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Abstract

We study isomonodromicity of systems of parameterized linear differential equations and related conjugacy proper-
ties of linear differential algebraic groups by means of differential categories. We prove that isomonodromicity is
equivalent to isomonodromicity with respect to each parameter separately under a filtered-linearly closed assumption
on the field of functions of parameters. Our result implies that one does not need to solve any non-linear differential
equations to test isomonodromicity anymore. This result cannot be further strengthened by weakening the require-
ment on the parameters as we show by giving a counterexample. Also, we show that isomonodromicity is equivalent
to conjugacy to constants of the associated parameterized differential Galois group, extending a result of P. Cassidy
and M. Singer, which we also prove categorically. We illustrate our main results by a series of examples, using, in
particular, a relation between Gauss–Manin connection and parameterized differential Galois groups.

Résumé

On étudie l’isomonodromie des systèmes d’équations différentielles linéaires paramétrées et les propriétés liées à
la conjugaison des groupes algébriques différentiels linéaires en utilisant les catégories différentielles. On démontre
que l’isomonodromie est équivalente à l’isomonodromie relative à chaque paramètre pris séparément, si le corps
des fonctions des paramètres est filtré linéairement clos. Ce résultat implique quil nest pas nécessaire de résoudre
des équations différentielles non linéaires pour tester lisomonodromie. Un contre-exemple montre qu’on ne peut
pas améliorer ce résultat en affaiblissant la condition sur les paramètres. On démontre, en termes de catégories,
que l’isomonodromie est équivalente, à une conjugaison près, au fait que le groupe de Galois différentiel paramétré
associé est constant, généralisant ainsi un résultat de P. Cassidy et M. Singer. On illustre nos résultats fondamentaux
par une série d’exemples utilisant, en particulier, un lien entre la connexion de Gauss–Manin et les groupes de Galois
différentiels paramétrés.
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1. Introduction

A system of parameterized linear differential equations is a system of linear differential equations whose coef-
ficients are functions of principal variables x1, . . . ,xn and parameters t1, . . . , td and derivations only with respect to
x1, . . . ,xn appear in the system. We say that such a system is isomonodromic if it can be extended to a consistent sys-
tem of linear differential equations with derivations with respect to all of x1, . . . ,xn, t1, . . . , td . That is, one requires that
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the extended system satisfies all integrability conditions with respect to the principal and parametric variables. In this
paper, we study such isomonodromic systems via the parameterized Picard–Vessiot (PPV) theory [8] and differential
Tannakian categories [15, 42, 43, 26, 25, 4].

To verify isomonodromicity of a system of parameterized linear differential equations, say, with one principal
variable x and d parameters t1, . . . , td explicitly means to find d extra matrices that satisfy

(d+1
2

)
integrability conditions

[8, Definition 3.8], which form a system of linear and non-linear differential equations. We improve this by showing
that it is enough to find matrices that satisfy only d integrability conditions for pairs of derivations (∂x,∂ti), which are
linear differential equations, under a filtered-linearly closed assumption (Definition 3.7) on the field of functions of
parameters (Theorems 6.3 and 6.4). Namely, the existence of the latter matrices implies the existence of (possibly,
different) matrices that satisfy all

(d+1
2

)
integrability conditions. In other words, our result removes all non-linear

differential equations from the integrability conditions that have to be tested, which now enables one to use the
powerful methods of differential Galois theory to test isomonodromicity.

This result is non-trivial not only because of the method of proof (which uses differential categories [15] and
CDG-algebras [45]) but also because it is counterintuitive. The initial explicit steps for this result restricted to 2× 2
systems with the parameterized differential Galois group Zariski dense in SL2 can be found in [13, Proposition 4.4]
(see also [53, Theorem 1.3, Chapter 2]). Note that the condition on the field to be filtered-linearly closed is, indeed,
necessary as is shown in Example 6.7. This example is based on iterated integrals.

A similar but more specialized question was treated in [22, 23] for the case of rational functions in the principal
variable. Using analytic methods, it is shown that, for d extra matrices of a certain special type, d integrability
conditions imply all

(d+1
2

)
integrability conditions for the same matrices. Additionally, it is proved in [22, 23] that, if

the differential equation is isomonodromic (when restricted only to rational functions in the principal variable), then
one can choose extra matrices of the special type discussed above (for more details, see Section 6.4).

Given a system of parameterized linear differential equations, the PPV theory associates a parameterized differen-
tial Galois group, which can be represented by groups of invertible matrices whose entries are in the field of constants,
that is, the field of functions of the parameters t1, . . . , td . Moreover, these groups are linear differential algebraic groups
(LDAGs), that is, groups of matrices satisfying a system of polynomial differential equations with respect of the para-
metric derivations [6, 7, 28, 41, 43]. Using descent for connections (Lemma 3.11), we prove in Theorem 6.6 that,
under the filtered-linearly closed assumption on the field of constants, a system of parameterized linear differential
equations is isomonodromic (Definition 6.1) if and only if its Galois group is conjugate (possibly, over an extension
field of the field of constants) to a group of matrices whose entries are constant functions in the parameters. This
extends the corresponding result in [8], which required the field of constants to be differentially closed. Recall that
a differential field is differentially closed if it contains solutions of all consistent systems of polynomial differential
equations with coefficients in the field. Note that, even in the case of a differentially closed field of constants, our
proof, based on differential Tannakian categories, is different from the one given in [8].

We construct examples showing that, in general, one really needs to take an extension of the field of constants to
obtain the above conjugacy (Examples 6.8 and 6.9). The construction of the examples uses an explicit description of
Galois groups for PPV extensions defined by integrals (Propositions 5.2 and 5.4), which seems to have interest in its
own right. Namely, we interpret such differential Galois groups in terms of Gauss–Manin connections (Section 5).
More concretely, the examples involve the incomplete Gamma-function and the Legendre family of elliptic curves
(see also [2] for the computation point of view). Note that the relation between the PPV theory and Gauss–Manin
connection was also elaborated in [52].

Recall that the Galois groups in the PPV theory are LDAGs. As noted above, isomonodromicity corresponds to
conjugation to constants for LDAGs. In this way, our Theorem 4.4 corresponds to Theorem 6.3 and says that if a
LDAG is conjugate to groups of matrices whose entries are constants with respect to each derivation separately, then
there is a common conjugation matrix, under the filtered-linearly and linearly closed assumption on the differential
field. This matrix may have entries in a Picard–Vessiot extension of the base field. We construct an example showing
that, in general, one needs to take a Picard–Vessiot extension (Example 4.9).

As an application, we obtain a generalization of [35, Theorem 3.14], which characterizes semisimple categories
of representations of LDAGs in the case when the ground field is differentially closed and has only one derivation. In
Theorem 4.6, we improve this result by showing a more general statement without these inconvenient restrictions to
differentially closed fields and the case of just one derivation.

Our method is based on the new notion of differential objects in differential categories (Definition 3.1). We prove



2 NOTATION AND PRELIMINARIES 3

that there is a differential structure on an object X in a differential category over a differential field (k,Dk) if and only
if there is a differential structure on X with respect to any derivation ∂ ∈ Dk, provided that (k,Dk) is filtered-linearly
closed (Proposition 3.10). This result is applied to both isomonodromic differential equations and LDAGs. We show
in Example 4.7 that this result is not true over an arbitrary differential field already for the category of representations
of a LDAG over Q(t1, t1). The example uses the Heisenberg group. Note that the application to isomonodromic
differential equations requires that we work with arbitrary differential categories, not just with differential Tannakian
categories or categories of representations of LDAGs (see also the discussion at the end of Section 2).

In [29], Landesman initiated the parameterized differential Galois theory in a more general setting based on
Kolchin’s axiomatic development of the differential algebraic group theory [28]. Galois theories in which Galois
groups are LDAGs also appear in [16, 17, 18, 20, 19, 21, 57, 56], with the initial algorithm, when the Galois group
is a subgroup in SL2, given in [13] and analytic aspects studied in [39, 40]. The first complete algorithm for the
case of one parameter was given in [1]. For the case of several parameters, further algorithms for reductive and
unipotent parameterized differential Galois groups appeared in [37, 38], which rely on the main result of the present
paper. The representation theory for LDAGs was also developed in [41, 36], and the relations with factoring partial
differential equations was discussed in [9]. Analytic aspects of isomonodromic differential equations were studied by
many authors, let us mention [22, 23, 33, 34]. See also a survey [47] of Bolibrukh’s results on isomonodromicity and
the references given there. An explicit computational approach to testing whether a system of difference equations
with differential or difference parameters is isomonodromic can be found in [5, 44].

The paper is organized as follows. We start by recalling the basic definitions and properties of differential algebraic
groups, differential Tannakian categories, and the PPV theory in Section 2. Most of our notation is introduced in
this section. The following section contains our main technical tools, Propositions 3.10 and 3.12. Section 4 deals
with conjugating linear differential algebraic groups to constants over not necessarily differentially closed fields.
The results from Section 5, where we also establish a relation with Gauss–Manin connection, are used in order to
construct non-trivial examples to Theorem 6.6. In Section 6, we show our main results on isomonodromic systems
of parameterized linear differential equations as well as illustrate them with examples justifying the necessity of the
hypotheses in our main result. Also, we provide an explicit proof of the main result in Section 6.2. This proof can be
used in designing algorithms. We also give an analytic interpretation of our results including the reasons that support
the conclusion of the above example.

The authors thank P. Cassidy, L. Di Vizio, A. Its, B. Malgrange, A. Minchenko, O. Mokhov, T. Scanlon, M. Singer,
and D. Trushin for very helpful conversations and comments. We are also highly grateful to the referee for the helpful
suggestions.

2. Notation and preliminaries

Most of the notation and notions that we use are taken from [15]. All rings are assumed to be commutative and
having a unit. In the paper, (k,Dk) stays for a differential field of zero characteristic, that is, k is a field and Dk is a
finite-dimensional k-vector space with a Lie bracket and a k-linear map of Lie rings

Dk→ Der(k,k)

that satisfies a compatibility condition (see [15, Definition 3.1]). For example, if ∂1, . . . ,∂d denote commuting deriva-
tions from k to itself (possibly, some of them are zero), then (k,Dk) with

Dk := k ·∂1⊕ . . .⊕ k ·∂d

is a differential field.
In general, the map Dk→ Der(k,k) can be non-injective, and it is possible that there is no commuting basis in Dk

(see [15, Example 3.5]). In particular, differential fields as above include finite-dimensional Lie algebras. Moreover,
many constructions become more transparent and easier to be derived if one does not choose a basis in the k-vector
space Dk, for example, the definition of the de Rham complex below. This motivates our generalization of a more
common notion of a differential field (a field with commuting derivations).
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Let Dk in the superscript denote taking Dk-constants, that is, the elements annihilated by all ∂ ∈Dk. Put k0 := kDk .
Put Ωk := D∨k . We have the de Rham complex Ω•k

0 −−−−→ Ω0
k

d−−−−→ Ω1
k

d−−−−→ Ω2
k

d−−−−→ . . . ,

where Ωi
k := ∧i

kΩk, i > 1, and we put Ω0
k := k (see [15, Remark 3.4]). Note that d is k0-linear, d ◦d = 0, and d is

uniquely defined by the following Leibniz rule:

d(ω∧η) = dω∧η+(−1)i
ω∧dη

for all ω ∈Ωi
k, η ∈Ω

j
k.

