6 p. Then for any characterizable
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differential ideal I there exists its characteristic set B = B1, . . . , Bk characterizing this
ideal (I = [B] : H∞B ) such that

ordBi 6 max
16j6n

h(Pj) =: h(I)

for all i, 1 6 i 6 k, where the set of ideals {Pj | 1 6 j 6 n} is the minimal prime
decomposition of I.

Proof. Take the minimal prime decomposition I =
t⋂

j=1

Pj and choose a characteristic

set Cj = Cj,1, . . . , Cj,pj ⊂ Pj with ordCj,i 6 h(Pj) 6 h(I) for all i, 1 6 i 6 pj , and j,
1 6 j 6 n. We have

I =
t⋂

j=1

[Cj ] : H∞Cj
.

Let B be any characteristic set of I characterizing this radical differential ideal, that
is, I = [B] : H∞B , and L be the set of its leaders which is uniquely determined by I and
does not depend on the choice of B. Let N be the (infinite) set of all other variables from
k{y1, . . . , yn}. From (Hubert, 2000, Theorem 4.5) we know that

J = (B) : H∞B =
t⋂

j=1

(Cj) : H∞Cj
.

in the ring k[N,L] and B is an algebraic characteristic set of J which can be computed,
e.g., from the reduced Gröbner basis G of the ideal J . We just need to notice that G can
be computed from all Cj without involving extra variables from the set N . To conclude
that I = [B] : H∞B we use (Hubert, 2000, Lemmas 3.5, 3.9, and 6.1). 2

Let us switch to the ordinary case and see what Theorem 29 gives us.
Corollary 30 In the ordinary case for a characterizable differential ideal I there exists
a characteristic set C = C1, . . . , Cp with the following properties:
• I = [C] : H∞C .
• ordCi 6 ord I (see Definition 21) for all i, 1 6 i 6 p.

Proof. Follows from Theorem 27 and Theorem 29 setting h(P ) = ordP . 2

6.4. Bounding orders in canonical characteristic sets

We need the ordinary case for the following assertions about bounds.
Theorem 31 Let C = C1, . . . , Cp be the canonical characteristic set of a characterizable
differential ideal I. Then

ordCi 6 ord I
for all i 6 i 6 p.

Proof. Let B = B1, . . . , Bp be a characteristic set of I given by Corollary 30. We have
ordBi 6 ordP for all i, 1 6 i 6 p. Take the canonical characteristic set C of the algebraic
ideal (B) : H∞B in the ring k[U ], where U is the set of derivatives effectively present in
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B. Then rk C = rkB, and C is a differentially autoreduced subset of I. That is, C is a
characteristic set of I. Moreover, C satisfies the requirements of Definition 1. Thus, C is
the canonical characteristic set of I. The fact that C ⊂ k[U ] implies the statement. 2

7. Computation of the canonical characteristic set

We do not assume the ordinary case now. Fix a differential ranking. Given any charac-
teristic set A of a characterizable differential ideal I, it is easy to compute the canonical
characteristic set. In (Boulier and Lemaire, 2000, Section 5), the canonical characteristic
set is computed by inverting the initials. Alternatively, by the remark after (Hubert,
2000, Lemma 3.9), the reduced Gröbner basis B of (A) : H∞A in k(N)[L] w.r.t. the lexico-
graphic monomial ordering induced by the ranking has the same rank as A. By clearing
out the denominators of B, we thus obtain a characteristic set C of (A) : H∞A , whose
initials do not depend on the leaders. By Corollary 18, C satisfies the properties required
for the canonical characteristic set by Definition 1. Thus, due to the uniqueness of the
canonical characteristic set, C must be this set. Moreover, elements of C do not have
factors in k[N ].

Note that an ideal which has a canonical characteristic set may not be characterizable.
For example, such is the algebraic ideal generated by the polynomial xy, where x < y.
However, the polynomial xy, which constitutes the canonical characteristic set of this
ideal, has a factor x ∈ k[N ]. It is not known whether a non-characterizable radical
differential ideal may have a canonical characteristic set whose elements do not have
factors in k[N ].

Algorithm 5 computes the canonical characteristic set, given a set of generators of a
characterizable differential ideal. Alternatively, one can assume that the characterizable
differential ideal is given as an intersection of other characterizable differential ideals—in
that case, start the algorithm from the second line.

It may seem that Algorithm 5 allows one to check whether a radical differential ideal
is characterizable (by computing the canonical characteristic set). But this is not the
case. As we have seen above, there exist non-characterizable radical differential ideals,
which have canonical characteristic sets.
Remark 32 Note that in the second line of Algorithm 5 it would not be sufficient to
consider only the characterizable components having characteristic sets of the highest
rank in C. Indeed, let x > y > z, and consider the following algebraic characterizable
ideal and its decomposition into characterizable components:

I = (y2 + z, x3 + x2y + xy − z) = (y2 + z, x+ y) ∩ (y2 + z, x2 + y).

