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Abstract

We study isomonodromicity of systems of parameterized linear differential equations and related conjugacy proper-
ties of linear differential algebraic groups by means of differential categories. We prove that isomonodromicity is
equivalent to isomonodromicity with respect to each parameter separately under a filtered-linearly closed assumption
on the field of functions of parameters. Our result implies that one does not need to solve any non-linear differential
equations to test isomonodromicity anymore. This result cannot be further strengthened by weakening the require-
ment on the parameters as we show by giving a counterexample. Also, we show that isomonodromicity is equivalent
to conjugacy to constants of the associated parameterized differential Galois group, extending a result of P. Cassidy
and M. Singer, which we also prove categorically. We illustrate our main results by a series of examples, using, in
particular, a relation between Gauss—Manin connection and parameterized differential Galois groups.

Résumé

On étudie I’isomonodromie des systemes d’équations différentielles linéaires paramétrées et les propriétés liées a
la conjugaison des groupes algébriques différentiels linéaires en utilisant les catégories différentielles. On démontre
que I'isomonodromie est équivalente a I’isomonodromie relative a chaque parametre pris séparément, si le corps
des fonctions des parametres est filtré linéairement clos. Ce résultat implique quil nest pas nécessaire de résoudre
des équations différentielles non linéaires pour tester lisomonodromie. Un contre-exemple montre qu’on ne peut
pas améliorer ce résultat en affaiblissant la condition sur les parametres. On démontre, en termes de catégories,
que I’isomonodromie est équivalente, a une conjugaison pres, au fait que le groupe de Galois différentiel paramétré
associé est constant, généralisant ainsi un résultat de P. Cassidy et M. Singer. On illustre nos résultats fondamentaux
par une série d’exemples utilisant, en particulier, un lien entre la connexion de Gauss—Manin et les groupes de Galois
différentiels paramétrés.
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1. Introduction

A system of parameterized linear differential equations is a system of linear differential equations whose coef-

ficients are functions of principal variables xi,...,x, and parameters #1,...,f; and derivations only with respect to
X1,...,X, appear in the system. We say that such a system is isomonodromic if it can be extended to a consistent sys-
tem of linear differential equations with derivations with respect to all of xy,...,x,,?,...,#;. Thatis, one requires that

Email addresses: gorchins@mi.ras.ru (Sergey Gorchinskiy), aovchinnikov@gc.cuny.edu (Alexey Ovchinnikov)
1S. Gorchinskiy was supported by the grants RFBR 11-01-00145, 12-01-31506, 12-01-3302, 13-01-12420, AG Laboratory NRU HSE, RF
government grant, ag.11.G34.31.0023, and by Dmitry Zimins Dynasty Foundation.
2A. Ovchinnikov was supported by the grants: NSF CCF-0952591 and PSC-CUNY No. 60001-40 41.

Preprint submitted to Journal de Mathématiques Pures et Appliquées December 23, 2013



1 INTRODUCTION 2

the extended system satisfies all integrability conditions with respect to the principal and parametric variables. In this
paper, we study such isomonodromic systems via the parameterized Picard—Vessiot (PPV) theory [8] and differential
Tannakian categories [15, 42, 43, 26, 25, 4].

To verify isomonodromicity of a system of parameterized linear differential equations, say, with one principal
variable x and d parameters t1, ... ., f; explicitly means to find d extra matrices that satisfy (szr l) integrability conditions
[8, Definition 3.8], which form a system of linear and non-linear differential equations. We improve this by showing
that it is enough to find matrices that satisfy only d integrability conditions for pairs of derivations (dy,d;,), which are
linear differential equations, under a filtered-linearly closed assumption (Definition 3.7) on the field of functions of
parameters (Theorems 6.3 and 6.4). Namely, the existence of the latter matrices implies the existence of (possibly,
different) matrices that satisfy all (dgl) integrability conditions. In other words, our result removes all non-linear
differential equations from the integrability conditions that have to be tested, which now enables one to use the
powerful methods of differential Galois theory to test isomonodromicity.

This result is non-trivial not only because of the method of proof (which uses differential categories [15] and
CDG-algebras [45]) but also because it is counterintuitive. The initial explicit steps for this result restricted to 2 x 2
systems with the parameterized differential Galois group Zariski dense in SL; can be found in [13, Proposition 4.4]
(see also [53, Theorem 1.3, Chapter 2]). Note that the condition on the field to be filtered-linearly closed is, indeed,
necessary as is shown in Example 6.7. This example is based on iterated integrals.

A similar but more specialized question was treated in [22, 23] for the case of rational functions in the principal
variable. Using analytic methods, it is shown that, for d extra matrices of a certain special type, d integrability
conditions imply all (‘@1) integrability conditions for the same matrices. Additionally, it is proved in [22, 23] that, if
the differential equation is isomonodromic (when restricted only to rational functions in the principal variable), then
one can choose extra matrices of the special type discussed above (for more details, see Section 6.4).

Given a system of parameterized linear differential equations, the PPV theory associates a parameterized differen-
tial Galois group, which can be represented by groups of invertible matrices whose entries are in the field of constants,
that is, the field of functions of the parameters #1, ... ,#;. Moreover, these groups are linear differential algebraic groups
(LDAGS), that is, groups of matrices satisfying a system of polynomial differential equations with respect of the para-
metric derivations [6, 7, 28, 41, 43]. Using descent for connections (Lemma 3.11), we prove in Theorem 6.6 that,
under the filtered-linearly closed assumption on the field of constants, a system of parameterized linear differential
equations is isomonodromic (Definition 6.1) if and only if its Galois group is conjugate (possibly, over an extension
field of the field of constants) to a group of matrices whose entries are constant functions in the parameters. This
extends the corresponding result in [8], which required the field of constants to be differentially closed. Recall that
a differential field is differentially closed if it contains solutions of all consistent systems of polynomial differential
equations with coefficients in the field. Note that, even in the case of a differentially closed field of constants, our
proof, based on differential Tannakian categories, is different from the one given in [8].

We construct examples showing that, in general, one really needs to take an extension of the field of constants to
obtain the above conjugacy (Examples 6.8 and 6.9). The construction of the examples uses an explicit description of
Galois groups for PPV extensions defined by integrals (Propositions 5.2 and 5.4), which seems to have interest in its
own right. Namely, we interpret such differential Galois groups in terms of Gauss—Manin connections (Section 5).
More concretely, the examples involve the incomplete Gamma-function and the Legendre family of elliptic curves
(see also [2] for the computation point of view). Note that the relation between the PPV theory and Gauss—Manin
connection was also elaborated in [52].

Recall that the Galois groups in the PPV theory are LDAGs. As noted above, isomonodromicity corresponds to
conjugation to constants for LDAGs. In this way, our Theorem 4.4 corresponds to Theorem 6.3 and says that if a
LDAG is conjugate to groups of matrices whose entries are constants with respect to each derivation separately, then
there is a common conjugation matrix, under the filtered-linearly and linearly closed assumption on the differential
field. This matrix may have entries in a Picard—Vessiot extension of the base field. We construct an example showing
that, in general, one needs to take a Picard—Vessiot extension (Example 4.9).

As an application, we obtain a generalization of [35, Theorem 3.14], which characterizes semisimple categories
of representations of LDAGS in the case when the ground field is differentially closed and has only one derivation. In
Theorem 4.6, we improve this result by showing a more general statement without these inconvenient restrictions to
differentially closed fields and the case of just one derivation.

Our method is based on the new notion of differential objects in differential categories (Definition 3.1). We prove
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that there is a differential structure on an object X in a differential category over a differential field (k, Dy) if and only
if there is a differential structure on X with respect to any derivation d € Dy, provided that (k, Dy) is filtered-linearly
closed (Proposition 3.10). This result is applied to both isomonodromic differential equations and LDAGs. We show
in Example 4.7 that this result is not true over an arbitrary differential field already for the category of representations
of a LDAG over Q(t1,f;). The example uses the Heisenberg group. Note that the application to isomonodromic
differential equations requires that we work with arbitrary differential categories, not just with differential Tannakian
categories or categories of representations of LDAGs (see also the discussion at the end of Section 2).

In [29], Landesman initiated the parameterized differential Galois theory in a more general setting based on
Kolchin’s axiomatic development of the differential algebraic group theory [28]. Galois theories in which Galois
groups are LDAGs also appear in [16, 17, 18, 20, 19, 21, 57, 56], with the initial algorithm, when the Galois group
is a subgroup in SL,, given in [13] and analytic aspects studied in [39, 40]. The first complete algorithm for the
case of one parameter was given in [1]. For the case of several parameters, further algorithms for reductive and
unipotent parameterized differential Galois groups appeared in [37, 38], which rely on the main result of the present
paper. The representation theory for LDAGs was also developed in [41, 36], and the relations with factoring partial
differential equations was discussed in [9]. Analytic aspects of isomonodromic differential equations were studied by
many authors, let us mention [22, 23, 33, 34]. See also a survey [47] of Bolibrukh’s results on isomonodromicity and
the references given there. An explicit computational approach to testing whether a system of difference equations
with differential or difference parameters is isomonodromic can be found in [5, 44].

The paper is organized as follows. We start by recalling the basic definitions and properties of differential algebraic
groups, differential Tannakian categories, and the PPV theory in Section 2. Most of our notation is introduced in
this section. The following section contains our main technical tools, Propositions 3.10 and 3.12. Section 4 deals
with conjugating linear differential algebraic groups to constants over not necessarily differentially closed fields.
The results from Section 5, where we also establish a relation with Gauss—Manin connection, are used in order to
construct non-trivial examples to Theorem 6.6. In Section 6, we show our main results on isomonodromic systems
of parameterized linear differential equations as well as illustrate them with examples justifying the necessity of the
hypotheses in our main result. Also, we provide an explicit proof of the main result in Section 6.2. This proof can be
used in designing algorithms. We also give an analytic interpretation of our results including the reasons that support
the conclusion of the above example.