Denote the category of sets by Sets. Denote the category of k-vector spaces by Vect(k). Denote the category of
k-algebras by Alg(k). Denote the category of Dk-modules over k by DMod(k,Dk) (see [15, Definition 3.19]). Denote
the category of Dk-algebras over k by DAlg(k,Dk) (see [15, Definition 3.12]). Denote the ring of Dk-polynomials in
differential indeterminates y1, . . . ,yn (see [15, Definition 3.12]) by

k{y1, . . . ,yn}.

We say that a (possibly, infinite-dimensional) Dk-module M is trivial if the multiplication map k⊗k0 MDk →M is an
isomorphism (by [46, Lemma 1.7], this map is always injective).

We say that a differential field (k,Dk) is linearly Dk-closed if (k,Dk) has no non-trivial Picard–Vessiot extensions,
that is, all finite-dimensional Dk-modules over k are trivial (see also [32, 49, 48], [31, §3], [28, §0.5] for the existence
and use of such fields, and [3] for analogues for difference fields). One can also iteratively apply [50, Embedding
Theorem] to realize such fields (if they are countable) as germs of meromorphic functions in dimk(Dk) variables.

A functor X : DAlg(k,Dk)→ Sets is represented by a Dk-algebra A if there is a functorial isomorphism

X(R) � HomDk(A,R)

for any Dk-algebra R. A linear Dk-group is a group-valued functor on DAlg(k,Dk) that is represented by a Dk-finitely
generated Dk-Hopf algebra. Given a (pro-)linear Dk-group G, denote the category of finite-dimensional representa-
tions of G as an affine group scheme over k by Rep(G).

Given a functor X : Alg(k) → Sets, one traditionally denotes also its composition with the forgetful functor
DAlg(k,Dk)→ Alg(k) by X . If X is representable on Alg(k), then X is also representable on DAlg(k,Dk). In other
words, the forgetful functor DAlg(k,Dk)→ Alg(k) has a left adjoint (for example, see [14, §1.2]), which is usually
called a prolongation. In particular, we have a representable functor

An : R 7→ R⊕n,

where R is a Dk-algebra. Also, given a finite-dimensional k-vector space V , we have a linear Dk-group

GL(V ) : R 7→ AutR(R⊗k V ).

Given a functor Y : Alg(k0)→ Sets, let Y c denote its composition with the functor of Dk-invariants

DAlg(k,Dk)→ Alg(k0), R 7→ RDk .

We say that functors of type Y c are constant. If Y is represented by a k0-algebra B, then Y c is represented by

k⊗k0 B (1)

with the natural Dk-structure, where Dk acts by zero on B. Denote the latter Dk-algebra by Bc and also call it constant.
If H is a linear algebraic group, then Hc is a constant linear Dk-group. In particular, we have a representable functor

(An)c : R 7→
(
RDk
)⊕n

,
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where R is a Dk-algebra. Also, given a finite-dimensional k0-vector space V0, we have the linear Dk-group

GL(V0)
c : R 7→ AutRDk

(
RDk ⊗k0 V0

)
.

It follows that there is a morphism of linear Dk-groups GL(V0)
c→ GL(V ), where V := k⊗k0 V0.

Note that a Dk-algebra A is constant if and only if A is trivial as a Dk-module. A Dk-finitely generated Dk-algebra
A is constant if and only if there is an isomorphism of Dk-algebras

A � k{y1, . . . ,yn}/I,

where I ⊂ k{y1, . . . ,yn} is a Dk-ideal such that, for all ∂ ∈ Dk and i, 1 6 i 6 n, the differential polynomial ∂yi is in I.
For a more explicit description of constant algebras, consider a functor

X : DAlg(k,Dk)→ Sets

represented by a reduced Dk-finitely generated Dk-algebra. Then, by the differential Nullstellensatz (see [27, Theo-
rem IV.2.1]), X is constant if and only if there is a Kolchin closed embedding X ⊂ An over (k,Dk) such that, for a
Dk-closed field U over k (equivalently, for any U as above), we have

X(U)⊂Un
0, U0 := UDk ,

that is, all points in X ⊂ An have constant coordinates.
Given a Dk-object X over k (e.g., a Dk-module, a Dk-algebra, a linear Dk-group) and a Dk-field l over k, let Xl

denote the Dl-object over l obtained by the extension of scalars from (k,Dk) to (l,Dl), where Dl := l⊗k Dk.
One finds the definition of a parameterized differential field in [15, §3.3]. Recall that, for a parameterized differ-

ential field (K,DK) over (k,Dk), one has a K-linear map

DK → K⊗k Dk,

called a structure map. This defines a differential field
(
K,DK/k

)
, where DK/k is the kernel of the structure map. Also,

one has KDK/k = k. For example, if

k = C(t), K = C(t,x), Dk = k ·∂t , and DK = K ·∂x⊕K ·∂t ,

then (K,DK) is a parameterized differential field over (k,Dk) with DK/k = K ·∂x.
Given a finite-dimensional DK/k-module N over K, one has the notion of a parameterized Picard–Vessiot (PPV)

extension L for N, where L is a DK-field over K. This was first defined in [8] (see also [15, Definition 3.27] for the
present approach to parameterized differential fields). If k is Dk-closed, then a PPV extension exists for any N as
above (see [8, Theorem 3.5(1)]). Given a PPV extension L, one shows that the group-valued functor

GalDK (L/K) : DAlg(k,Dk)→ Sets, R 7→ AutDK (R⊗k A/R⊗k K)

is a linear Dk-group (see [15, Lemma 8.2]), which is called the parameterized differential Galois group of L over K,
where A is the PPV ring associated to L (see [15, Definition 3.28]).

The main notion defined in [15] is that of a differential category. A Dk-category C over k is an abelian k-linear
tensor category together with exact k-linear endofunctors At1C and At2C , called Atiyah functors, that satisfy a list of
axioms (see [15, §§4.2,4.3]). In particular, for any object X in C , there is a functorial exact sequence

0 −−−−→ Ωk⊗k X
iX−−−−→ At1C (X) πX−−−−→ X −−−−→ 0, (2)

where, as above, Ωk = D∨k , and a functorial embedding

At2C (X)⊂ At1C
(
At1C (X)

)
.
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We have the equality
Sym2

k Ωk⊗k X = At2C (X)∩ (Ωk⊗k Ωk⊗k X)⊂ At1C
(
At1C (X)

)
, (3)

and both compositions

At2C (X) −−−−→ At1C
(
At1C (X)

) At1C (πX )
−−−−→ At1C (X), (4)

At2C (X) −−−−→ At1C
(
At1C (X)

) πAt1(X)−−−−→ At1C (X) (5)

are surjective (see [15, Lemma 4.14, Proposition 4.18]).
For example, Vect(k) has a canonical Dk-structure given by the usual Atiyah extension (see [15, Example 4.7]). It

can be defined either in terms of jet rings (see [15, §3.6, Example 4.7]), or in terms of differential operators as follows.
Given a finite-dimensional k-vector space V , the k-vector space At1(V ) consists of first order Dk-differential operators
from V∨ to k. If dimk Dk = 1 and Ωk = k ·ω, then we have:

At1(V ) = V ⊗k (k⊕ k ·ω),

and the k-linear structure on it is defined as follows:

a · (u⊗1+ v⊗ω) = au⊗1+u⊗da+av⊗ω, a ∈ k, u,v ∈V.

In this case, the morphisms in the exact sequence (2) are given by

iV (v⊗ω) = v⊗ω and πV (u⊗1+ v⊗ω) = u, u,v ∈V,

respectively. The above approach is dual to the one in [43, Definition 1] and [35, pp. 1199–1200]. The Dk-structure
on Vect(k) induces a canonical Dk-structure on Rep(G) for a (pro-)linear Dk-group G (see [15, Example 4.8]).

Another important example is the category

DMod(K,DK/k)

of DK/k-modules over K, where (K,DK) is a parameterized differential field over (k,Dk). The category DMod(K,DK/k)
is k-linear and has a canonical Dk-structure (see [15, Theorem 5.1]). In [15, §4.4], the authors investigate differential
Tannakian categories. Any neutral Dk-Tannakian category with a Dk-fiber functor is equivalent to Rep(G) with the
forgetful functor, where G is a (pro-)linear Dk-group. Note that the category DMod(K,DK/k) is not necessarily a
Dk-Tannakian category (even without the requirement of being neutral), because the category Vect(K,DK) does not
necessarily have a structure of a Dk-category.

3. Dk-structure on objects in Dk-categories

In this section, we define a Dk-structure on objects in abstract Dk-categories. This notion and its main property
given in Proposition 3.10 are used in Sections sec:LDAG and 6 for applications to linear Dk-groups and isomon-
odromic parameterized linear differential equations, respectively. As we will further see in Example 4.7, the filtered-
linearly closed assumption of the proposition cannot be removed.

Let C be a Dk-category over k, X be an object in C .

Definition 3.1. A Dk-connection on X is a section

sX : X → At1C (X)

of πX . A Dk-connection sX is a Dk-structure if the image of the composition

X
sX−−−−→ At1C (X)

At1C (sX )
−−−−→ At1C

(
At1C (X)

)
is contained in At2C (X).
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Example 3.2. To give a Dk-connection on a k-vector space V as an object in C = Vect(k) is the same as to give a
usual connection on V , that is, a map

∇V : V →Ωk⊗k V

that satisfies the Leibniz rule. A k-vector space together with a Dk-structure is the same as a Dk-module (see [15,
Proposition 3.42]).

Let us give an equivalent condition for the existence of a Dk-connection. For any ∂ ∈ Dk, the Dk-category C has a
canonical structure of a ∂-category by [15, Proposition 4.12(i)]. Explicitly, a calculation shows that, for each object X
in C , we have

At1C ,∂(X) = At1C (X)/U, where U := Ker(∂⊗ idX : Ωk⊗k X → X)

and At1C ,∂ is the Atiyah functor that corresponds to the ∂-category structure on C . Denote the quotient morphism by

α∂ : At1C (X)→ At1C ,∂(X).

Since U is contained in Ωk⊗k X , the morphism πX : At1C (X)→ X factors through α∂. That is, we obtain a morphism

πX ,∂ : At1C ,∂(X)→ X

such that πX ,∂ ◦α∂ = πX . By definition, a ∂-connection on X is a section of πX ,∂.

Proposition 3.3. There is a Dk-connection on X if and only if there is a basis ∂1, . . . ,∂d in Dk over k such that for any
i, there is a ∂i-connection on X.

Proof. The existence of a Dk-connection on X implies the existence of a ∂-connection on X for any ∂ ∈ Dk by the
explicit construction of At1C ,∂ given above.