Characteristic sets of both components have the same set of leaders, {x, y}. The compo-
nent of the highest rank is (y2 + z, x2 + y) and, clearly, I 6= (y2 + z, x2 + y).
Proposition 33 Algorithm 5 computes the canonical characteristic set of a given char-
acterizable differential ideal {F}.

Proof. Let C be the canonical characteristic set of the characterizable ideal I = {F}.
First, let us prove an auxiliary
Lemma 34 Let P be a prime differential ideal with a characteristic set A whose set of
leaders coincides with that of C, where C is a characteristic set of [C] : H∞C = I. Assume
also that I ⊆ P . Then (C) : H∞C ⊂ (A) : H∞A .
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Algorithm 5 Characteristic Set of a Characterizable Differential Ideal

Input: a finite set F of differential polynomials such that

the radical differential ideal {F} is characterizable.

Output: the canonical characteristic set of {F}.

let C = Rosenfeld Gröbner(F ) and C = C1, . . . , Cq
let [Cij

] : H∞Cij
be the components whose characteristic sets have sets of leaders

of the highest possible rank in C and 1 6 j 6 k

let I ′ =
k⋂

j=1

(
Cij

)
: H∞Cij

L := Leaders(Ci1)

N := ΘY \ΘL

GB := Reduced Gröbner Basis(I ′) in k(N)[L]

N ′ := {x ∈ N | x appears in GB}.

D := Clear out denominators(GB) in k(N)[L]

divide each element of D by its leading coefficient from k

return D

Proof. Let f ∈ (C) : H∞C . Then f is partially reduced w.r.t. C. Since the leaders of A
and C coincide, f is partially reduced w.r.t. A. Since f ∈ I and I ⊆ P , we have f ∈ P .
Hence, by the Rosenfeld lemma, f ∈ (A) : H∞A . 2

Consider the prime decomposition I =
⋂
Pi, where Pi’s are the minimal prime com-

ponents of I. Let Ai be a characteristic set of Pi, then, according to (Hubert, 2000,
Theorem 4.5), the ideal P ′i = (Ai) : H∞Ai

is a minimal prime component of the algebraic
ideal (C) : H∞C . Consider also the minimal prime decompositions Jl =

⋂
Qlj of the char-

acteristic components Jl = [Cl] : H∞Cl
of I. The intersection of these decompositions is

a finite prime decomposition of I. According to (Ritt, 1950, Section I.16), every mini-
mal prime component appears in every finite prime decomposition of the radical ideal I,
which implies that every Pi can be found among Qlj . Moreover, according to (Hubert,
2000, Theorem 3.2), the leaders of Ai coincide with the leaders of C, hence Pi can be
found among those Qlj whose characteristic sets have leaders coinciding with the leaders
of C.

Applying (Hubert, 2000, Theorem 3.2) again, we obtain that Pi can be found among
the minimal prime components of those Jl whose characteristic sets Cl have leaders
coinciding with the leaders of C. Now, since for each l, I ⊆ Jl, the rank of the set of
leaders of Cl is lower than or equal to the rank of the set of leaders of C. Hence, Pi can
be found among the minimal prime components of those Jl, for which the set of leaders
of Cl has the highest rank, that is, among the minimal prime components of Ji1 , . . . , Jik

.
Thus, by (Hubert, 2000, Theorem 4.5), every minimal prime P ′i of the algebraic ideal
(C) : H∞C can be found among the minimal primes of the algebraic ideals

(Ci1) : H∞Ci1
, . . . , (Cik

) : H∞Cik
,
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and we obtain

(C) : H∞C ⊇
k⋂

j=1

(
Cij

)
: H∞Cij

= I ′.

The inverse inclusion follows from the above Lemma 34. Hence, I ′ = (C) : H∞C , and the
canonical characteristic set D of I ′ computed by the above algorithm coincides with that
of (C) : H∞C and of I. 2
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Carrà Ferro, G., 1989. Some remarks on the differential dimension. Lecture Notes in
Computer Science 357, 152–163.

Cluzeau, T., Hubert, E., 2003. Resolvent representation for regular differential ideals.
Applicable Algebra in Engineering, Communication and Computing 13 (5), 395–425.

Dahan, X., Jin, X., Moreno Maza, M., Schost, E., 2006. Change of ordering for regular
chains in positive dimension. In: Kotsireas, I. (Ed.), Maple Conference’06. Maplesoft,
pp. 26–43.

Gerdt, V. P., Blinkov, Y. A., 1998. Involutive bases of polynomial ideals. Mathematics
and Computers in Simulation 45, 519–542.
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