The authors thank P. Cassidy, L. Di Vizio, A. Its, B. Malgrange, A. Minchenko, O. Mokhov, T. Scanlon, M. Singer,
and D. Trushin for very helpful conversations and comments. We are also highly grateful to the referee for the helpful
suggestions.

2. Notation and preliminaries

Most of the notation and notions that we use are taken from [15]. All rings are assumed to be commutative and
having a unit. In the paper, (k,Dy) stays for a differential field of zero characteristic, that is, k is a field and Dy is a
finite-dimensional k-vector space with a Lie bracket and a k-linear map of Lie rings

Dy — Der(k, k)

that satisfies a compatibility condition (see [15, Definition 3.1]). For example, if 91, ...,d; denote commuting deriva-
tions from & to itself (possibly, some of them are zero), then (k, D) with

Dp:=k-01D...Dk-9y

is a differential field.

In general, the map Dy — Der(k, k) can be non-injective, and it is possible that there is no commuting basis in Dy
(see [15, Example 3.5]). In particular, differential fields as above include finite-dimensional Lie algebras. Moreover,
many constructions become more transparent and easier to be derived if one does not choose a basis in the k-vector
space Dy, for example, the definition of the de Rham complex below. This motivates our generalization of a more
common notion of a differential field (a field with commuting derivations).
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Let Dy, in the superscript denote taking Dy-constants, that is, the elements annihilated by all d € Dy. Put ko := kP*.
Put Q := D;. We have the de Rham complex Q}

2
Q2

0 Q) ol

where Q}( = /\};Qk, i > 1, and we put QY -=k (see [15, Remark 3.4]). Note that d is kgp-linear, dod = 0, and d is
uniquely defined by the following Leibniz rule:

d(wAn) =doAn+(—1)oAdn

forallm € Qf, n € Q.

Denote the category of sets by Sets. Denote the category of k-vector spaces by Vect(k). Denote the category of
k-algebras by Alg(k). Denote the category of D-modules over k by DMod(k, Dy) (see [15, Definition 3.19]). Denote
the category of Dy-algebras over k by DAlg(k, Dy) (see [15, Definition 3.12]). Denote the ring of Di-polynomials in
differential indeterminates yy,...,y, (see [15, Definition 3.12]) by

K{y1,---,Yn}-

We say that a (possibly, infinite-dimensional) Dy-module M is trivial if the multiplication map k ®, MPk — M is an
isomorphism (by [46, Lemma 1.7], this map is always injective).

We say that a differential field (k, Dy) is linearly Dy-closed if (k,Dy) has no non-trivial Picard—Vessiot extensions,
that is, all finite-dimensional D;-modules over k are trivial (see also [32, 49, 48], [31, §3], [28, §0.5] for the existence
and use of such fields, and [3] for analogues for difference fields). One can also iteratively apply [50, Embedding
Theorem] to realize such fields (if they are countable) as germs of meromorphic functions in dimy(Dy) variables.

A functor X : DAIg(k, Dy ) — Sets is represented by a Dy-algebra A if there is a functorial isomorphism

X(R) =Homp, (A,R)

for any Dy-algebra R. A linear Dy-group is a group-valued functor on DAlg(k, D) that is represented by a Dy-finitely
generated Dy-Hopf algebra. Given a (pro-)linear Dy-group G, denote the category of finite-dimensional representa-
tions of G as an affine group scheme over k by Rep(G).

Given a functor X : Alg(k) — Sets, one traditionally denotes also its composition with the forgetful functor
DAIlg(k,D;) — Alg(k) by X. If X is representable on Alg(k), then X is also representable on DAIlg(k,Dy). In other
words, the forgetful functor DAlg(k,D;) — Alg(k) has a left adjoint (for example, see [14, §1.2]), which is usually
called a prolongation. In particular, we have a representable functor

A" : R+~ R"",
where R is a Dy-algebra. Also, given a finite-dimensional k-vector space V, we have a linear Dg-group
GL(V): R+ Autg(R®; V).
Given a functor Y : Alg(kg) — Sets, let Y denote its composition with the functor of Dy-invariants
DAlg(k,Dy) — Alg(ky), R — RPx.
We say that functors of type Y¢ are constant. If Y is represented by a ko-algebra B, then Y¢ is represented by
k®p, B 1)

with the natural Dy-structure, where Dy, acts by zero on B. Denote the latter Dy-algebra by B¢ and also call it constant.
If H is a linear algebraic group, then H¢ is a constant linear Dy-group. In particular, we have a representable functor

(AM: R (RP)™",
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where R is a Dy-algebra. Also, given a finite-dimensional ko-vector space Vj, we have the linear Dy-group
GL(Vp)“ : R — Autgo, (RPF @4, V).

It follows that there is a morphism of linear Dy-groups GL(Vy)“ — GL(V), where V := k ®, V.
Note that a Dy-algebra A is constant if and only if A is trivial as a Dg-module. A Dy-finitely generated Dy-algebra
A is constant if and only if there is an isomorphism of Dy-algebras

Agk{)’hd’n}/lv

where I C k{yi,...,yn} is a Di-ideal such that, for all d € Dy and i, 1 < i < n, the differential polynomial dy; is in I.
For a more explicit description of constant algebras, consider a functor

X : DAlg(k,Dy) — Sets

represented by a reduced Dy-finitely generated Dy-algebra. Then, by the differential Nullstellensatz (see [27, Theo-
rem IV.2.1]), X is constant if and only if there is a Kolchin closed embedding X C A" over (k,Dy) such that, for a
Dy~closed field U over k (equivalently, for any U as above), we have

X(U)cus, U= U,

that is, all points in X C A" have constant coordinates.

Given a Dg-object X over k (e.g., a Dy-module, a Dy-algebra, a linear Dy-group) and a Dy-field [ over k, let X;
denote the D;-object over / obtained by the extension of scalars from (k,Dy) to (I,D;), where D; := [ ®;, Dy.

One finds the definition of a parameterized differential field in [15, §3.3]. Recall that, for a parameterized differ-
ential field (K, Dg) over (k,Dy), one has a K-linear map

Dg — K ®i Dy,

called a structure map. This defines a differential field (K ,Dg /k), where Dy ;. is the kernel of the structure map. Also,
one has KP¥/k = k. For example, if

k:C(t), K:C(t7x), Dk:k'at7 and DK:K'ax@K'at,

then (K, Dx) is a parameterized differential field over (k, Dy) with Dg /; = K - .

Given a finite-dimensional Dg /;-module N over K, one has the notion of a parameterized Picard—Vessiot (PPV)
extension L for N, where L is a Dg-field over K. This was first defined in [8] (see also [15, Definition 3.27] for the
present approach to parameterized differential fields). If k is Di-closed, then a PPV extension exists for any N as
above (see [8, Theorem 3.5(1)]). Given a PPV extension L, one shows that the group-valued functor

Gal®¥ (L/K) : DAlg(k,D;) — Sets, R — Aut’X(R®;A/R®;K)

is a linear Dg-group (see [15, Lemma 8.2]), which is called the parameterized differential Galois group of L over K,
where A is the PPV ring associated to L (see [15, Definition 3.28]).

The main notion defined in [15] is that of a differential category. A Dj-category C over k is an abelian k-linear
tensor category together with exact k-linear endofunctors AtIC and AtZC, called Atiyah functors, that satisfy a list of
axioms (see [15, §§4.2,4.3]). In particular, for any object X in C, there is a functorial exact sequence

0 —— QX —5 AlL(X) —2— x 0, )
where, as above, Q) = D,Y, and a functorial embedding

At (X) C At (Atp(X))
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We have the equality
Symj @ @ X = AtZ(X) N (Q @k Qe @4 X) C At (Atp(X)), 3)
and both compositions
AZ() —— AL (A0) M adx), @
AR(X) —— At (AL()) % A () )

are surjective (see [15, Lemma 4.14, Proposition 4.18]).

For example, Vect(k) has a canonical Dy-structure given by the usual Atiyah extension (see [15, Example 4.7]). It
can be defined either in terms of jet rings (see [15, §3.6, Example 4.7]), or in terms of differential operators as follows.
Given a finite-dimensional k-vector space V, the k-vector space At! (V) consists of first order Dy-differential operators
from VV to k. If dimy Dy, = 1 and Q; = k- m, then we have:

AL (V) =V ey (k@k- o),
and the k-linear structure on it is defined as follows:
a-u@l+veo)=axl+udat+avw, ack, uveV.
In this case, the morphisms in the exact sequence (2) are given by
yvee)=ven and TyURl+vRO®)=u, u,vev,

respectively. The above approach is dual to the one in [43, Definition 1] and [35, pp. 1199-1200]. The Dj-structure
on Vect(k) induces a canonical Dy-structure on Rep(G) for a (pro-)linear Dy-group G (see [15, Example 4.8]).
Another important example is the category

DMod (K, D ;)

of Dy /;-modules over K, where (K, D) is a parameterized differential field over (k, Dy). The category DMod (K, D /)
is k-linear and has a canonical Dy-structure (see [15, Theorem 5.1]). In [15, §4.4], the authors investigate differential
Tannakian categories. Any neutral Dy-Tannakian category with a Dy-fiber functor is equivalent to Rep(G) with the
forgetful functor, where G is a (pro-)linear Dy-group. Note that the category DMod (K, Dy /k) is not necessarily a
Dy-Tannakian category (even without the requirement of being neutral), because the category Vect(K, D) does not
necessarily have a structure of a Dy-category.

3. Dy-structure on objects in Dy-categories

In this section, we define a Dy-structure on objects in abstract Dg-categories. This notion and its main property
given in Proposition 3.10 are used in Sections sec:LDAG and 6 for applications to linear Dg-groups and isomon-
odromic parameterized linear differential equations, respectively. As we will further see in Example 4.7, the filtered-
linearly closed assumption of the proposition cannot be removed.

Let C be a Dy-category over k, X be an object in C.