Now let us show the reverse implication. The morphisms α∂i , 1 6 i 6 d, defined above give a morphism

α : At1C (X)→ Z

such that π◦α = πX , where
Z := At1C ,∂1

(X)×X . . .×X At1C ,∂d
(X) π−→ X .

is the fibred product in C . Thus, we have the following commutative diagram:

0 −−−−→ Ker(πX ) −−−−→ At1C (X) πX−−−−→ X −−−−→ 0y α

y idX

y
0 −−−−→ Ker(π) −−−−→ Z π−−−−→ X −−−−→ 0

Since ∂1, . . . ,∂d is a basis of Dk over k, the map

dM
i=1

∂i : Ωk→ k⊕d

is an isomorphism. It follows that the restriction of α to Ker(πX ) = Ωk⊗k X is an isomorphism

Ker(πX )
⊕i(∂i⊗idX )−−−−−−→ Ker(π) =

dL
i=1

Ker
(
πX ,∂i

)
=

dL
i=1

X .

Thus, α itself is an isomorphism. Hence, given sections si of the morphisms πi for all i, 1 6 i 6 d, we obtain a section
sX of πX .

In what follows, we address the question whether the existence of a Dk-connection on X implies the existence of
a Dk-structure on X . It will be convenient to use the following notion first introduced in [45]. Recall that, for a graded
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associative algebra
A• =

M
i

Ai,

the commutator is defined by the formula

[a,b] := a ·b− (−1)deg(a)deg(b)b ·a

for homogenous elements a,b ∈ A•.

Definition 3.4. A CDG-structure on a graded associative algebra A• over a field F is a pair (d,h), where

d : Ai→ Ai+1

is a collection of F-linear maps that satisfy the graded Leibniz rule

d(a ·b) = d(a) ·b+(−1)deg(a)a ·d(b)

for all homogenous elements a,b ∈ A•, and h ∈ A2 is such that

(d◦d)(·) = [h, · ], d(h) = 0.

Given a CDG-structure (d,h) on A• and an element a ∈ A1, we obtain a new CDG-structure with

d′ = d+[a, · ], h′ = h+d(a)+a2. (6)

By definition, the CDG-structures (d,h) and (d′,h′) are equivalent.

Example 3.5.
1. The pair (d,0) defines a CDG-structure on the graded associative algebra Ω•k over k0, where d denotes the

differential in the de Rham complex.
2. Let V be a k-vector space, ∇V be a Dk-connection on V . We obtain maps

∇V : Ω
i
k⊗k V →Ω

i+1
k ⊗k V, ∇V (ω⊗ v) := dω⊗ v+(−1)i

ω∧∇V (v)

and a CDG-structure (d,h) on the graded associative algebra Ω•k⊗k Endk(V ) over k0 with

d(a) :=
(
idΩk ∧a

)
◦∇V − (−1)i

∇V ◦a, a ∈Ω
i
k⊗k Endk(V ) = Homk(V,Ωi

k⊗k V ),

h := ∇V ◦∇V ∈Ω
2
k⊗k Endk(V ) = Homk(V,Ω2

k⊗k V ).

The condition d(h) = 0 is classically called the second Bianchi identity. Note that h vanishes if and only if the
connection ∇V is a Dk-structure on V . The natural embedding

Ω
•
k ⊂Ω

•
k⊗k Endk(V )

given by idV ∈ Endk(V ) commutes with d. Thus, the notation d in the CDG-structure on Ω•k ⊗k Endk(V ) does
not lead to a contradiction.

There is a notion of a morphism between differential fields (k,Dk)→ (K,DK), which generalizes Dk-fields over
k (see [15, Definition 3.6]) In particular, we have a canonical k-linear map Ωk → ΩK . Given such a morphism, one
defines differential functors from Dk-categories over k to DK-categories over K (see [15, Definition 4.9]). For example,
if C is a Tannakian category, then there is a faithful differential functor C → Vect(K) for a Dk-field K over k. The
following result generalizes Example 3.5(2).

Lemma 3.6. Let sX be a Dk-connection on X. Suppose that there is a morphism of differential fields (k,Dk)→ (K,DK)
such that the map Ωk → ΩK is injective and a faithful differential functor F : C → Vect(K). Then the following is
true:
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1. sX defines a CDG-structure (d,h) on the graded associative algebra Ω•k⊗k EndC (X) over k0;
2. h vanishes if and only if sX is a Dk-structure;
3. given a CDG-structure (d′,h′) on Ω•k ⊗k EndC (X), there is a Dk-connection s′X on X such that (d′,h′) corre-

sponds to s′X if and only if (d′,h′) is equivalent to (d,h).

Proof. First let us show (1). The section sX defines a map

∇ : EndC (X)→Ωk⊗k EndC (X), ∇(a) := sX ◦a−At1C (a)◦ sX .

In other words, ∇(a) measures non-commutativity of the diagram

X
sX−−−−→ At1C (X)

a
y At1(a)

y
X

sX−−−−→ At1C (X).

One checks that ∇ is a Dk-connection on the k-algebra EndC (X). By the (graded) Leibniz rule, this extends uniquely
to a collection of k0-linear maps

d : Ω
i
k⊗k EndC (X)→Ω

i+1
k ⊗k EndC (X).

Next, let us define h ∈Ω2
k⊗k EndC (X). Put

Y := Ker
(

At1C (πX )−πAt1(X) : At1C
(
At1C (X)

)
→ At1C (X)

)
.

We claim that the image of the composition

At1C (sX )◦ sX : X → At1C
(
At1C (X)

)
is contained in Y . To prove this, recall that πX ◦ sX = idX . Since At1C is a functor, we have

At1C (πX )◦At1C (sX ) = idAt1(X),

whence
At1C (πX )◦At1C (sX )◦ sX = sX . (7)

Since the morphism At1C (X) πX−→ X is functorial in X , the following diagram commutes:

At1C (X)
At1(sX )−−−−→ At1C

(
At1C (X)

)
πX

y πAt1(X)

y
X

sX−−−−→ At1C (X).

Hence, we have
πAt1(X) ◦At1C (sX )◦ sX = sX ◦πX ◦ sX = sX . (8)

Combining (7) and (8), we obtain the following equality of morphisms from X to At1C
(
At1C (X)

)
:

At1C (πX )◦At1C (sX )◦ sX = πAt1(X) ◦At1C (sX )◦ sX .

Thus, the image of At1C (sX )◦ sX is contained in Y .
Since F : C → Vect(K) is faithful, we have that At2C (X)⊂ Y (see [15, Remark 4.21(iii)]). By the construction of

Y , we have the following exact sequence

0 −−−−→ Ωk⊗k Ωk⊗k X −−−−→ Y
At1(πX )−−−−→ At1C (X) −−−−→ 0.
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By (3) and (4) (see §2), we obtain an isomorphism

Ω
2
k⊗k X ∼−→ Y/At2C (X).

Put
h ∈Ω

2
k⊗k EndC (X) = HomC (X ,Ω2

k⊗k X)

to be the composition

X
At1(sX )◦sX−−−−−−→ Y −−−−→ Y/At2C (X) ∼−−−−→ Ω2

k⊗k X .

It remains to show the identities
d◦d = [h, · ], d(h) = 0. (9)

One can show that, if C is the category of vector spaces over a differential field, then d and h constructed as
above coincide with those defined in Example 3.5(2). Further, the constructions of d and h commute with differ-
ential functors. More explicitly, consider the differential functor F : C → Vect(K). The morphism of differential
fields (k,Dk)→ (K,DK) defines a homomorphism of graded algebras Ω•k →Ω•K , which commutes with the de Rham
differential d (see [15, Definition 3.6]). The functor F induces a homomorphism of graded algebras

α : Ω
•
k⊗k EndC (X)→Ω

•
K⊗K EndK (F(X)) .

The connection sX on X defines a DK-connection on the K-vector space F(X) such that α commutes with d and pre-
serves h. Since F is faithful and the map Ωk→ΩK is injective, α is injective. Thus, we obtain (9) by Example 3.5(2)
applied to K-vector spaces. This finishes the proof of (1).

Further, (2) follows from the construction of h. To prove (3), note that any other Dk-connection on X is given by

s′X = sX +a, (10)

where
a ∈Ω

1
k⊗k EndC (X)

is an arbitrary element. We need to show that the corresponding CDG-structure (d′,h′) on Ω•k⊗k EndC (X) satisfies (6).
As above, by the injectivity of the algebra homomorphism α, it is enough to consider the case C = Vect(K), in which
the required follows from Example 3.5(2).

It follows from Lemma 3.6 that if dimk(Dk) = 1 and C satisfies the condition from Lemma 3.6, then any Dk-
connection sX on an object X in C is a Dk-structure on X .

One can give a different definition of a Dk-category so that Lemma 3.6 holds for any Dk-category in this new sense.
Namely, one should require the compatibility condition from [15, Remark 4.21(i)] and also the pentagon condition
for Ψ in notation from there. The latter condition involves consideration of the third jet-ring P3

k .

Definition 3.7. We say that a differential field (k,Dk) is filtered-linearly closed if there is a sequence of k-vector
subspaces closed under the Lie bracket

0 = D0 ⊂ D1 ⊂ . . .⊂ Dd−1 ⊂ Dd = Dk

such that for any i, 0 6 i 6 d−1, we have
dimk (Di+1/Di) = 1

and k is linearly Di-closed.

Note that, in Definition 3.7, we do not require that k be linearly Dk-closed, that is, a filtered-linearly closed field
is not necessarily linearly closed.

Example 3.8.

1. If dimk(Dk) = 1, then (k,Dk) is filtered-linearly closed.
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2. If k is Dk-closed, then (k,Dk) is filtered-linearly closed. Indeed, since k is Dk-closed, the natural map Dk →
Der(k,k) is injective. By [28, p. 12, Proposition 6], there is a commuting basis ∂1, . . . ,∂d in Dk over k and we
put

Di := spank〈∂1, . . . ,∂i〉.

Again, since k is Dk-closed, we see that k is linearly Di-closed.

Lemma 3.9. Let A be a finite-dimensional associative algebra over k. Suppose that (k,Dk) is filtered-linearly closed.
Then any CDG-structure on Ω•k⊗k A is equivalent to a CDG-structure with h = 0.

Proof. We use induction on d := dimk(Dk). The case d = 1 is automatic. Let us make the inductive step from d−1 to
d. Consider the differential fields (k,Di) from Definition 3.7 and put Ω•i to be the corresponding de Rham complexes.
Also, put

Ω := Ker(Ωd →Ωd−1) .

Since Dd−1 is a Lie subring in Dd , we have a morphism of differential fields (k,Dd)→ (k,Dd−1) (see [15, Defini-
tion 3.6]). Thus, we obtain a morphism of graded associative algebras

Ω
•
d →Ω

•
d−1,

which commutes with the de Rham differential d and whose kernel is the ideal generated by Ω. Thus, the ideal
generated by Ω in Ω•d is a d-ideal. Further, we have the morphism of graded associative algebras

Ω
•
d⊗k A→Ω

•
d−1⊗k A,

whose kernel I• is the graded ideal generated by Ω in Ω•d⊗k A. Since d from the CDG-structure on Ω•d⊗k A satisfies
the graded Leibnit rule and the natural homomorphism Ω•d → Ω•d ⊗k A commutes with d, we deduce that I• is also a
d-ideal. Consequently, d induces a map d′ on the graded associative algebra Ω•d−1⊗k A. It follows that this defines a
CDG-structure (d′,h′) on Ω•d−1⊗k A with h′ being the image of h under the natural map

Ω
2
d⊗k A→Ω

2
d−1⊗k A.

By the inductive hypothesis, we may assume that h′ = 0, whence h ∈ I2, where I2 is the second degree part of I•.
Put V := Ω⊗k A. Since dimk(Ω) = 1, we have that

Ii = Ω
i−1
d−1⊗k V, i > 1, and I• · I• = 0.

Since h ∈ I2, we see that the composition
d◦d = [h, · ]

vanishes on I•. We obtain a (Dd−1)-module structure on the finite-dimensional k-vector space V with ∇V being the
map

d : I1→ I2.

Moreover, the element
h ∈Ω

1
d−1⊗k V

satisfies ∇V (h) = 0 by the second Bianchi identity (see Example 3.5(2)).
Since k is linearly (Dd−1)-closed, we see that there is a ∈V such that

∇V (a) =−h,

or, equivalently, there is a ∈ I1 with d(a) =−h. Since a ·a = 0, the CDG-structure

(d+[a, ·],h+d(a)+a ·a)

satisfies the required condition.
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Combining Lemma 3.6 and Lemma 3.9, we obtain the following result, which is used for applications to linear
Dk-groups and isomonodromic parameterized linear differential equations in Sections 4 and 6, respectively.

Proposition 3.10. Suppose that (k,Dk) is filtered-linearly closed and there is a morphism of differential fields (k,Dk)→
(K,DK) such that the map Ωk→ΩK is injective together with a faithful differential functor C →Vect(K). Then there
is a Dk-connection on an object X in C if and only if there is a Dk-structure on X.

Below in Example 4.7, we show that Proposition 3.10 is not true over an arbitrary field (k,Dk). The category C in
this example is Rep(G) for a linear Dk-group G.

Suppose that C is finite, that is, all Hom-spaces in C are finite-dimensional over k and all objects have finite length
(see [55]). For example, if C satisfies the condition from Lemma 3.6, then it is finite. Let l be a Dk-field over k. Recall
from [55] that there is an abelian l-linear tensor category l⊗k C , called extension of scalars category, together with an
exact k-linear tensor functor

l⊗k− : C → l⊗k C .

For short, put
D := l⊗k C andY := l⊗k X .

By [15, Proposition 4.12(i)], there is a canonical Dl-structure on D with

At1D(Y ) � l⊗k At1C (X).

Besides, D is a (not full) subcategory in the category Ind(C ) of ind-objects in C and there is a canonical morphism
X → Y in Ind(C ). For example, if C = Vectfg(k) is the category of finite-dimensional k-vector spaces, then D =
Vectfg(l) and l⊗k− is the usual extension of scalars functor.

Lemma 3.11. In the above notation and assumptions, given a Dk-field l over k, there is a Dk-connection on X in C if
and only if there is a Dl-connection on Y in D .

Proof. Applying the functor l⊗k−, we see that a Dk-connection on X leads to a Dl-connection on Y . Conversely,
assume that there is a Dl-connection sY on Y . Choose a k-linear map λ : l→ k such that the composition

k→ l λ−→ k

is the identity. Then the composition in the category Ind(C )

X −−−−→ Y
sY−−−−→ At1D(Y ) ∼−−−−→ l⊗k At1C (X)

λ⊗idAt1(X)−−−−−−→ At1C (X)

defines a Dk-connection on X in C .

In general, the Dk-connection on X constructed in the proof of Lemma 3.11 can be not a Dk-structure. If C =
Vectfg(k), then the connection matrices for X are obtained by applying λ to the connection matrices for Y . Combining
Proposition 3.10 and Lemma 3.11, we obtain the following result.

Proposition 3.12. Let l be a Dk-field over k. Suppose that (k,Dk) is filtered-linearly closed and there is a morphism
of differential fields (k,Dk)→ (K,DK) together with a faithful differential functor C → Vect(K). Then there is a
Dk-structure on X in C if and only if there is a Dl-structure on l⊗k X in l⊗k C .

4. Linear differential algebraic groups and conjugation

In this section, we show how Proposition 3.10 can be applied to linear differential algebraic groups. The main
results here are in Theorem 4.4 and Theorem 4.6. The behavior of conjugation under extensions of scalars is illustrated
in Section 4.2. In particular, Example 4.9 shows that the assumption on the ground field made in Theorem 4.4 cannot
be relaxed. Also, Example 4.7 demonstrates that Proposition 3.10 is not true over an arbitrary differential field, and
will be further used in Example 6.7 to justify the need in the filtered-linearly closed assumption in the main result of
the paper, Theorem 6.3.
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4.1. Main results
Let G be a linear Dk-group over k and V be a faithful finite-dimensional representation of G. Let A be a Dk-Hopf

algebra over k that corresponds to G. A Dk-connection on V as an object in C = Rep(G) (see Definition 3.1) is a
Dk-connection on V as a k-vector space such that the coaction map

V →V ⊗k A

is a morphism of k-vector spaces with Dk-connections. Equivalently, for any Dk-algebra R, the action of the group
G(R) on R⊗k V commutes with the Dk-connection.

A Dk-connection on V in Rep(G) is a Dk-structure if and only if V is a Dk-module. In this case, we also say that
V is a Dk-representation of G.

Definition 4.1. We say that G is conjugate to a constant subgroup in GL(V ) if there is a k0-vector space V0 and an
isomorphism k⊗k0 V0 �V of k-vector spaces such that there is an embedding in GL(V ):

G⊂ GL(V0)
c

(see Section 2 for the definition of GL(V0)
c).

Note that if G is conjugate to a constant subgroup in GL(V ), then G is constant: there is an algebraic subgroup
G0 ⊂ GL(V0) such that the isomorphism

k⊗k0 V0 �V

induces the equality G = (G0)
c in GL(V ). We say that G is conjugate to a reductive constant subgroup in GL(V ) if

G0 is reductive.
For an explicit description of Definition 4.1, choose a basis in V over k. Then GL(V ) �GLn(k) for some n. By the

differential Nullstellensatz (see [27, Theorem IV.2.1]), G is conjugate to a constant subgroup in GL(V ) if and only of
there is an element g ∈ GLn(k) such that, for a Dk-closed field U over k (equivalently, for any U as above), we have

g−1G(U)g⊂ GLn(U0), U0 := UDk .

Example 4.2. Let k = k0(t), Dk = k ·∂t , G⊂Ga be given by the linear equation

∂
2
t u = 0, u ∈Ga,

and let V be a faithful representation of G given by the faithful upper-triangular two-dimensional representation of
Ga. Then

G �
(
G2

a
)c

is constant, because ∂2
t (1) = ∂2

t (t) = 0. On the other hand, G is not conjugate to a constant subgroup in GL(V ),
because there are no faithful two-dimensional representations of the linear algebraic group G2

a over k0. This shows that
a constant linear Dk-group is not necessarily conjugate to a constant subgroup in GL(V ) for a faithful representation
V of G.

The following result is also proved in [41, Corollary 1] but only for the case of a differentially closed field with
one derivation.

Proposition 4.3. The Dk-group G is conjugate to a constant subgroup in GL(V ) if and only if there is a Dk-structure
on V in Rep(G) such that V is a trivial Dk-module.

Proof. If G is conjugate to a constant subgroup, then the isomorphism k⊗k0 V0 � V defines a Dk-structure on V in
Rep(G), where V0 is as in Definition 4.1. Conversely, suppose that we are given a Dk-structure on V that satisfies the
hypothesis of the proposition. Then put V0 := V Dk .

Combining Propositions 3.10, 3.3, and 4.3, we obtain the following result.
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Theorem 4.4. Suppose that (k,Dk) is filtered-linearly closed (see Definition 3.7) and linearly Dk-closed (see the
comment following Definition 3.7). Then G is conjugate to a Dk-constant subgroup in GL(V ) if and only if there is a
(possibly, non-commuting) basis ∂1, . . . ,∂d in Dk over k such that, for all i, 1 6 i 6 d, G is conjugate to a ∂i-constant
subgroup in GL(V ).

Let l be a Dk-field over k, Dl := l⊗k Dk. We have

l⊗k Rep(G) � Rep(Gl).

Combining Propositions 3.12 and 4.3, we obtain the following result.

Proposition 4.5. Suppose that (k,Dk) is filtered-linearly closed and l is linearly Dl-closed. Then the linear Dl-group
Gl is conjugate to a Dl-constant subgroup in GL(Vl) if and only if there is a Dk-structure on V in Rep(G).

The following result is also proved in [35, Theorem 3.14] but just for the case of a differentially closed field with
one derivation.

Theorem 4.6. Suppose that (l,Dl) is filtered-linearly closed and linearly Dl-closed. Then the linear Dl-group Gl is
conjugate to a reductive constant subgroup in GL(Vl) if and only if the category Rep(G) is semisimple.

Proof. We will use the following fact: given a field extension E ⊂ F , a Hopf algebra A over E corresponds to a
reductive linear algebraic group over E if and only if this holds for the extension of scalars AF over F (see [12,
Remark 2.1.3(ii)]).

Assume that Gl is conjugate to a reductive constant subgroup in GL(Vl). By the fact above, this implies that G
is a reductive algebraic group over k (with the Dk-structure forgotten). Since chark = 0, we obtain that Rep(G) is
semisimple (see [54, Chapter 2]).

Now assume that Rep(G) is semisimple. Then there is a Dk-connection on V as all exact sequences in Rep(G) are
split. This induces a Dl-connection on Vl in Rep(Gl). By Proposition 3.10, there is a Dl-structure on Vl in Rep(Gl).
By Proposition 4.3, Gl is conjugate to a constant subgroup in GL(Vl). Hence, k[G] is a finitely generated algebra over
k. Since Rep(G) is semisimple and chark = 0, we obtain that G is reductive as an algebraic group over k. Again, by
[12, Remark 2.1.3(ii)], this implies that Gl is conjugate to a reductive constant subgroup in GL(Vl).

4.2. Examples
First, we provide a non-trivial example to Proposition 3.10.

Example 4.7. Let
k := Q(t1, t2) and Dk := k ·∂t1 ⊕ k ·∂t2 .

Let V be a 3-dimensional k-vector space with a basis ē := (e1,e2,e3). Consider the Dk-connection ∇V on V given by

∇V (ē) :=−dt1⊗ ē ·B1−dt2⊗ ē ·B2,

where

B1 :=

0 1
t1

0
0 0 0
0 0 0

 , B2 :=

0 0 0
0 0 1

t2
0 0 0

 .

That is, we have
∂ti(ē) =−ē ·Bi.