Definition 3.1. A Dj-connection on X is a section
sx X — AtH(X)
of wy. A Dg-connection sy is a Dy-structure if the image of the composition

Ath(sy)

X —— Ath(x) At (Atp(X))

is contained in At%(X).
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Example 3.2. To give a Dy-connection on a k-vector space V as an object in C = Vect(k) is the same as to give a
usual connection on V, that is, a map
Vy:V -V

that satisfies the Leibniz rule. A k-vector space together with a Dg-structure is the same as a Dy-module (see [15,
Proposition 3.42]).

Let us give an equivalent condition for the existence of a Dg-connection. For any d € Dy, the Dy-category C has a
canonical structure of a d-category by [15, Proposition 4.12(i)]. Explicitly, a calculation shows that, for each object X
in C, we have

At} 5(X) = At-(X)/U, where U :=Ker(d®idy : Q@ X — X)

and Atlaa is the Atiyah functor that corresponds to the d-category structure on C. Denote the quotient morphism by
0 - Atg(X) — Atg5(X).
Since U is contained in £ ®; X, the morphism 7y : Atlc(X ) — X factors through oy. That is, we obtain a morphism
Ty Atpy(X) — X

such that Ty 5 o 0y = Ty By definition, a d-connection on X is a section of Ty 5.

Proposition 3.3. There is a Dy-connection on X if and only if there is a basis 91, .. .,9d4 in Dy over k such that for any
i, there is a d;-connection on X.

Proof. The existence of a Dg-connection on X implies the existence of a d-connection on X for any d € Dy by the
explicit construction of Atlc 5 given above.
Now let us show the reverse implication. The morphisms a,, 1 <i < d, defined above give a morphism

o Atp(X) — Z

such that To o0 = 1y, where
. 1 ]
Z:=Atpy (X) xx ... Xx Atgy (X) — X.
is the fibred product in C. Thus, we have the following commutative diagram:

X

0 —— Ker(ny) —— Atj-(X) X 0

I .l

T X 0

0 —— Ker(n) —— Z
Since d1,...,0y is a basis of Dy over k, the map
d
@ 81» . Q'k — kEBd
i=1
is an isomorphism. It follows that the restriction of o to Ker(my ) = Qi ®; X is an isomorphism

(9;@idy)
—_— 5

, d d
Ker(my) & Ker(n) = G%Ker(nxﬂi) = EBIX
= =

Thus, a itself is an isomorphism. Hence, given sections s; of the morphisms 7; for all i, 1 <i < d, we obtain a section
sy of y. O

In what follows, we address the question whether the existence of a Dy-connection on X implies the existence of
a Dy-structure on X. It will be convenient to use the following notion first introduced in [45]. Recall that, for a graded
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associative algebra

A*=PA,
i
the commutator is defined by the formula
[a,b] :=a-b— (—1)%e@dee)p 4
for homogenous elements a,b € A®.
Definition 3.4. A CDG-structure on a graded associative algebra A® over a field F is a pair (d, /), where
d:A"— AT
is a collection of F-linear maps that satisfy the graded Leibniz rule
d(a-b) =d(a)-b+(—1)%Dq.d(b)
for all homogenous elements a,b € A®, and h € A? is such that
(dod)(-) =[h,-], d(h)=0.
Given a CDG-structure (d,/) on A® and an element a € Al we obtain a new CDG-structure with
d=d+a,-], W=h+d(a)+d* (6)

By definition, the CDG-structures (d, /) and (d’, /') are equivalent.

Example 3.5.

1. The pair (d,0) defines a CDG-structure on the graded associative algebra Qp over kg, where d denotes the
differential in the de Rham complex.
2. Let V be a k-vector space, Vy be a Dg-connection on V. We obtain maps

Vy Qe V — Qi ep v, Vy(@ev):=doev+(—1)oAVy()
and a CDG-structure (d, /) on the graded associative algebra Qf ®; Endi (V') over kg with
d(a) := (idg, Na) oVy — (=1)'Vyoa, a€ Q) ®;Endi(V)=Hom(V,Q V),

h:=VyoVy € Q@ Endi(V) = Homy (V, Q2 @ V).

The condition d(%) = 0 is classically called the second Bianchi identity. Note that 4 vanishes if and only if the
connection Vy is a Dy-structure on V. The natural embedding

Qp C QF @ Endi(V)

given by idy € Endy(V) commutes with d. Thus, the notation d in the CDG-structure on Qp ®; End,(V') does
not lead to a contradiction.

There is a notion of a morphism between differential fields (k,Dy) — (K,Dg), which generalizes Dy-fields over
k (see [15, Definition 3.6]) In particular, we have a canonical k-linear map Q; — Qg. Given such a morphism, one
defines differential functors from Dy-categories over k to Dg-categories over K (see [15, Definition 4.9]). For example,
if C is a Tannakian category, then there is a faithful differential functor C — Vect(K) for a Dy-field K over k. The
following result generalizes Example 3.5(2).

Lemma 3.6. Let sy be a Dy-connection on X. Suppose that there is a morphism of differential fields (k,Dy) — (K, Dk)
such that the map Qi — Qg is injective and a faithful differential functor F : C — Vect(K). Then the following is
true:
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1. sx defines a CDG-structure (d, h) on the graded associative algebra Qp @ End(X) over ko;

2. hvanishes if and only if sx is a Dy-structure;

3. given a CDG-structure (d',1') on Qf @ End¢(X), there is a Dy-connection sy on X such that (d',1') corre-
sponds to s if and only if (d', ') is equivalent to (d, h).

Proof. First let us show (1). The section sy defines a map
V:Endc(X) — Qi ®¢Endc(X), V(a):=sxoa— At-(a)osy.
In other words, V(a) measures non-commutativity of the diagram
X 2 Ath(X)
al At (a)l
X —2X— Ath(X).

One checks that V is a D-connection on the k-algebra End(X). By the (graded) Leibniz rule, this extends uniquely
to a collection of kg-linear maps _ A
d: ‘Q;c Rk Endc(X) — Q;:rl Rk Endc(X).

Next, let us define i € QF ® Endo(X). Put
Y :=Ker(Atg(mx) = Tpp ) Ate (Atp(X)) — Ate(X)).
We claim that the image of the composition
Atl(sx) osy : X — Al (Ath(X))
is contained in Y. To prove this, recall that Ty o sy = idy. Since Atlc is a functor, we have
At (my) o Atp(sx) = idp x),

whence
Atlc(ﬁx) o A'[IC(SX) oSy = Sx. @)

Since the morphism Atlc(X ) TX, X is functorial in X, the following diagram commutes:

1 S
Atj(X) Atex), At (Atp(X))

nxl nAtl(X)l
S
X s AdX).

Hence, we have
1
nAtl(X)OAtC(SX)OSX =Sy OTly OSy = Sx. ®)

Combining (7) and (8), we obtain the following equality of morphisms from X to At} (At{-(X)):
At(my) o Atp(sx) o sy = Ta (x) o At}-(sx) o sx.

Thus, the image of At}.(sx) o s is contained in Y.
Since F : C — Vect(K) is faithful, we have that At>(X) C Y (see [15, Remark 4.21(iii)]). By the construction of
Y, we have the following exact sequence

1
0 — O @Q@xX y A AL (x) —— 0.
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By (3) and (4) (see §2), we obtain an isomorphism
QX Y/ AL(X).

Put
h € QF @¢Ende(X) = Home(X, Q7 @ X)
to be the composition

At (sy)osy

X

Y Y/AL(X) ——— Q2 ey X.

It remains to show the identities
dod=[h,-], d(h)=0. )

One can show that, if C is the category of vector spaces over a differential field, then d and % constructed as
above coincide with those defined in Example 3.5(2). Further, the constructions of d and 4 commute with differ-
ential functors. More explicitly, consider the differential functor F : C — Vect(K). The morphism of differential
fields (k,Dy) — (K,Dg) defines a homomorphism of graded algebras Q} — Qf, which commutes with the de Rham
differential d (see [15, Definition 3.6]). The functor F induces a homomorphism of graded algebras

o Q/: ®kEndc(X) — Q;< ®k Endg (F(X)) .

The connection sy on X defines a Dg-connection on the K-vector space F(X) such that oo commutes with d and pre-
serves h. Since F is faithful and the map Q; — Qg is injective, o is injective. Thus, we obtain (9) by Example 3.5(2)
applied to K-vector spaces. This finishes the proof of (1).

Further, (2) follows from the construction of 4. To prove (3), note that any other Dg-connection on X is given by

sg( =sx +a, (10)
where
a € Q) @Endc(X)

is an arbitrary element. We need to show that the corresponding CDG-structure (d', /") on Q} ®; End(X) satisfies (6).
As above, by the injectivity of the algebra homomorphism a, it is enough to consider the case C = Vect(K), in which
the required follows from Example 3.5(2). O

It follows from Lemma 3.6 that if dimg(Dy) = 1 and C satisfies the condition from Lemma 3.6, then any Dy-
connection sy on an object X in ( is a Dy-structure on X.

One can give a different definition of a Dy-category so that Lemma 3.6 holds for any Dy-category in this new sense.
Namely, one should require the compatibility condition from [15, Remark 4.21(i)] and also the pentagon condition
for W in notation from there. The latter condition involves consideration of the third jet-ring P,f.

Definition 3.7. We say that a differential field (k,Dy) is filtered-linearly closed if there is a sequence of k-vector
subspaces closed under the Lie bracket

O0=DypCD, C...CDy_1 CDy=Dy

such that for any i, 0 <i < d — 1, we have
dimy (Di1/D;) = 1

and k is linearly D;-closed.

Note that, in Definition 3.7, we do not require that k be linearly Dy-closed, that is, a filtered-linearly closed field
is not necessarily linearly closed.

Example 3.8.
1. If dimg(Dy) = 1, then (k, Dy) is filtered-linearly closed.
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2. If k is Dy-closed, then (k,Dy) is filtered-linearly closed. Indeed, since k is Dy-closed, the natural map Dy —
Der(k, k) is injective. By [28, p. 12, Proposition 6], there is a commuting basis 9y, ...,dy in Dy over k and we
put

D; = spany (9, ...,d;).