Note that

∂t2B1−∂t1B2− [B2,B1] =
1

t1t2
· ε, where ε :=

0 0 1
0 0 0
0 0 0

 . (11)
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In particular, the Dk-connection ∇V on V is not a Dk-structure on V . Further, consider the unipotent subgroup U in
GL(V ) that consists of matrices of the following form (with respect to the basis ē):

g(u1,u2,v) :=

1 u1 v
0 1 u2
0 0 1

 .

Let G be the linear Dk-subgroup in U given by the equations

∂tiu j = 0, i = 1,2, j = 1,2,

∂t1v =
1
t1
·u2, ∂t2v =− 1

t2
u1.

Note that these equations are equivalent to the equations

∂tig(u1,u2,v)+ [g(u1,u2,v),Bi] = 0, i = 1,2.

This means that the action of G on V commutes with the action of Dk (see also the discussion following Lemma 4.8),
that is, ∇V is a Dk-connection on V as an object in Rep(G).

Let us show that there is no Dk-structure on V in Rep(G). Assume the converse. By (10) (see Section 3), this
means that there exist C1,C2 ∈ EndG(V ) such that

∂t2A1−∂t1A2− [A2,A1] = 0, Ai := Bi +Ci, i = 1,2. (12)

A calculation shows that we have an isomorphism (via choosing the basis ē)

EndG(V ) � k · Id⊕k · ε. (13)

Since
[Bi,ε] = 0, i = 1,2,

we see that (11) and (13) imply that (12) holds if and only if there exist f1, f2 ∈ k such that

1
t1t2

+∂t2 f1−∂t1 f2 = 0. (14)

This implies that the coefficient of t−1
1 with values in Q(t2) of the function

1
t1t2

+∂t2 f1

vanishes. Therefore, we have

1
t2

+∂t2(a−1) = 0, where f1 = ∑
i

ait i
1, ai ∈ Q(t2).

This gives a contradiction. Thus, we see that Proposition 3.10 is not true over an arbitrary field (k,Dk).

Next, we describe two types of Dk-subgroups in GLn(k) that are not constant over k but are conjugate to constant
subgroups in GLn(l) over l, where l is a Picard–Vessiot extension of k. Let M be a finite-dimensional Dk-module over
k.

Lemma 4.8. The group-valued functor

GLDk(M) : DAlg(k,Dk)→ Sets, R 7→ AutDk
R (R⊗k M)

is represented by a linear Dk-group.
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Proof. The corresponding finitely generated Dk-Hopf algebra is the Hopf algebra of the algebraic group GL(M) over
k with the Dk-structure obtained by the localization over the determinant of the Dk-structure on the symmetric algebra
of the Dk-module Endk(M) � M∨⊗k M.

For an explicit description of GLDk(M), choose a basis ē = (e1, . . . ,en) in M over k. Then GL(M) � GLn(k). For
each ∂ ∈ Dk, denote the corresponding connection (n×n)-matrix by A∂, that is, we have

∂(ē) =−ē ·A∂.

By definition, GLDk(M) consists of invertible (n× n)-matrices such that the corresponding gauge transformation
preserves the connection matrices A∂ for all ∂ ∈ Dk. Thus, GLDk(M) is given by the differential equations

∂g+[g,A∂] = 0, g ∈ GLn(k), ∂ ∈ Dk.

Note that GLDk(M) is a closed linear Dk-subgroup in the linear Dk-group GL(M) and M is faithful a Dk-representation
of GLDk(M). A morphism of linear Dk-groups

G→ GLDk(M)

corresponds to a Dk-representation V of G such that V � M as Dk-modules.
It follows directly from the proof of Lemma 4.8 that the linear Dk-group GLDk(M) is constant if and only if the

Dk-module
M∨⊗k M

is trivial, because a submodule of a trivial Dk-module is trivial and the determinant is a Dk-constant in Symn
k(M

∨⊗k
M). Besides, if M is trivial, then GLDk(M) is conjugate to a constant subgroup in GL(M) (the converse is not true
already for dimk(M) = 1).

Example 4.9. Consider the differential field k =Q(t1, t2), Dk := k ·∂t1⊕k ·∂t2 and the Dk-module M := 1⊕L, where
L = k · e, ∂t1(e) = 0, ∂t2(e) = e. Since the Dk-module

M∨⊗k M � 1⊕L⊕L∨⊕1

is not trivial, the linear Dk-group
G := GLDk(M)⊂ GL2(k)

is not constant and henceforth G is not conjugate to a constant subgroup in GL2(k). Put

∂1 := t1∂t1 , ∂2 := t1∂t1 +∂t2 .

Then [∂1,∂2] = 0 and L is a trivial ∂2-module as

∂2
(
t−1
1 · e

)
= 0.

Therefore, M is a trivial ∂i-module for i = 1,2. By Proposition 4.3, G is conjugate to a ∂i-constant subgroup in GL2(k)
separately with respect to each i. This shows that Theorem 4.4 is not true for an arbitrary (k,Dk).

The following type of non-constant groups will be used in Section 6 in order to construct non-trivial examples to
Theorem 6.6.

Lemma 4.10. The group valued functor

MDk : DAlg(k,Dk)→ Sets, R 7→ (R⊗k M)Dk

is represented by a linear Dk-group.

Proof. The corresponding finitely generated Dk-Hopf algebra is the Hopf algebra of (M,+), that is, the symmetric
algebra of M∨, with the induced Dk-structure (see also [46, Lemma 2.16]).
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For an explicit description of MDk , choose a basis in M over k. Then (M,+) � Gn
a for some n. For each ∂ ∈ Dk,

denote the corresponding connection (n×n)-matrix by A∂. Then MDk is given by the differential equations

∂y = A∂ · y, y ∈Gn
a, ∂ ∈ Dk.

Note that MDk is a closed linear Dk-subgroup in the linear Dk-group M. One can show that a linear Dk-group G is
isomorphic to (Gn

a)
c over some Dk-field l over k if and only if G � MDk for some n-dimensional Dk-module M over k

(see also [6, Proposition 11]).
Assume that Dk = k ·∂ for a derivation ∂ : k→ k and k0 , k. Let m∈M be a cyclic vector (see [46, Definition 2.8]).

Let 0 ,D be a linear ∂-operator with coefficients in k of the smallest order such that Dm = 0, which exists because M
is finite-dimensional over k. Then (

M∨
)Dk

is isomorphic to the Dk-subgroup in Ga given by the equation Du = 0, u∈Ga, because they represent the same functor
(see [46, Lemma 2.16]).

Remark 4.11.

1. There is a faithful Dk-representation VM of MDk defined as follows: as a Dk-module, VM is M⊕1, and the action
of MDk is given by

m : (n,c) 7→ (n+ c ·m,c),

where m ∈MDk , n ∈M, and c ∈ k. We have an exact sequence of Dk-representations of MDk

0 −−−−→ M −−−−→ VM −−−−→ 1 −−−−→ 0,

where MDk acts trivially on the Dk-modules M and 1.
2. One can show that there is a bijection between morphisms of linear Dk-groups G→ MDk and isomorphism

classes of exact sequences of Dk-representations of G

0 −−−−→ M −−−−→ V −−−−→ 1 −−−−→ 0,

where G acts trivially on the Dk-modules M and 1. An argument shows that this implies that, for a linear
Dk-group G, the category Rep(G) is Dk-equivalent to Rep

(
MDk

)
if and only if G � MDk .

5. Gauss–Manin connection and parameterized differential Galois groups

The main results of this section, Propositions 5.2 and 5.4, are used in Section 6.5 in order to construct non-trivial
examples to Theorem 6.6. The constructions and results of this section seem to have also their own interest in the
parameterized differential Galois theory.

5.1. Gauss–Manin connection
We define algebraically a Gauss–Manin connection, which is used to describe a parameterized differential Galois

group of integrals in Section 5.2. For this, we use the Gauss–Manin connection on H1 only, so that the reader may put
i = 1 in what follows if desired.

For any differential field (K,DK), let H i(K,DK) denote the cohomology groups of the de Rham complex Ω•K (see
Section 2). That is, we have

H i(K,DK) := Ker
(
Ω

i
K

d−→Ω
i+1
K
)/

Im
(
Ω

i−1
K

d−→Ω
i
K
)
, i > 1,

and H0(K,DK) = KDK . Recall that, for ∂ ∈ DK , the Lie derivative is defined as follows (see [15, §3.10]):

L∂ = d◦ i∂ + i∂ ◦d : Ω
i
K →Ω

i
K ,

where
i∂ : Ω

i
K →Ω

i−1
K , ω 7→

{
a 7→ ω(∂∧a), a ∈ ∧i−1

K DK
}

, i > 1
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and i∂ = 0 for i = 0. In particular,
L∂(a) = ∂(a) for any a ∈ K.

It follows from the definition that the Lie derivative commutes with d, acts as zero on H i(K,DK), satisfies the Leibniz
rule

L∂(ω∧η) = L∂(ω)∧η+ω∧L∂(η)

for all ω ∈Ωi
K , η ∈Ω

j
K , i, j > 0, and we have

L[∂,δ] = [L∂,Lδ] for all ∂,δ ∈ DK .

Let now (K,DK) be a parameterized differential field over (k,Dk). We have the relative de Rham complex Ω•K/k,
where

ΩK/k := D∨K/k.

For short, put
H i(K/k) := H i(K,DK/k), i > 0.

Then H i(K/k) are k-vector spaces, because the differential on Ω•K/k is k-linear. Moreover, there is a canonical Dk-
structure on H i(K/k), called a Gauss–Manin connection and constructed as follows.

For ∂ ∈ Dk, let ∂̃ ∈ DK be any lift of 1⊗∂ with respect to the structure map DK → K⊗k Dk. One checks that the
action of L

∂̃
on ΩK preserves Ωk. Since the kernel

C• := Ker
(
Ω
•
K →Ω

•
K/k

)
is generated by Ωk as an ideal in Ω•K with respect to the wedge product and L

∂̃
satisfies the Leibniz rule as mentioned

above, we see that the action of L
∂̃

on Ω•K preserves the subcomplex C•. Therefore, L
∂̃

is well-defined on the quotient
Ω•K/k. Since DK/k acts as zero on H i(K/k), we obtain a well-defined action of Dk on H i(K/k). Finally, one checks
that the corresponding map

Dk→ EndZ
(
H i(K/k)

)
is k-linear, whence H i(K/k) is a Dk-module.

Explicitly, for any ω ∈Ωi
K/k with dω = 0, we have

∂[ω] =
[
L

∂̃
(ω̃)
]
, (15)

where ω̃∈Ωi
K is any lift of ω with respect to the map Ωi

K→Ωi
K/k, and the brackets denote taking the class in H i(K/k).

The preceding discussion shows that ∂[ω] is well-defined.

Example 5.1.