Again, since k is Dy-closed, we see that k is linearly D;-closed.

Lemma 3.9. Let A be a finite-dimensional associative algebra over k. Suppose that (k,Dy,) is filtered-linearly closed.
Then any CDG-structure on S} Qi A is equivalent to a CDG-structure with h = 0.

Proof. We use induction on d := dimy (Dy). The case d = 1 is automatic. Let us make the inductive step from d — 1 to
d. Consider the differential fields (k,D;) from Definition 3.7 and put Q? to be the corresponding de Rham complexes.
Also, put

Q:=Ker(Qy— Qy_1).

Since D, is a Lie subring in Dy, we have a morphism of differential fields (k,Dy) — (k,Dy—1) (see [15, Defini-
tion 3.6]). Thus, we obtain a morphism of graded associative algebras

‘Q:i —>.Q:171,

which commutes with the de Rham differential d and whose kernel is the ideal generated by Q. Thus, the ideal
generated by Q in Q is a d-ideal. Further, we have the morphism of graded associative algebras

Q:i ®kA i Q:],] ®kA7

whose kernel /° is the graded ideal generated by € in Q% ®; A. Since d from the CDG-structure on Qf ®; A satisfies
the graded Leibnit rule and the natural homomorphism QF — Q% ®; A commutes with d, we deduce that I* is also a
d-ideal. Consequently, d induces a map d’ on the graded associative algebra Q5 | @ A. It follows that this defines a
CDG-structure (d’, /') on Qf_, @ A with i’ being the image of /& under the natural map

Q% RrA — 962171 RrA.

By the inductive hypothesis, we may assume that 7/ = 0, whence & € I?, where I? is the second degree part of /°.
Put V := Q®; A. Since dimg(Q) = 1, we have that

I'=0, \ ®V,i>1, and I°-I°=0.

Since h € I?, we see that the composition
dod=[h,]

vanishes on /*. We obtain a (Dy_)-module structure on the finite-dimensional k-vector space V with Vy being the
map
d:1' -2

Moreover, the element
heQl oV

satisfies Vi (h) = 0 by the second Bianchi identity (see Example 3.5(2)).
Since k is linearly (D;_1)-closed, we see that there is a € V such that

VV (a) = —/’l,
or, equivalently, there isa € 1 ! with d(a) = —h. Since a-a = 0, the CDG-structure
(d+ [av’]ah+d(a) +a’a)

satisfies the required condition. O
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Combining Lemma 3.6 and Lemma 3.9, we obtain the following result, which is used for applications to linear
Dy-groups and isomonodromic parameterized linear differential equations in Sections 4 and 6, respectively.

Proposition 3.10. Suppose that (k,Dy,) is filtered-linearly closed and there is a morphism of differential fields (k,Dy) —
(K,Dk) such that the map Q — Qk is injective together with a faithful differential functor C — Vect(K). Then there
is a Dy-connection on an object X in C if and only if there is a Dy-structure on X.

Below in Example 4.7, we show that Proposition 3.10 is not true over an arbitrary field (k, D). The category C in
this example is Rep(G) for a linear Dy-group G.

Suppose that C is finite, that is, all Hom-spaces in C are finite-dimensional over k and all objects have finite length
(see [55]). For example, if C satisfies the condition from Lemma 3.6, then it is finite. Let [ be a Dy-field over k. Recall
from [55] that there is an abelian /-linear tensor category ! ®; C, called extension of scalars category, together with an
exact k-linear tensor functor

IQr—:C— 13 C.

For short, put
D=1 C andY =1 X.

By [15, Proposition 4.12(i)], there is a canonical D;-structure on D with
At (Y) = 1 @ At (X).

Besides, D is a (not full) subcategory in the category Ind(() of ind-objects in € and there is a canonical morphism
X—Yin Ind(C). For example, if C = Vect’2(k) is the category of finite-dimensional k-vector spaces, then D =
Vect/$(1) and [ ® — is the usual extension of scalars functor.

Lemma 3.11. In the above notation and assumptions, given a Dy-field | over k, there is a Dy-connection on X in C if
and only if there is a D;-connection on Y in D.

Proof. Applying the functor [ ®; —, we see that a Di-connection on X leads to a D;-connection on Y. Conversely,
assume that there is a D;-connection sy on Y. Choose a k-linear map A : [ — k such that the composition

k— 1k

is the identity. Then the composition in the category Ind(C)

oy | N | ADidyi
X Y Ath(Y) —"— 1@ Ath(X) —55 Ath(X)

defines a Dy-connection on X in C. O

In general, the Dy-connection on X constructed in the proof of Lemma 3.11 can be not a Dg-structure. If C =
Vect2(k), then the connection matrices for X are obtained by applying A to the connection matrices for Y. Combining
Proposition 3.10 and Lemma 3.11, we obtain the following result.

Proposition 3.12. Let | be a Dy-field over k. Suppose that (k,Dy) is filtered-linearly closed and there is a morphism
of differential fields (k,D;) — (K,Dg) together with a faithful differential functor C — Vect(K). Then there is a
Dy-structure on X in C if and only if there is a D;-structure on | @3 X in | Qy C.

4. Linear differential algebraic groups and conjugation

In this section, we show how Proposition 3.10 can be applied to linear differential algebraic groups. The main
results here are in Theorem 4.4 and Theorem 4.6. The behavior of conjugation under extensions of scalars is illustrated
in Section 4.2. In particular, Example 4.9 shows that the assumption on the ground field made in Theorem 4.4 cannot
be relaxed. Also, Example 4.7 demonstrates that Proposition 3.10 is not true over an arbitrary differential field, and
will be further used in Example 6.7 to justify the need in the filtered-linearly closed assumption in the main result of
the paper, Theorem 6.3.
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4.1. Main results

Let G be a linear Dy-group over k and V be a faithful finite-dimensional representation of G. Let A be a Dy-Hopf
algebra over k that corresponds to G. A Dy-connection on V as an object in C = Rep(G) (see Definition 3.1) is a
Dy-connection on V as a k-vector space such that the coaction map

V-oV®A

is a morphism of k-vector spaces with Dg-connections. Equivalently, for any Dy-algebra R, the action of the group
G(R) on R®; V commutes with the Dg-connection.

A Dy-connection on V in Rep(G) is a Dy-structure if and only if V is a Dy-module. In this case, we also say that
V is a Dy-representation of G.

Definition 4.1. We say that G is conjugate to a constant subgroup in GL(V) if there is a ko-vector space V) and an
isomorphism k ®y, Vo = V of k-vector spaces such that there is an embedding in GL(V):

G C GL(Vp)©
(see Section 2 for the definition of GL(V;)®).

Note that if G is conjugate to a constant subgroup in GL(V), then G is constant: there is an algebraic subgroup
Gy C GL(V}) such that the isomorphism
k®@pVozV

induces the equality G = (Go)“ in GL(V). We say that G is conjugate to a reductive constant subgroup in GL(V) if
Gy is reductive.

For an explicit description of Definition 4.1, choose a basis in V over k. Then GL(V') = GL,, (k) for some n. By the
differential Nullstellensatz (see [27, Theorem IV.2.1]), G is conjugate to a constant subgroup in GL(V) if and only of
there is an element g € GL, (k) such that, for a Dy-closed field U over k (equivalently, for any U as above), we have

g'G(U)g C GL,(Up), Uy := UP*.
Example 4.2. Let k = ko(t), Dy = k- 9;, G C G, be given by the linear equation
8,214 =0, uecGy,

and let V be a faithful representation of G given by the faithful upper-triangular two-dimensional representation of
G,. Then _
G=(G3)'

is constant, because 97(1) = 9(t) = 0. On the other hand, G is not conjugate to a constant subgroup in GL(V),
because there are no faithful two-dimensional representations of the linear algebraic group G2 over ko. This shows that
a constant linear Dy-group is not necessarily conjugate to a constant subgroup in GL(V') for a faithful representation
V of G.

The following result is also proved in [41, Corollary 1] but only for the case of a differentially closed field with
one derivation.

Proposition 4.3. The Dy-group G is conjugate to a constant subgroup in GL(V) if and only if there is a Dy-structure
on'V in Rep(G) such that V is a trivial Dy-module.

Proof. 1f G is conjugate to a constant subgroup, then the isomorphism k ®y, Vo = V defines a Dy-structure on V in
Rep(G), where V is as in Definition 4.1. Conversely, suppose that we are given a Dy-structure on V that satisfies the
hypothesis of the proposition. Then put Vy := V2%, O

Combining Propositions 3.10, 3.3, and 4.3, we obtain the following result.
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Theorem 4.4. Suppose that (k,Dy) is filtered-linearly closed (see Definition 3.7) and linearly Dy-closed (see the
comment following Definition 3.7). Then G is conjugate to a Dy-constant subgroup in GL(V) if and only if there is a
(possibly, non-commuting) basis 01, ...,9d4 in Dy over k such that, for all i, 1 <i<d, G is conjugate to a d;-constant
subgroup in GL(V).

Let [ be a Dy-field over k, D; := [ ®; D.. We have
| @, Rep(G) = Rep(G)).
Combining Propositions 3.12 and 4.3, we obtain the following result.

Proposition 4.5. Suppose that (k,Dy) is filtered-linearly closed and | is linearly D;-closed. Then the linear D;-group
G, is conjugate to a D;-constant subgroup in GL(V)) if and only if there is a Dy-structure on'V in Rep(G).

The following result is also proved in [35, Theorem 3.14] but just for the case of a differentially closed field with
one derivation.

Theorem 4.6. Suppose that (1,Dy) is filtered-linearly closed and linearly D;-closed. Then the linear D;-group G is
conjugate to a reductive constant subgroup in GL(V;) if and only if the category Rep(G) is semisimple.

Proof. We will use the following fact: given a field extension E C F, a Hopf algebra A over E corresponds to a
reductive linear algebraic group over E if and only if this holds for the extension of scalars Ar over F (see [12,
Remark 2.1.3(ii)]).