1. We have H0(K/k) = KDK/k = k with the usual Dk-structure.
2. Suppose that DK/k = K ·∂x. Then

ΩK/k = Ω
1
K/k = K ·ωx with ωx(∂x) = 1, da = ∂x(a) ·ωx

for any a ∈ K, and Ωi
K/k = 0 for i > 2. Hence, there is an isomorphism

K/(∂xK) ∼−→ H1(K/k), [a] 7→ [a ·ωx],

where a ∈ K. Under the above isomorphism, the Gauss–Manin connection on H1(K/k) corresponds to the
Dk-structure on K/(∂xK) given by

∂[a] =
[
∂̃(a)

]
, ∂ ∈ Dk,

where, as above, ∂̃ ∈ DK is any lift of 1⊗∂ with respect to the structure map DK → K⊗k Dk.
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3. Suppose, in addition to (2), that K = k(x) and ∂x(x) = 1. Then, for any class in K/(∂xK), there is a unique
representative of the form

n

∑
i=1

bi

x− ci
, bi,ci ∈ k, bi , 0.

Since

∂

[
n

∑
i=1

bi

x− ci

]
=

[
n

∑
i=1

∂bi

x− ci

]
,

we obtain isomorphisms of Dk-modules L
c∈k

k � K/(∂xK) � H1(K/k).

5.2. PPV extensions defined by integrals
As above, let (K,DK) be a parameterized differential field over (k,Dk). Given ω∈ΩK/k with dω = 0, the equation

dy = ω corresponds to a consistent system of (non-homogenous) linear differential equations in the unknown y

δ(y) = ω(δ), δ ∈ DK/k.

Note that Lemma 4.10 remains valid if one assumes that M is a Dk-finitely generated module over k instead of
being finite-dimensional over k. We use this generality in the following statement. Its special case appears in [52,
Lemma 2.3].

Proposition 5.2. Let L be a PPV extension of K for the system of linear differential equations that corresponds to the
equation dy = ω, where ω ∈ΩK with dω = 0 (see above). Let M be the Dk-submodule in H1(K/k) generated by [ω]
(see Section 5.1). Then there is an isomorphism of linear Dk-groups (see Lemma 4.10 and the remark preceding the
proposition)

GalDK (L/K) �
(
M∨
)Dk .

Proof. The proof is in the spirit of the Kummer and Artin–Schreier theories, for example, see [30, §VI.8]. Let R be a
Dk-algebra. The natural map

α : R⊗k H1(K/k)→ R⊗k H1(L/k)

is a morphism of Dk-modules. Since L contains a solution of the equation dy = ω, we have α([ω]) = 0. Therefore, for
any η ∈ R⊗k ΩK/k with dη = 0 and [η] ∈ R⊗k M, we have

α([η]) = 0.

Thus, the equation dy = η has a solution in R⊗k L. Let
R

η ∈ R⊗k L denote any of these solutions. For each
g ∈ GalDK (L/K)(R), consider the map

φg : R⊗k M→ R, [η] 7→ g(
R

η)−
R

η.

One checks that φg([η]) is well-defined, that is, does not depend on the choices of η and
R

η for a given [η], and
belongs to

R = (R⊗k L)DK/k .

Further,
φg ∈

(
M∨
)Dk ,

that is, φg is a Dk-map: for any ∂ ∈ Dk and its lift ∂̃ ∈ DK , we have

∂(φg([η])) = ∂̃(g(
R

η))− ∂̃(
R

η) = g
(
∂̃(

R
η)
)
− ∂̃(

R
η) = g

(R
L

∂̃
η
)
−

R
L

∂̃
η = φg(∂[η]),
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because the restriction of ∂̃ from R⊗k L to R is ∂, g commutes with ∂̃, d commutes with L
∂̃
, and by (15) (see Sec-

tion 5.1). Also, for all g,h ∈ GalDK (L/K)(R), we have

hg(
R

η)−h(
R

η) = g(
R

η)−
R

η,

as the right-hand side belongs to R and is Galois invariant. Therefore,

φhg = φh +φg.

Summing up, we obtain a morphism of linear Dk-groups

φ : GalDK (L/K)→
(
M∨
)Dk .

Since L is DK-generated over K by
R

ω, we see that φ is injective. Suppose that φ is not surjective. Then there is a
non-zero element [η] ∈M such that, for any Dk-algebra R over k and any g ∈ GalDK (L/K)(R), we have

φg([η]) = 0.

Equivalently, for any g ∈ GalDK (L/K)(R), we have

g(
R

η) =
R

η,

whence
R

η ∈ K and [η] = 0 in H1(K/k), which is a contradiction. Thus, φ is an isomorphism.

The fact that the parameterized differential Galois group in Proposition 5.2 does not depend of the PPV extension
corresponds directly to Remark 4.11(2).

Example 5.3.

1. Assume that Dk = k ·∂t . Let 0 , D be a linear ∂t -operator with coefficients in k of the smallest order such that

D[ω] = 0 in H1(K/k).

If there is no non-zero D with D[ω] = 0, then we put D := 0. Proposition 5.2 and the discussion following
Lemma 4.10 imply that GalDK (L/K) is isomorphic to the Dk-subgroup in Ga given by the equation

Du = 0, u ∈Ga.

2. We use the notation of Example 5.1 (3). By Proposition 5.2, the parameterized differential Galois group of the
equation dy = ω with

ω =
n

∑
i=1

bi

x− ci
·ωx, bi,ci ∈ k, bi , 0,

is isomorphic to (Gn
a)

c. This is also explained in [8, Example 7.1].

Surprisingly, the description of the parameterized differential Galois group given in Proposition 5.2 allows to
prove the existence of a PPV extension. For simplicity, suppose that Dk = k · ∂t and let D be as in Example 5.3(1).
Let ∂̃t ∈ DK be a lift of 1⊗∂t with respect to the structure map DK → K⊗k Dk and let a linear DK-operator D̃ be the
corresponding lift of D. Since D[ω] = 0, there is a ∈ K such that

LD̃(ω) = da (16)

by (15) and the preceding discussion (see Section 5.1). An equation similar to (16) was considered in [52] and [10].
Consider the DK-algebra

R := K{y}
/(

dy−ω, D̃y−a
)

DK
, (17)
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where (Σ)DK denotes the DK-differential ideal generated by Σ, and dy−ω means the collection

δ(y)−ω(δ), δ ∈ DK/k.

Note that R is isomorphic as a K-algebra to the ring of polynomials over K (possibly, of countably many variables).
In particular, R is a domain.

Proposition 5.4. In the above notation, the field L := Frac(R) is a PPV extension of K for the equation dy = ω.

Proof. Let l be a Dk-field over k and suppose that the proposition is true for the parameterized field

Kl := Frac(l⊗k K)

over l (see [15, §8.2] for the extension of DK/k-constants in parameterized differential fields). That is, suppose that

Ll := Frac(l⊗k R)

is a PPV extension of Kl for the equation dy = ω. Therefore, L
DK/k
l = l. On the other hand, by [15, Corollary 8.9], we

have that
L

DK/k
l = l⊗k LDK/k ,

whence LDK/k = k and we obtain the needed result for L. Thus, we may assume that (k,Dk) is differentially closed.
Now suppose that the proposition is true for a and let a′ ∈ K be another element such that

LD̃(ω) = da′.

Then a′ = a + b with b ∈ k. Since (k,Dk) is differentially closed, there is c ∈ k such that Dc = b. This defines an
isomorphism

R→ K{y}
/(

dy−ω, D̃y−a′
)

DK
, y 7→ y− c.

Thus, it is enough to show that there is at least one a ∈ K with LD̃(ω) = da such that the proposition is true for a.
Again, since (k,Dk) is differentially closed, there is a PPV extension E of K for the equation dy = ω by [8,

Theorem 3.5(1)]. Let z ∈ E be a solution of the latter equation. Consider the subring S in E that is DK-generated by
z. We have that

LD̃(ω) = d
(
D̃z
)
.

Since EDK/k = k, we see that D̃z ∈ K. Put
a := D̃z.

Then we obtain a surjective DK-morphism f : R→ S sending y to z.
By Proposition 5.2 and Example 5.3(1), GalDK (E/K) is isomorphic to the Dk-subgroup in Ga given by

Du = 0, u ∈Ga.

It follows from the proof of Proposition 5.2 that the action of GalDK (E/K) on E is given by the formula

u : z 7→ z+u.

Let G be the extension of scalars from k to K of GalDK (E/K) as a (pro-)algebraic group over k. It follows from the
PPV theory that Spec(S) is a torsor under G over K (see [8, §9.4]). By the explicit description of R, Spec(R) is also a
torsor under G and f corresponds to a closed embedding Spec(S)→ Spec(R) of G-torsors. We conclude that f is an
isomorphism, which proves the proposition for the above choice of a.

6. Isomonodromic differential equations

In this section, we show how Proposition 3.10 can be applied to isomonodromic parameterized linear differential
equations. The main results here are in Theorem 6.3 and Theorem 6.6. Section 6.4 provides an analytic interpretation
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of our results. The main illustrating examples are in Section 6.5 (see also Example 6.5).

6.1. Main results
Let (K,DK) be a parameterized differential field over (k,Dk) and N be a finite-dimensional DK/k-module over K.

Definition 6.1. We say that N is isomonodromic if there is a DK-structure on N such that its restriction from DK to
DK/k is equal to the initial DK/k-structure on N.

This is called complete integrability in [8, Definition 3.8], but we preferred to use the terminology slightly more
common in differential equations for this notion (see also Section 6.4).

Proposition 6.2. A finite-dimensional DK/k-module N is isomonodromic if and only if there is a Dk-structure on N in
DMod

(
K,DK/k

)
.

Proof. We use facts about the Atiyah functor At1 in DMod
(
K,DK/k

)
that can be found in [15, §5.1]. We have the

equality of sets (see [15, eq. (17)])

At1(N) =
{

n⊗1+∑i ni⊗ωi ∈ N⊕ (N⊗K ΩK)
∣∣∀δ ∈ DK/k, δ(n) = ∑i ωi(δ)ni

}
(we are not specifying K-linear and DK structures on At1(N) here). Further,

At1(N)⊂ At1K(N),

where At1K denotes the Atiyah functor in Vect(K). Assume that there is a Dk-structure sN : N → At1(N) on N in
DMod

(
K,DK/k

)
. Since the forgetful functor

DMod
(
K,DK/k

)
→ Vect(K)

is differential (see [15, Theorem 5.1]), the composition

N
sN−−−−→ At1(N) −−−−→ At1K(N)

defines a DK-structure on N that extends the given DK/k-structure. Conversely, assume that N is isomonodromic.
Since the DK-structure extends the given DK/k-structure, we see that the map N→At1K(N) factors through At1(N) by
the construction of At1, which gives the needed splitting sN .

For each ∂ ∈ Dk, we have a parameterized differential field (K,DK,∂) over (k,Dk) with DK,∂ being the preimage
of K⊗ ∂ with respect to the structure map DK → K⊗k Dk. By definition, a finite-dimensional DK/k-module N is ∂-
isomonodromic if and only if it is isomonodromic over (K,DK,∂). By Proposition 6.2, this is equivalent to the existence
of a ∂-structure on N in DMod(K,DK/k). Note that we have a morphism of differential fields (k,Dk)→ (K,DK) (while
there is no fixed Dk-field structure on K) and the forgetful functor DMod(K,DK/k)→Vect(K) is a faithful differential
functor (see [15, Theorem 5.1]). Thus, combining Proposition 3.10, 3.3, and 6.2, we obtain:

Theorem 6.3. Suppose that (k,Dk) is filtered-linearly closed. Then N is isomonodromic if and only if there is a
(possibly, non-commuting) basis ∂1, . . . ,∂d in Dk over k such that N is ∂i-isomonodromic for all i.

6.2. Explicit approach
Let us explain Theorem 6.3 more explicitly in the case mentioned in the introduction: dimK(DK/k) = 1 and

dimk(Dk) = d. More precisely, let ∂,∂1, . . .∂d denote commuting derivations from K to itself, k = K∂, and put

DK := K ·∂⊕K ·∂1⊕ . . .⊕K ·∂d and Dk := k ·∂1⊕ . . .⊕ k ·∂d .

Choosing a basis in a finite-dimensional DK/k-module N over K, we obtain a correspondence between differential
structures on N and matrices with entries from K. Let Mn(K) denote the space of (n×n)-matrices with entries in K.
A particular case of Theorem 6.3 reads as follows.
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Theorem 6.4. Suppose that for all i, 1 6 i 6 d− 1, all consistent systems of linear differential equations over k that
involve only the derivation ∂1, . . . ,∂i have a fundamental solution matrix with entries in k. Let A∈Mn(K) and suppose
that there exist matrices B1, . . . ,Bd ∈Mn(K) that satisfy

∂iA−∂Bi = [Bi,A] (18)

for all i, 1 6 i 6 d. Then there exist matrices A1, . . . ,Ad ∈Mn(K) such that

∂iA−∂Ai = [Ai,A] (19)

for all i, 1 6 i 6 d, and, for all i, j, 1 6 i, j 6 d, we have

∂iA j−∂ jAi = [Ai,A j]. (20)

The condition on the field k and derivations ∂1, . . .∂d from Theorem 6.4 corresponds to the condition that (k,Dk)
is filtered-linearly closed with respect to the basis ∂1, . . . ,∂d . The explicit proof below can be used in designing
algorithms.

Proof. What follows is an explicit version of the proof of Lemma 3.9. Similarly, we use induction on d, with the case
d = 1 being trivial. Let us make the inductive step from d− 1 to d, d > 2. By the inductive hypothesis, there are
matrices A1, . . . ,Ad−1 ∈Mn(K) that satisfy both (19) and (20). We claim that there exists C ∈Mn(K) such that the
matrices

(A1, . . . ,Ad−1,Bd +C)

satisfy both (19) and (20). In order to show that Bd +C satisfies (19) and (20), we need to show the equalities

∂(Bd +C)−∂dA = [A,Bd +C] (21)

and
∂i(Bd +C)−∂dAi = [Ai,Bd +C] (22)

for all i, 1 6 i 6 d−1. Expanding the left-hand side of (21) using (18), we see that

∂(Bd +C) = ∂Bd +∂C = ∂dA+[A,Bd ]+∂C.

Consider
∂Z = [A,Z] (23)

as a matrix linear differential equation in (n×n)-matrix Z. Rearranging the terms in (22), we see that we need to find
C ∈Mn(K) such that C satisfies (23) and the following condition is satisfied:

∂iC +[C,Ai] = ∂dAi−∂iBd +[Ai,Bd ] (24)

for all i, 1 6 i 6 d−1.
We now show that the right-hand side of (24) satisfies (23). Indeed, we have:

∂
(
∂dAi−∂iBd +[Ai,Bd ]

)
= ∂d(∂Ai)−∂i(∂Bd)+ [∂Ai,Bd ]+ [Ai,∂Bd ] =

= ∂d(∂iA+[A,Ai])−∂i(∂dA+[A,Bd ])+ [∂i(A)+ [A,Ai],Bd ]+ [Ai,∂dA+[A,Bd ]] =
= ∂d([A,Ai])−∂i([A,Bd ])+ [∂i(A),Bd ]+ [[A,Ai],Bd ]+ [Ai,∂d(A)]+ [Ai, [A,Bd ]] =
= [A,∂d(Ai)]− [A,∂i(Bd)]+ [A, [Ai,Bd ]],

as desired. Here, we have used (18) and (19) for the second equality.
For any matrix Z ∈Mn(K) satisfying (23), we now show that for all i, 1 6 i 6 d−1, the matrix

∂iZ +[Z,Ai]
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also satisfies (23). Indeed, we have:

∂(∂iZ +[Z,Ai]) = ∂i (∂Z)+ [∂Z,Ai]+ [Z,∂Ai] =
= ∂i([A,Z])+ [[A,Z],Ai]+ [Z,∂iA+[A,Ai]] =
= [∂iA,Z]+ [A,∂iZ]+ [[A,Z],Ai]+ [Z,∂iA]+ [[Z,A],Ai]+ [A, [Z,Ai]] =
= [A,∂iZ +[Z,Ai]] ,

as desired. Here, we have used (23) and (19) for the second equality as well.
Let V denote the set of all matrices in Mn(K) satisfying (23). Then V is a finite-dimensional k-vector space. Also,

consider the maps
Φi : Mn(K)→Mn(K), Z 7→ ∂iZ +[Z,Ai],

which are given by the left-hand side of (24). What we have shown so far is that for all i, 1 6 i 6 d−1, the right-hand
side of (24) belongs to V and that the maps Φi preserve the subspace V ⊂Mn(K). Moreover, the maps Φi define
a (∂1, . . . ,∂d−1)-module structure on V , that is, these maps satisfy the Leibniz rule and the integrability conditions
[Φi,Φ j] = 0 for all i, j, 1 6 i, j 6 d−1. Indeed, we have:

(ΦiΦ j)(Z) = ∂i(∂ jZ +[Z,A j])+ [∂ jZ +[Z,A j],Ai] =
= ∂i∂ jZ +[∂iZ,A j]+ [Z,∂iA j]+ [∂ jZ,Ai]+ [[Z,A j],Ai].

Subtracting the similar expression for (Φ jΦi)(Z), we obtain

[Φi,Φ j](Z) = [Z,∂iA j]− [Z,∂ jAi]+ [[Z,A j],Ai]− [[Z,Ai],A j] =
= [Z,∂iA j−∂ jAi− [Ai,A j]],

which vanishes by (20) for 1 6 i, j 6 d−1.
Let yi ∈V , 1 6 i 6 d−1, denote the right-hand side of (24):

yi := ∂dAi−∂iBd +[Ai,Bd ].

By construction, finding C that satisfies (23) and (24) is equivalent to finding y ∈V that satisfies

Φi(y) = yi (25)

for all i, 1 6 i 6 d−1. This system of non-homogenous linear differential equations is consistent if and only if one has

Φi(y j) = Φ j(yi)

for all i, j, 1 6 i, j 6 d−1. The latter is again implied by (20). Indeed, we have:

Φi(y j) = ∂i∂dA j−∂i∂ jBd +[∂iA j,Bd ]+ [A j,∂iBd ]+ [∂dA j,Ai]− [∂ jBd ,Ai]+ [[A j,Bd ],Ai].

Subtracting the similar expression for Φ j(yi), we obtain

Φi(y j)−Φ j(yi) = ∂i∂dA j−∂ j∂dAi +[∂iA j,Bd ]− [∂ jAi,Bd ]+ [∂dA j,Ai]− [∂dAi,A j]+ [[A j,Bd ],Ai]− [[Ai,Bd ],A j] =
= ∂d(∂iA j−∂ jAi− [Ai,A j])+ [∂iA j−∂ jAi− [Ai,A j],Bd ],

which vanishes by (20) for 1 6 i, j 6 d−1.
A consistent system of non-homogenous linear differential equations is equivalent to a consistent system of ho-

mogenous linear differential equations (doubled in size). Therefore, by the hypothesis of the theorem, there exists
y ∈V satisfying (25), which implies the existence of C ∈Mn(K) satisfying (23) and (24). Thus, the matrices

(A1, . . . ,Ad−1,Bd +C)
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satisfy both (19) and (20).

Example 6.5. We will see that, in general, the Ai’s as in Theorem 6.4 have to be different from the original Bi’s.
Assume that there is an element t ∈ k such that ∂1(t) = 1 and ∂i(t) = 0 for all i, 2 6 i 6 d (e.g., k is the field of rational
functions k = Q(t1, . . . , td), ∂i = ∂ti , and t = t1). Let d > 2 and suppose that (n×n)-matrices A,A1, . . .Ad with entries
in K satisfy all the integrability conditions (19) and (20). Define

B1 := A1, . . . ,Bd−1 := Ad−1, Bd := Ad +diag(t),

where diag(t) denotes the diagonal (n×n)-matrix with t ∈ k on the diagonal. Then the new set of matrices A,B1, . . . ,Bd
will still satisfy (18) but will not satisfy the integrability condition for the pair of derivations ∂1 and ∂d . Indeed,
∂1Bd−∂dB1 is the identity matrix, while [B1,Bd ] vanishes.

6.3. Relation to parameterized differential Galois groups
Let U be a Dk-closure of k, KU := Frac(U⊗kK). By [15, Proposition 8.11], we have

U⊗k DMod(K,DK/k) � DMod(KU ,DKU/U)

Below, we extend [8, Proposition 3.9(1)] to the case when (k,Dk) is not necessarily differentially closed, which we
also prove categorically.

Theorem 6.6. In the above notation, let L be a PPV extension for NKU (which exists by [8, Theorem 3.5(1)]), V :=

N
DK/k
L , and GalDK (L/KU)⊂GL(V ) be the parameterized differential Galois group of L over KU . Suppose that (k,Dk)

is filtered-linearly closed. Then N is isomonodromic if and only if GalDK (L/KU) is conjugate to a constant subgroup
in GL(V ).

Proof. Let C be the subcategory in DMod(KU ,DKU/U) that is Dk-tensor generated by NKU (see [15, Definition 4.19]).
Recall that L defines a Dk-fiber functor

ω : C → Vect(U)

such that ω(NKU ) = V and GalDK (L/KU) is the associated Dk-group (see [15, Theorem 5.5]). More precisely, there is
an equivalence of Dk-categories

C � Rep
(
GalDK (L/KU)

)
sending NKU to V . Thus, combining Propositions 6.2, 3.12, and 4.3, we obtain the required result.

6.4. Analytic interpretation
We will now explain in more detail the relation between the analytic notion of isomonodromicity and Defini-

tion 6.1. Let f : X → S be a holomorphic submersion between connected complex analytic manifolds with connected
fibers such that f is topologically locally trivial. Let E be a holomorphic vector bundle on X and ∇X/S be a relative
flat holomorphic connection on E over S (that is, the connection ∇X/S is defined only along vector fields on X that are
tangent to the fibers of f ). For a subset Σ⊂ S, put

XΣ := f−1(Σ).