Assume that G; is conjugate to a reductive constant subgroup in GL(V;). By the fact above, this implies that G
is a reductive algebraic group over k (with the Dy-structure forgotten). Since chark = 0, we obtain that Rep(G) is
semisimple (see [54, Chapter 2]).

Now assume that Rep(G) is semisimple. Then there is a D-connection on V as all exact sequences in Rep(G) are
split. This induces a D;-connection on V; in Rep(G;). By Proposition 3.10, there is a D;-structure on V; in Rep(G)).
By Proposition 4.3, G is conjugate to a constant subgroup in GL(V;). Hence, k[G] is a finitely generated algebra over
k. Since Rep(G) is semisimple and chark = 0, we obtain that G is reductive as an algebraic group over k. Again, by
[12, Remark 2.1.3(ii)], this implies that G is conjugate to a reductive constant subgroup in GL(V}). 0

4.2. Examples
First, we provide a non-trivial example to Proposition 3.10.

Example 4.7. Let
k:=Q(ti,rp) and Dy:=k-0, ©k-0y,.

Let V be a 3-dimensional k-vector space with a basis € := (e}, ez, e3). Consider the Dg-connection Vy on V given by

Vy(é):=—df®eé-B)—dny®¢é-Bs,

where
0+ 0 00 0
B1=000,321=00%
0 0 O 0 0 O
That is, we have
o,(€) = —é-B,

Note that

1
0,,B1 — 9B — [B2,B1] = e -€, where €:=
112

an

S oo
S OO
S O =
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In particular, the Dg-connection Vy on V is not a Dg-structure on V. Further, consider the unipotent subgroup U in
GL(V) that consists of matrices of the following form (with respect to the basis &):

1 wu v
glupup,v):=[(0 1 up
0O 0 1

Let G be the linear Dy-subgroup in U given by the equations
dyuj=0, i=1.2,j=1,2,

1 1
oyv=—-uy, Onv=——uj.
1 15}

Note that these equations are equivalent to the equations
0,8 (ur,uz,v) + [g(ur,u2,v),B) =0, i=1,2.

This means that the action of G on V commutes with the action of Dy, (see also the discussion following Lemma 4.8),
that is, Vy is a Dg-connection on V as an object in Rep(G).

Let us show that there is no Dy-structure on V in Rep(G). Assume the converse. By (10) (see Section 3), this
means that there exist C1,C, € Endg (V) such that

0pA1 —01,Ay —[A2,A1] =0, A;:=Bi+C;,i=1,2. 12)
A calculation shows that we have an isomorphism (via choosing the basis )
Endg(V) = k-1dDk €. (13)

Since
[Bi7£] = 07 i= 1727

we see that (11) and (13) imply that (12) holds if and only if there exist fi, f> € k such that
1
— +3,/i =y o =0. (14
1315
This implies that the coefficient of tl_1 with values in Q(#,) of the function

1
—+9
it + tzfl

vanishes. Therefore, we have

1 .
—+40,(a1) =0, where fi=Y at}, aicQn).
15 F

This gives a contradiction. Thus, we see that Proposition 3.10 is not true over an arbitrary field (k,Dy).

Next, we describe two types of Dg-subgroups in GL,, (k) that are not constant over k but are conjugate to constant
subgroups in GL, (/) over [, where [ is a Picard—Vessiot extension of k. Let M be a finite-dimensional Dy-module over
k.

Lemma 4.8. The group-valued functor
GLP¥(M) : DAlg(k, D) — Sets, R — Autq(R ;M)

is represented by a linear Dy-group.
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Proof. The corresponding finitely generated Dy-Hopf algebra is the Hopf algebra of the algebraic group GL(M) over
k with the Dy-structure obtained by the localization over the determinant of the Dy-structure on the symmetric algebra
of the Dg-module Endy (M) = MY @, M. O

For an explicit description of GLP* (M), choose a basis & = (ey,...,e,) in M over k. Then GL(M) = GL, (k). For
each d € Dy, denote the corresponding connection (n X n)-matrix by Ay, that is, we have

) = —z-Ay.

By definition, GLP¥(M) consists of invertible (n x n)-matrices such that the corresponding gauge transformation
preserves the connection matrices A, for all d € Dy. Thus, GLP* (M) is given by the differential equations

ag+[gaAa} :07 gEGLn(k)7a€Dk

Note that GLP*(M) is a closed linear Dy-subgroup in the linear Dy-group GL(M) and M is faithful a Dy-representation
of GLP*(M). A morphism of linear D;-groups

G — GLP¥(M)

corresponds to a Dy-representation V of G such that V = M as Di-modules.
It follows directly from the proof of Lemma 4.8 that the linear Dy-group GLP* (M) is constant if and only if the
Dy-module
MY &M

is trivial, because a submodule of a trivial Dy-module is trivial and the determinant is a Dy-constant in Symj (M V Q%
M). Besides, if M is trivial, then GLP*(M) is conjugate to a constant subgroup in GL(M) (the converse is not true
already for dimg (M) = 1).

Example 4.9. Consider the differential field k = Q(t1,12), Dy := k-0, ©k - 0;, and the Di-module M := 1 & L, where
L=k-e,d(e) =0, 9, (e) =e. Since the Dy-module

M e yM=1®LeL &1

is not trivial, the linear Dy-group
G := GLPx(M) C GL, (k)

is not constant and henceforth G is not conjugate to a constant subgroup in GL, (k). Put
01 : =110y, 02:=110;+0,.
Then [d,0d2] = 0 and L is a trivial d;-module as
az(tfl -e) =0.

Therefore, M is a trivial d;-module for i = 1,2. By Proposition 4.3, G is conjugate to a d;-constant subgroup in GL (k)
separately with respect to each i. This shows that Theorem 4.4 is not true for an arbitrary (k,Dy).

The following type of non-constant groups will be used in Section 6 in order to construct non-trivial examples to
Theorem 6.6.

Lemma 4.10. The group valued functor
MPx . DAlg(k,Dy) — Sets, R+ (R@M)Px

is represented by a linear Dy-group.

Proof. The corresponding finitely generated Dy-Hopf algebra is the Hopf algebra of (M,+), that is, the symmetric
algebra of MV, with the induced Dy-structure (see also [46, Lemma 2.16]). O
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For an explicit description of MP*, choose a basis in M over k. Then (M,+) = G" for some n. For each d € Dy,
denote the corresponding connection (n x n)-matrix by Ay. Then MP* is given by the differential equations

dy=Ay-y, y€G) 0¢€D.

Note that MP* is a closed linear Dy-subgroup in the linear Dy-group M. One can show that a linear Dy-group G is
isomorphic to (G?)° over some Dy-field [ over k if and only if G = MP* for some n-dimensional Dy-module M over k
(see also [6, Proposition 11]).

Assume that Dy, = k- d for a derivation d : k — k and ko # k. Let m € M be a cyclic vector (see [46, Definition 2.8]).
Let O # D be a linear d-operator with coefficients in k of the smallest order such that Dm = 0, which exists because M
is finite-dimensional over k. Then

(m¥)™

is isomorphic to the Dg-subgroup in G, given by the equation Du = 0, u € G, because they represent the same functor
(see [46, Lemma 2.16]).

Remark 4.11.

1. There is a faithful Dy-representation V), of MPx defined as follows: as a Di-module, Vi is M @ 1, and the action
of MP* is given by
m: (n,c)— (n+c-myc),

where m € MPx, n € M, and ¢ € k. We have an exact sequence of Dy-representations of MPx

0 M Vi 1 0,

where MP* acts trivially on the Dy-modules M and 1.
2. One can show that there is a bijection between morphisms of linear Dy-groups G — MP* and isomorphism
classes of exact sequences of Dy-representations of G

0 M 1% 1 0,

where G acts trivially on the Di-modules M and 1. An argument shows that this implies that, for a linear
Dy-group G, the category Rep(G) is Dy-equivalent to Rep (MDk) if and only if G = MP«.

5. Gauss—Manin connection and parameterized differential Galois groups

The main results of this section, Propositions 5.2 and 5.4, are used in Section 6.5 in order to construct non-trivial
examples to Theorem 6.6. The constructions and results of this section seem to have also their own interest in the
parameterized differential Galois theory.

5.1. Gauss—Manin connection

We define algebraically a Gauss—Manin connection, which is used to describe a parameterized differential Galois
group of integrals in Section 5.2. For this, we use the Gauss—Manin connection on H' only, so that the reader may put
i = 1 in what follows if desired.

For any differential field (K, Dx), let H!(K,Dg) denote the cohomology groups of the de Rham complex Qf (see
Section 2). That is, we have

H'(K,Dx) := Ker(Q ~ Q1) /Im (Qic ' -4 0k ), i> 1,
and HO(K,DK) = KDk Recall that, for d € Dk, the Lie derivative is defined as follows (see [15, §3.10]):
Ly=doiy+ijod: Qf — Q,

where _ ‘ ‘
iy: Qk — O, @ {a—0@ANa), ac k'Dg}, i1



5 GAUSS-MANIN CONNECTION AND PARAMETERIZED DIFFERENTIAL GALOIS GROUPS 18

and iy = 0 for i = 0. In particular,
Ly(a)=09(a) forany a€K.
It follows from the definition that the Lie derivative commutes with d, acts as zero on H' (K,Dg), satisfies the Leibniz

rule
Ly(wAn) = Ly(w) AN+ ®ALy(n)

for all ® € Qi, N € QL i, j >0, and we have

Lpg = [Ly,Ls] forall 0,6 € Dg.

Let now (K,Dg) be a parameterized differential field over (k,Dy). We have the relative de Rham complex Qf e

where
QK/k = Dl\é/k
For short, put _ .
H'(K/k):= H’(K,DK/k), i>0.

Then H'(K /k) are k-vector spaces, because the differential on Q Xk is k-linear. Moreover, there is a canonical Dy-

structure on H'(K /k), called a Gauss—Manin connection and constructed as follows.
For d € Dy, let d € Dk be any lift of 1 ® d with respect to the structure map Dx — K ®j Di. One checks that the
action of Ly on Qg preserves €. Since the kernel

C* :=Ker(Qg — Q;(/k)

is generated by € as an ideal in Qf with respect to the wedge product and Lj satisfies the Leibniz rule as mentioned
above, we see that the action of L5 on Q% preserves the subcomplex C*. Therefore, L3 is well-defined on the quotient
Qf )i Since Dy acts as zero on H'(K/k), we obtain a well-defined action of Dy on H'(K/k). Finally, one checks

that the corresponding map _
Dy — Endz (H'(K /k))

is k-linear, whence H'(K /k) is a Dy-module.

Explicitly, for any ® € Qf s With do =0, we have

dolw] = [L3(®)], (15)

where & € Q¥ is any lift of ® with respect to the map Q% — Q% Ik and the brackets denote taking the class in H (K /k).

The preceding discussion shows that d[®] is well-defined.

Example 5.1.

1. We have HO(K /k) = K"/ = k with the usual D;-structure.
2. Suppose that Dy ; = K - dy.. Then

Qe =Qp =K -0, with ©,0) =1, da=0(a) o,

forany a € K, and Q; = 0 for i > 2. Hence, there is an isomorphism

K/(0:K) = H'(K/K), [a] = [a- @],

where a € K. Under the above isomorphism, the Gauss—Manin connection on H'(K/k) corresponds to the
Dy-structure on K/(9,K) given by ~
dla] = [a(a)], 0 € Dy,

where, as above, d € Dy is any lift of 1 ® d with respect to the structure map Dg — K ®y Dy.
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3. Suppose, in addition to (2), that K = k(x) and d,(x) = 1. Then, for any class in K/(9,K), there is a unique
representative of the form

n
b;
! , bi,ciek,bj#0.

1)C—C,'

1

Since

we obtain isomorphisms of Di-modules

@k=K/(0:K)=H'(K/k).

cek

5.2. PPV extensions defined by integrals

As above, let (K, Dg) be a parameterized differential field over (k,Dy). Given ® € Qg /; with dw = 0, the equation
dy = o corresponds to a consistent system of (non-homogenous) linear differential equations in the unknown y

8(y) = 0(8), 8 € Dy

Note that Lemma 4.10 remains valid if one assumes that M is a Dy-finitely generated module over k instead of
being finite-dimensional over k. We use this generality in the following statement. Its special case appears in [52,
Lemma 2.3].

Proposition 5.2. Let L be a PPV extension of K for the system of linear differential equations that corresponds to the
equation dy = ®, where ® € Qg with dw = 0 (see above). Let M be the Dy-submodule in H' (K /k) generated by (0]
(see Section 5.1). Then there is an isomorphism of linear Dy-groups (see Lemma 4.10 and the remark preceding the
proposition)

GalP (L/K) = (M")™*.

Proof. The proof is in the spirit of the Kummer and Artin—Schreier theories, for example, see [30, §VL.8]. Let R be a
Dy-algebra. The natural map
o:R®H' (K/k) — Ry H' (L/k)

is a morphism of Dy-modules. Since L contains a solution of the equation dy = ®, we have a/([®]) = 0. Therefore, for
any M € R®y Qg with dn = 0 and [n] € R®; M, we have

a([n]) =0.

Thus, the equation dy = m has a solution in R ®; L. Let [N € R®; L denote any of these solutions. For each
g € GalP% (L/K)(R), consider the map

Og:R&M —R, ]—g(/n)—/n.

One checks that ¢,([n]) is well-defined, that is, does not depend on the choices of n and [n for a given [n], and
belongs to
R = (R®y L)PKk,

Further,
0 € (M V)Dk

that is, ¢, is a Dy-map: for any 0 € Dy and its lift 0 € D, we have

A(dg(M])) = 9(g(SM) —a(S M) =g(d(/n)) —(Sm) =g(/Lyn) —  Lgn = (o)),
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because the restriction of d from R ®r L to R is 9, g commutes with 5, d commutes with Ls, and by (15) (see Sec-
tion 5.1). Also, for all g, € Gal”k (L/K)(R), we have

hg(fn) —h(fm) =g(/m)—/n,

as the right-hand side belongs to R and is Galois invariant. Therefore,
Ong = Op + Og.
Summing up, we obtain a morphism of linear Dy-groups
0: Gal’) (L/K) — (M")™*.

Since L is Dg-generated over K by [ ®, we see that ¢ is injective. Suppose that ¢ is not surjective. Then there is a
non-zero element 1] € M such that, for any Dy-algebra R over k and any g € Gal”% (L/K)(R), we have

dg([n]) = 0.
Equivalently, for any g € Gal”¥ (L/K)(R), we have
g(/m)=/m,
whence [M € K and [n] = 0 in H! (K /k), which is a contradiction. Thus, ¢ is an isomorphism. O

The fact that the parameterized differential Galois group in Proposition 5.2 does not depend of the PPV extension
corresponds directly to Remark 4.11(2).

Example 5.3.

1. Assume that Dy = k- 9;. Let 0 # D be a linear d;-operator with coefficients in k of the smallest order such that
Do) =0 in H'(K/k).

If there is no non-zero D with D[®] = 0, then we put D := 0. Proposition 5.2 and the discussion following
Lemma 4.10 imply that Gal®X (L/K) is isomorphic to the Dy-subgroup in G, given by the equation

Du=0, ucG,.

2. We use the notation of Example 5.1 (3). By Proposition 5.2, the parameterized differential Galois group of the
equation dy = ® with
n bl

o-1

i=1* ¢

-Qy, bj,ci€k, bj#0,

is isomorphic to (G?)°. This is also explained in [8, Example 7.1].

Surprisingly, the description of the parameterized differential Galois group given in Proposition 5.2 allows to
prove the existence of a PPV extension. For simplicity, suppose that Dy = k-9, and let D be as in Example 5.3(1).
Let 3, € Dk be a lift of 1 ® d; with respect to the structure map Dxg — K ®j Dy and let a linear Dg-operator D be the
corresponding lift of D. Since D[w] = 0, there is @ € K such that

Ly(®) = da (16)

by (15) and the preceding discussion (see Section 5.1). An equation similar to (16) was considered in [52] and [10].
Consider the Dk-algebra

R:=K{y}/(dy—0,Dy—a), an
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where (X)p, denotes the Dg-differential ideal generated by X, and dy — & means the collection
8(y) —(3), 8 € Dy

Note that R is isomorphic as a K-algebra to the ring of polynomials over K (possibly, of countably many variables).
In particular, R is a domain.
Proposition 5.4. In the above notation, the field L := Frac(R) is a PPV extension of K for the equation dy = ®.

Proof. Let [ be a Dy-field over k and suppose that the proposition is true for the parameterized field
K; :=Frac(l @ K)
over / (see [15, §8.2] for the extension of D /;-constants in parameterized differential fields). That is, suppose that

Ly := Frac(l @ R)

D
is a PPV extension of K; for the equation dy = @. Therefore, L, K/k — 1. On the other hand, by [15, Corollary 8.9], we
have that b

Ll K/k — l®kLDK/k,

whence LP/k = k and we obtain the needed result for L. Thus, we may assume that (k, Dy ) is differentially closed.
Now suppose that the proposition is true for a and let @’ € K be another element such that

L5 (0)) = da’.

Then @’ = a+ b with b € k. Since (k,Dy) is differentially closed, there is ¢ € k such that Dc = b. This defines an
isomorphism _
R— K{y}/(dy—u),Dy—a/)DK, y—y—c.

Thus, it is enough to show that there is at least one a € K with L (®) = da such that the proposition is true for a.
Again, since (k,Dy) is differentially closed, there is a PPV extension E of K for the equation dy = ® by [8,
Theorem 3.5(1)]. Let z € E be a solution of the latter equation. Consider the subring S in E that is Dg-generated by
z. We have that _
LB(OJ) = d(DZ).

Since EPK/k = k, we see that Dz € K. Put B
a:= Dz.

Then we obtain a surjective Dg-morphism f : R — S sending y to z.
By Proposition 5.2 and Example 5.3(1), Gal”% (E /K) is isomorphic to the Dy-subgroup in G, given by

Du=0, ucG,.
It follows from the proof of Proposition 5.2 that the action of Gal”x (E/K) on E is given by the formula
u:z—z+u.

Let G be the extension of scalars from k to K of GalPX (E/K) as a (pro-)algebraic group over k. It follows from the
PPV theory that Spec(S) is a torsor under G over K (see [8, §9.4]). By the explicit description of R, Spec(R) is also a
torsor under G and f corresponds to a closed embedding Spec(S) — Spec(R) of G-torsors. We conclude that f is an
isomorphism, which proves the proposition for the above choice of a. O

6. Isomonodromic differential equations

In this section, we show how Proposition 3.10 can be applied to isomonodromic parameterized linear differential
equations. The main results here are in Theorem 6.3 and Theorem 6.6. Section 6.4 provides an analytic interpretation
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of our results. The main illustrating examples are in Section 6.5 (see also Example 6.5).
6.1. Main results

Let (K, Dk ) be a parameterized differential field over (k, Di) and N be a finite-dimensional D /,-module over K.

Definition 6.1. We say that N is isomonodromic if there is a Dg-structure on N such that its restriction from Dg to
Dg i is equal to the initial Dg /;-structure on N.

This is called complete integrability in [8, Definition 3.8], but we preferred to use the terminology slightly more
common in differential equations for this notion (see also Section 6.4).

Proposition 6.2. A finite-dimensional Dy i-module N is isomonodromic if and only if there is a Dy-structure on N in
DMod (K, D j¢).