In particular, Xs denotes the fiber of f at a point s ∈ S.
Let U be a sufficiently small open neighborhood of a point s ∈ S such that there is a smooth isomorphism

φ : U×Xs
∼−→ XU

whose restriction to {s}×Xs coincides with the embedding Xs ↪→ XU . This gives a collection of smooth isomorphisms

φst : Xs
∼−→ Xt ,
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where t ∈U , and a section σ : U → XU . Also, choose a trivialization

ψ : Cn×U ∼−→ σ
∗E.

Then the connection ∇X/S defines a family of relative monodromy representations ρt , t ∈U , as the composition

π1 (Xs,σ(s)) ∼−−−−→ π1 (Xt ,σ(t)) −−−−→ GLn ((σ∗E)t)
∼−−−−→ GLn ((σ∗E)s)

∼−−−−→ GLn(C).

The isomorphism classes of the representations ρt do not depend on the choices of φ and ψ.
We say that (E,∇X/S) is analytically isomonodromic if the isomorphism classes of the relative monodromy repre-

sentations ρs are locally constant over S (for example, see [47, §1]). It is shown in [47, Proof of 1.2(1), first step] that
(E,∇X/S) is analytically isomonodromic if and only if, for any point s ∈ S, there is an open neighborhood s ∈U ⊂ S
such that ∇X/S extends to a flat holomorphic connection on E over XU (see also [51, Theorem A.5.2.3] for the case of
one-dimensional fibers). This is a version of Definition 6.1 in the analytic context.

Let us give an analytic interpretation of Theorem 6.3. By definition, (E,∇X/S) is analytically isomonodromic
along a holomorphic vector field v on S if and only if the relative monodromy representations are locally constant
along (local) holomorphic curves on S that are tangent to v. Thus, (E,∇X/S) is analytically isomonodromic if and only
if it is analytically isomonodromic along d transversal vector fields on S, where d := dim(S). Combining this with the
property of analytic isomonodromicity discussed above, we obtain an analytic proof of following weaker version of
Theorem 6.3:

Let k (respectively, Dk) be the field of meromorphic functions (respectively, the space of meromorphic vector
fields) on S. Analogously, define K and DK for X in place of S. Assume that a finite-dimensional DK/k-module
N satisfies the partial isomonodromicity condition from Theorem 6.3. Then there is a point s ∈ S such that N is
isomonodromic over the parameterized differential field Ks over ks, where ks is the field of meromorphic functions on
open neighborhoods of s in S and Ks is the field of meromorphic functions on open subsets in X whose intersection
with Xs is dense in Xs.

In general, one cannot replace Ks by the field of meromorphic functions along all Xs. However, the results from [22,
23] allow to similarly treat the latter case when the fibers of f are complex projective lines with finite sets of points
removed. Finally, the need of replacing k by ks reflects the requirement for (k,Dk) to be filtered-linearly closed in
Theorem 6.3.

6.5. Examples
First, we provide a non-trivial example to Theorem 6.3 showing that its statement is not true for an arbitrary field

(k,Dk). Namely, in the notation Example 4.7, we construct a parameterized field K over the field (k,Dk) and a PPV
extension K ⊂ L such that GalDK (L/K) � G and the solution space corresponds to the representation V . We are very
grateful to M. Singer, who suggested a general method for constructing PPV extensions with a given parameterized
differential Galois group to us.

Example 6.7. The following example is based on iterated integrals. Let k := Q(t1, t2) and Dk := k ·∂t1 ⊕ k ·∂t2 . Let

F := k
(
∂

i
x∂

j1
t1 ∂

j2
t2 Im

)
, i, j1, j2 > 0, m = 1,2,

be the field of {∂x,∂t1 ,∂t2}-rational functions in the differential indeterminates I1 and I2 over k. Put

DF := F ·∂x⊕F ·∂t1 ⊕F ·∂t2 ,

and do the analogous for the other fields that appear in what follows. Then (F,DF) is a parameterized differential field
over (k,Dk). Let L be a PPV extension of F for the equation

∂x(y) = ∂xI1 · I2 (26)

and let I ∈ L be a solution of this equation (for example, see Proposition 5.4 for the existence of L). A calculation
shows that there are no elements a ∈ F and linear Dk-operators D with coefficients in k such that ∂x(a) = D(∂xI1 · I2).
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By Proposition 5.2, we see that
GalDF (L/F) � Ga

and, therefore, the elements ∂iI ∈ L, i> 0, are algebraically independent over F . Let K ⊂ L be the {∂x,∂t1 ,∂t2}-subfield
generated by

∂xIm, ∂t1 Im, ∂t2 Im, m = 1,2, J1 := ∂t1 I−∂t1 I1 · I2− I2/t1, J2 := ∂t2 I−∂t2 I1 · I2 + I1/t2.

Since I satisfies (26) and J1,J2 ∈ K, for all (i, j1, j2) , (0,0,0), we have

∂
i
x∂

j1
t1 ∂

j2
t2 (I) ∈ K(I2).

Therefore,
L = K(I1, I2, I).

One can show that I1, I2, I are algebraically independent over K using a characteristic set argument with respect to any
orderly ranking of the derivatives with I > I1 > I2 [27, Sections I.8–10]. Put

fi := ∂xIi ∈ K, i = 1,2,

and consider the equation

∂x(y) = A∂x · y, y := t(y1,y2,y3), A∂x :=

0 f1 0
0 0 f2
0 0 0

 . (27)

Then

Φ :=

1 I1 I
0 1 I2
0 0 1


is the fundamental matrix for the equation (27), that is, I is the iterated integral

R
x ( f1 ·

R
x f2). Hence, L is a PPV

extension of K for the equation (27).
In what follows, U and G are as in Example 4.7. We see that GalDK (L/K) is a linear Dk-subgroup in U , where U

acts on Φ by multiplication on the right. Explicitly, we have

g(u1,u2,v)(Ii) = Ii +ui, g(u1,u2,v)(I) = I + I1u2 + v.

A calculation shows that K ⊂ LG. By a dimension argument, we conclude that GalDK (L/K) = G. By Example 4.7,
the equation (27) is not isomonodromic. On the other hand, this equation is ∂ti -isomonodromic, i = 1,2 with the
corresponding matrices given by

Bi := Φ · B̃i ·Φ−1 +∂tiΦ ·Φ
−1, i = 1,2, B̃1 :=

0 1/t1 0
0 0 0
0 0 0

 , B̃2 :=

0 0 0
0 0 1/t2
0 0 0

 .

More explicitly,

B1 :=

0 1/t1 +∂t1 I1 J1
0 0 ∂t1 I2
0 0 0

 , B2 =

0 ∂t2 I1 J2
0 0 1/t2 +∂t2 I2
0 0 0


Thus, we see that Theorem 6.3 is not true for an arbitrary field (k,Dk).

The purpose of the rest of the section is to show that, in Theorem 6.6, one really needs to take the extension
of scalars from k to U in order to obtain conjugacy to a constant group. Namely, we construct examples of an
isomonodromic DK/k-module N such that there are PPV extensions of K for N, but, for any PPV extension L, the
parameterized differential Galois group GalDK (L/K) is not a constant group and, thus, GalDK (L/K) is not conjugate
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to a constant subgroup in GLn(k).
The idea of the examples is as follows. We construct a parameterized differential field (K,DK) over (k,Dk) and

ω ∈ΩK/k with dω = 0 such that the Dk-submodule

M ⊂ H1(K/k)

generated by [ω] is finite-dimensional over k and is not trivial as a Dk-module. By Propositions 5.2 and 5.4, there
are PPV extensions of K for the equation dy = ω and any of them has the parameterized differential Galois group
isomorphic to (M∨)Dk . Since Rep

(
(M∨)Dk

)
is Dk-equivalent to a Dk-subcategory in DMod

(
K,DK/k

)
, the (faith-

ful) Dk-representation VM∨ of (M∨)Dk (see Remark 4.11(1)) corresponds to an isomonodromic DK/k-module N (see
Proposition 6.2).

Let us give an explicit description. Suppose that

Dk = k ·∂t , DK = K ·∂x⊕K ·∂t , and [∂x,∂t ] = 0.

Let ωx ∈ΩK/k be such that ωx(∂x) = 1. Then ω = b ·ωx with b ∈ K. Suppose that there exists a non-zero monic linear
∂t -operator D as in Example 5.3(1). Explicitly,

D = ∂
n
t −

n−1

∑
i=0

ci∂
i
t , ci ∈ k,

is of the smallest order such that there is a ∈ K with D(b) = ∂x(a) (see Example 5.1(2)). One can show that the
differential module N defined above corresponds to the following system of linear differential equations:

∂x(y) = A∂x · y, y := t(y0, . . . ,yn), A∂x :=


0 0 . . . 0
b 0 . . . 0

∂t(b) 0 . . . 0
... . . .

∂
n−1
t (b) 0 . . . 0

 .

By Proposition 5.4, there is a PPV extension L of K for N and L = K(z,∂t(z), . . .), where ∂x(z) = b. By Proposition 5.2
and its proof combined with Example 5.3(1), the morphism of linear Dk-groups

GalDK (L/K)→Ga, g 7→ g(z)− z

induces an isomorphism
GalDK (L/K) ∼−→ {u ∈Ga |Du = 0} ⊂Ga.

The ∂x-module N is isomonodromic with

A∂t :=


0 0 0 . . . 0
0 0 1 . . . 0
...

...
. . .

0 0 0 . . . 1
a c0 c1 . . . cn−1

 .

Now we give concrete examples with k = Q(t) and K being a generated by functions in t and x. We construct b ∈ K
such that there exists a linear ∂t -operator D as above and the equation Du = 0 in u is non-trivial over Q(t).

Example 6.8. This examples comes from the algebraic independence of the derivatives of the incomplete Gamma-
function (see [24]). Put

E := Q
(
t,x, logx,xt−1e−x), DE := E ·∂x⊕E ·∂t .
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By Proposition 5.4, there is a PPV extension L of E for the equation

∂x(y) = xt−1e−x. (28)

As noted in [8, Example 7.2], by [24], there is an isomorphism GalDE (L/E) �Ga. Let γ ∈ K be a solution of (28) and
put

K := E
(
∂t(γ)− γ,∂2

t (γ)−∂t(γ), . . .
)
⊂ L.

Since GalDE (L/E) � Ga, the parameterized Galois theory implies that γ < K. The element b := xt−1e−x ∈ K satisfies

D(b) = ∂x(a), D := ∂t −1, a := ∂t(γ)− γ ∈ K.

The operator D is of the smallest order, because b < ∂x(K) as γ < K. Note that K is of infinite transcendence degree
over Q(t,x), because GalDE (K/E) � Ga.

Example 6.9. This example comes from the Gauss–Manin connection for the Legendre family of elliptic curves.
Namely, put K := Q(t,x,z), where z2 = x(x−1)(x− t). Then the element

b := 1/z ∈ K

satisfies
D(b) = ∂x(a), D :=−2t(t−1)∂2

t − (4t−2)∂t −1/2, a := z/(x− t)2 ∈ K.

The operator D is of the smallest order (for example, this follows from a monodromy argument, see [11, §2.10]).
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