Proof. We use facts about the Atiyah functor At! in DMod (K ,Dg /k) that can be found in [15, §5.1]. We have the
equality of sets (see [15, eq. (17)])

AC(N)={n@1+Y n@w; e N&(N@g Qk) | V8 € Dg i, 8(n) =), @i(8)n; }
(we are not specifying K-linear and D structures on At! (N) here). Further,
At'(N) C Atk (N),

where Atk denotes the Atiyah functor in Vect(K). Assume that there is a Dy-structure sy : N — At'(N) on N in
DMod (K ,Dg /k). Since the forgetful functor

DMod (K, Dy /) — Vect(K)
is differential (see [15, Theorem 5.1]), the composition
N 2 At'(N) —— Atk(N)

defines a Dg-structure on N that extends the given Dy i-structure. Conversely, assume that N is isomonodromic.
Since the Dg-structure extends the given Dy ;-structure, we see that the map N — Atk (N) factors through At! (N) by
the construction of At!, which gives the needed splitting sy. O

For each d € Dy, we have a parameterized differential field (K, Dk 3) over (k,Dy) with Dy j being the preimage
of K ® d with respect to the structure map Dx — K ®; Di. By definition, a finite-dimensional Dy /e-module N is 0-
isomonodromic if and only if it is isomonodromic over (K, D 5). By Proposition 6.2, this is equivalent to the existence
of a d-structure on N in DMod (K, D ;). Note that we have a morphism of differential fields (k, Dy) — (K, D) (while
there is no fixed Dy-field structure on K) and the forgetful functor DMod (K, Dk /x) — Vect(K) is a faithful differential
functor (see [15, Theorem 5.1]). Thus, combining Proposition 3.10, 3.3, and 6.2, we obtain:

Theorem 6.3. Suppose that (k,Dy) is filtered-linearly closed. Then N is isomonodromic if and only if there is a
(possibly, non-commuting) basis 01, .. .,0d4 in Dy over k such that N is 0;-isomonodromic for all i.

6.2. Explicit approach
Let us explain Theorem 6.3 more explicitly in the case mentioned in the introduction: dimg(Dg /) = 1 and
dimy (Dy) = d. More precisely, let 9,01, . ..9, denote commuting derivations from K to itself, k = K9, and put

D[( Z:K~a@K~a1@...€BK'ad and Dk ::k~81@...@k-8d.

Choosing a basis in a finite-dimensional D /;-module N over K, we obtain a correspondence between differential
structures on N and matrices with entries from K. Let M,,(K) denote the space of (n x n)-matrices with entries in K.
A particular case of Theorem 6.3 reads as follows.
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Theorem 6.4. Suppose that for all i, 1 <i<d— 1, all consistent systems of linear differential equations over k that

involve only the derivation 91, . . . ,0; have a fundamental solution matrix with entries in k. Let A € M,,(K) and suppose
that there exist matrices By, ...,B; € M, (K) that satisfy

0;A —0B; = [B;,A] (18)
foralli, 1 <i<d. Then there exist matrices Ay, ...,Ay € M,(K) such that

0iA — 0A; = [A;,A] (19)

foralli, 1 <i<d, and, foralli,j, 1 <i,j<d, we have

0iA; —0jA; = [Aj,A]]. (20)

The condition on the field k and derivations 1, ...d, from Theorem 6.4 corresponds to the condition that (k,Dy)

is filtered-linearly closed with respect to the basis di,...,d;. The explicit proof below can be used in designing
algorithms.

Proof. What follows is an explicit version of the proof of Lemma 3.9. Similarly, we use induction on d, with the case
d =1 being trivial. Let us make the inductive step from d — 1 to d, d > 2. By the inductive hypothesis, there are
matrices Ap,...,As_1 € M,,(K) that satisfy both (19) and (20). We claim that there exists C € M,,(K) such that the
matrices

(A1,...,Ag—1,B4+C)

satisfy both (19) and (20). In order to show that B; + C satisfies (19) and (20), we need to show the equalities
d(Bs+C)—d4A=[A,B;+C] (1)

and
0i(By+C)—0dyA; = [Ai,Bd—FC] (22)

for all i, 1 <i<d — 1. Expanding the left-hand side of (21) using (18), we see that
8(Bd +C) =0B;+0C =09, A+ [A,Bd] +aC.

Consider
0Z=1[A,Z] (23)
as a matrix linear differential equation in (n X n)-matrix Z. Rearranging the terms in (22), we see that we need to find
C € M,,(K) such that C satisfies (23) and the following condition is satisfied:
8,-C+ [C,A,‘} = adA,- — 8,-Bd + [A,’,Bd] 24)

foralli,1<i<d-—1.
We now show that the right-hand side of (24) satisfies (23). Indeed, we have:

0(04A; — 0;By + [Ai, B4]) = 0a(9A;) — 0i(0By) + [0A;, B4] + [Ai,0B,) =
=04(0iA+[A,A]]) — 0i(d4A+ [A,B4]) + [0i(A) + [A,A], B4] + [Ai, 04A + |A, B4]] =
= 04([A,Ai]) — 0i([A, B4]) +[0:(A), Ba] + [[A,Ai], Ba] + [Ai, 04 (A)] + [Ai, [A, Ba]) =
= [A,0a(Ai)] — [A,0:(Ba)] + [A, [Ai, B4]],

as desired. Here, we have used (18) and (19) for the second equality.
For any matrix Z € M,,(K) satisfying (23), we now show that for all i, 1 < i <d — 1, the matrix

0;Z + [Z,Ai}
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also satisfies (23). Indeed, we have:

IZ+[Z,A]) = 3 (32) + PZ.A] +[2,04]) =

=0;([A,Z]) +[[A,Z],Ai] + [Z,0:A + [A, Al]] =
= [0iA,Z] + [A,0iZ] + [[A, Z), Ai] + [Z,0iA] + [[Z,A], Ai] + [A, [Z,Ai]] =
=[A,0Z+[Z,A]]],

as desired. Here, we have used (23) and (19) for the second equality as well.
Let V denote the set of all matrices in M,,(K) satisfying (23). Then V is a finite-dimensional k-vector space. Also,
consider the maps
(I)l-:Mn(K)—>Mn(K), Zl—>aiZ+[Z,A,'],

which are given by the left-hand side of (24). What we have shown so far is that for all i, 1 <i<d — 1, the right-hand
side of (24) belongs to V and that the maps ®; preserve the subspace V C M, (K). Moreover, the maps ®; define
a (d1,...,94_1)-module structure on V, that is, these maps satisfy the Leibniz rule and the integrability conditions
[@;,®;] =0foralli,j, 1<i,j<d—1.Indeed, we have:

(@) (Z) = 0:(0;Z+[Z,A]]) + 9,2+ [Z,A)],Ai] =
— 00,2+ [0Z A} + 2,04, + 9,2, A + [[Z,A ], Ad.

Subtracting the similar expression for (®;®;)(Z), we obtain

(@i ®j](2) = [2,0:A)] = [2,0,A] +[1Z,A],Ai) = [[Z,All,A )] =
= [Z,9:A; — ;A — [AnAj]],

which vanishes by (20) for 1 <i,j <d—1.
Lety; € V,1<i<d—1, denote the right-hand side of (24):

yi i=04A; — 9iBy + [Ai, B4].

By construction, finding C that satisfies (23) and (24) is equivalent to finding y € V that satisfies

Di(y) = yi (25)
forall i, 1 <i<d— 1. This system of non-homogenous linear differential equations is consistent if and only if one has

Di(yj) = @j(yi)
forall i, j, 1 <i,j<d—1. The latter is again implied by (20). Indeed, we have:
@;(y;) = 0i0aA; — 0i0;Bg + [0;A j,Ba] + [A,0:Ba] + [04A, Ai] — [0;Ba, Ai] + [[A, Ba], Ai].

Subtracting the similar expression for ®;(y;), we obtain

Di(yj) — P;(vi) = 0i0aA; — 9;04A; +[0iA j, By] — [0A;, Ba] + [0aA j, Ai] — [04Ai, Aj] + [[A, B4, Ai] — [[Ai, Ba],Aj] =
=04(0iA; — 0jA;i — [Ai,Aj]) +[0iA; — 0;A; — [Ai, A ], Bal,
which vanishes by (20) for 1 <i,j<d—1.
A consistent system of non-homogenous linear differential equations is equivalent to a consistent system of ho-

mogenous linear differential equations (doubled in size). Therefore, by the hypothesis of the theorem, there exists
y € V satisfying (25), which implies the existence of C € M,,(K) satisfying (23) and (24). Thus, the matrices

(A1,...,A4—1,B4+C)
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satisfy both (19) and (20). O

Example 6.5. We will see that, in general, the A;’s as in Theorem 6.4 have to be different from the original B;’s.
Assume that there is an element # € k such that d; () = 1 and 9;(¢) = 0 for all i, 2 <i < d (e.g., k is the field of rational
functions k = Q(¢y,...,44), d; = 9;;, and t = ¢#1). Let d > 2 and suppose that (n X n)-matrices A,Ay,...A, with entries
in K satisfy all the integrability conditions (19) and (20). Define

By :=A1, ...,Bg_1:=A41, By := Ay +diag(1),

where diag(r) denotes the diagonal (n X n)-matrix with 7 € k on the diagonal. Then the new set of matrices A, By, ...,B;
will still satisfy (18) but will not satisfy the integrability condition for the pair of derivations d; and d,. Indeed,
01B4 — 04B; is the identity matrix, while [By, B,] vanishes.

6.3. Relation to parameterized differential Galois groups
Let U be a Dy-closure of k, K¢; := Frac(U®;K). By [15, Proposition 8.11], we have

‘ll@kDMOd(K,DK/k) = DMOd(Kfu,DKu/ ru)

Below, we extend [8, Proposition 3.9(1)] to the case when (k,Dy) is not necessarily differentially closed, which we
also prove categorically.

Theorem 6.6. In the above notation, let L be a PPV extension for Nk, (which exists by [8, Theorem 3.5(1)]), V =

D
N, Ik and GalPx (L/Kq) C GL(V) be the parameterized differential Galois group of L over Kq;. Suppose that (k, Dy)
is filtered-linearly closed. Then N is isomonodromic if and only if Gal’X (L/Kq) is conjugate to a constant subgroup
in GL(V).

Proof. Let C be the subcategory in DMod(K<q;, Dk, / ;) that is Dy-tensor generated by Nk, (see [15, Definition 4.19]).
Recall that L defines a Dy-fiber functor
®: C— Vect(U)

such that ®(Nk,,) =V and GalP% (L/K¢;) is the associated Dy-group (see [15, Theorem 5.5]). More precisely, there is
an equivalence of Dy-categories
C =Rep (Gal”* (L/Kq)))

sending Nk, to V. Thus, combining Propositions 6.2, 3.12, and 4.3, we obtain the required result. O

6.4. Analytic interpretation

We will now explain in more detail the relation between the analytic notion of isomonodromicity and Defini-
tion 6.1. Let f : X — S be a holomorphic submersion between connected complex analytic manifolds with connected
fibers such that f is topologically locally trivial. Let E be a holomorphic vector bundle on X and Vy /5 be a relative
flat holomorphic connection on E over § (that is, the connection Vy /g is defined only along vector fields on X that are
tangent to the fibers of f). For a subset £ C S, put

In particular, X denotes the fiber of f ata point s € S.
Let U be a sufficiently small open neighborhood of a point s € S such that there is a smooth isomorphism

O:U XX, —— Xy
whose restriction to {s} x X; coincides with the embedding X; < Xy . This gives a collection of smooth isomorphisms

Oy 2 X - X,
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where ¢t € U, and a section 6 : U — Xp7. Also, choose a trivialization

v:C"xU > 6*E.
Then the connection Vy /g defines a family of relative monodromy representations p;, # € U, as the composition

7 (X;,0(s)) —— m; (X;,0(t)) —— GL,((6*E);) —— GL,((6*E);) ——— GL,(C).

The isomorphism classes of the representations p; do not depend on the choices of ¢ and .

We say that (E,Vy / s) 1s analytically isomonodromic if the isomorphism classes of the relative monodromy repre-
sentations p; are locally constant over S (for example, see [47, §1]). It is shown in [47, Proof of 1.2(1), first step] that
(E,Vx /S) is analytically isomonodromic if and only if, for any point s € S, there is an open neighborhood s € U C §
such that Vy /s extends to a flat holomorphic connection on E over Xy (see also [51, Theorem A.5.2.3] for the case of
one-dimensional fibers). This is a version of Definition 6.1 in the analytic context.

Let us give an analytic interpretation of Theorem 6.3. By definition, (E,Vy ) is analytically isomonodromic
along a holomorphic vector field v on S if and only if the relative monodromy representations are locally constant
along (local) holomorphic curves on S that are tangent to v. Thus, (E, Vy/s) is analytically isomonodromic if and only
if it is analytically isomonodromic along d transversal vector fields on S, where d := dim(S). Combining this with the
property of analytic isomonodromicity discussed above, we obtain an analytic proof of following weaker version of
Theorem 6.3:

Let k (respectively, Dy) be the field of meromorphic functions (respectively, the space of meromorphic vector
fields) on S. Analogously, define K and Dk for X in place of S. Assume that a finite-dimensional D /;-module
N satisfies the partial isomonodromicity condition from Theorem 6.3. Then there is a point s € S such that N is
isomonodromic over the parameterized differential field K over k;, where k; is the field of meromorphic functions on
open neighborhoods of s in S and Kj is the field of meromorphic functions on open subsets in X whose intersection
with X; is dense in X;.

In general, one cannot replace K by the field of meromorphic functions along all X;. However, the results from [22,
23] allow to similarly treat the latter case when the fibers of f are complex projective lines with finite sets of points
removed. Finally, the need of replacing k by k; reflects the requirement for (k,Dy) to be filtered-linearly closed in
Theorem 6.3.

6.5. Examples

First, we provide a non-trivial example to Theorem 6.3 showing that its statement is not true for an arbitrary field
(k,Dy). Namely, in the notation Example 4.7, we construct a parameterized field K over the field (k,Dy) and a PPV
extension K C L such that GalP¥ (L/K) = G and the solution space corresponds to the representation V. We are very
grateful to M. Singer, who suggested a general method for constructing PPV extensions with a given parameterized
differential Galois group to us.

Example 6.7. The following example is based on iterated integrals. Let k := Q(t1,#,) and Dy := k-0, ©k-9;,. Let
F:=k(2L0/'021,), i j1,j2>0,m=1,2,
be the field of {0y, dy, , 0, }-rational functions in the differential indeterminates /; and I, over k. Put
Dp:=F-0,®F -3, &F -y,

and do the analogous for the other fields that appear in what follows. Then (F,Dp) is a parameterized differential field
over (k,Dy). Let L be a PPV extension of F for the equation

ax(y) = axll e (26)

and let I € L be a solution of this equation (for example, see Proposition 5.4 for the existence of L). A calculation
shows that there are no elements a € F and linear Dy-operators D with coefficients in k such that d,(a) = D(dI; - I).



6 ISOMONODROMIC DIFFERENTIAL EQUATIONS 27

By Proposition 5.2, we see that
Gal’f (L/F) =G,

and, therefore, the elements 9/ € L, i > 0, are algebraically independent over F. Let K C L be the {9,, 0y, , 0y, }-subfield
generated by

axl,,h atllm, a,zlm, m=1,2, Jy = 8,11—8,111 -Ih —Iz/ll, Jr = atzl—atzll -bh —|—11/t2.
Since [ satisfies (26) and J;,J, € K, for all (i, ji, j») # (0,0,0), we have
A2 (1) € K(Db).

Therefore,
L=K(I,D,I).

One can show that I, >, 1 are algebraically independent over K using a characteristic set argument with respect to any
orderly ranking of the derivatives with I > I} > I, [27, Sections 1.8—10]. Put

fir=oLi €K, i=1,2,

and consider the equation

0 fi O
k() =45y, y="(vi,y2,53), Ay, :=(0 0 fol. (27)
0 0 0
Then
15 I
=10 1 b
0 0 1

is the fundamental matrix for the equation (27), that is, I is the iterated integral [, (fi- [, f»). Hence, L is a PPV
extension of K for the equation (27).

In what follows, U and G are as in Example 4.7. We see that Gal”% (L/K) is a linear Dy-subgroup in U, where U
acts on @ by multiplication on the right. Explicitly, we have

gur,ua,v)(L) = Li+u;,  g(uy,uz,v)(I) = I+ Tius +v.

A calculation shows that K € LY. By a dimension argument, we conclude that Gal’% (L/K) = G. By Example 4.7,
the equation (27) is not isomonodromic. On the other hand, this equation is d,-isomonodromic, i = 1,2 with the
corresponding matrices given by

0 1/4 O 0 0 O
Bi:=® B, & '+o,®- &', i=12 B :=[(0 0 0|, Bo:=(0 0 1/n
0O 0 O 0 0 O
More explicitly,
0 1/1‘1—1—8”11 Ji 0 81211 Jr
B =10 0 81112 , Bp=1{0 0 1/t2+8,212
0 0 0 0 O 0

Thus, we see that Theorem 6.3 is not true for an arbitrary field (k, Dy).

The purpose of the rest of the section is to show that, in Theorem 6.6, one really needs to take the extension
of scalars from k to U in order to obtain conjugacy to a constant group. Namely, we construct examples of an
isomonodromic Dg /k—module N such that there are PPV extensions of K for N, but, for any PPV extension L, the

parameterized differential Galois group GalPX (L/K) is not a constant group and, thus, Gal”’% (L/K) is not conjugate
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to a constant subgroup in GL,, (k).
The idea of the examples is as follows. We construct a parameterized differential field (K,Dg) over (k,Dy) and
o € Qg with do = 0 such that the Dy-submodule

M C H' (K /k)

generated by [®] is finite-dimensional over k and is not trivial as a Dg-module. By Propositions 5.2 and 5.4, there
are PPV extensions of K for the equation dy = ® and any of them has the parameterized differential Galois group

isomorphic to (MY)P*. Since Rep <(MV)D k ) is Di-equivalent to a Dy-subcategory in DMod (K, Dy /i), the (faith-
ful) Dy-representation Vyv of (M V)D" (see Remark 4.11(1)) corresponds to an isomonodromic D ,-module N (see

Proposition 6.2).
Let us give an explicit description. Suppose that

Dy=k-9;, Dxk=K-0,®K-9;, and [amat]:()‘

Let @, € Qg be such that @, (dy) = 1. Then ® = b- w, with b € K. Suppose that there exists a non-zero monic linear
o;-operator D as in Example 5.3(1). Explicitly,

n—1
D:B;'—Zciaé, ci €k,
i=0
is of the smallest order such that there is a € K with D(b) = d,(a) (see Example 5.1(2)). One can show that the
differential module N defined above corresponds to the following system of linear differential equations:

0 0 ... 0

b 0 ... 0

0:(y) =45, -y, y:="(00,---:n), Ap, = %) 0 ... 0
b)) 0 ... 0

By Proposition 5.4, there is a PPV extension L of K for N and L = K(z,9,(2),. ..), where dy(z) = b. By Proposition 5.2
and its proof combined with Example 5.3(1), the morphism of linear D-groups

Gal’* (L/K) — Gq, g+ g(2)—z

induces an isomorphism
Gal’* (L/K) > {u € G,| Du= 0} C G,.

The d,-module N is isomonodromic with

0 0 0

0 0 1 0
Ag = E

0O 0 0 ... 1

a ¢y () oo Cp—l

Now we give concrete examples with k = Q(¢) and K being a generated by functions in ¢ and x. We construct b € K
such that there exists a linear d;-operator D as above and the equation Du = 0 in u is non-trivial over Q(r).

Example 6.8. This examples comes from the algebraic independence of the derivatives of the incomplete Gamma-
function (see [24]). Put
E = Q(t,x,logx,x’_le_x), Dg:=E-0,®E-0,.
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By Proposition 5.4, there is a PPV extension L of E for the equation
0(y) =x"le™. (28)

As noted in [8, Example 7.2], by [24], there is an isomorphism Gal’Z (L/E) = G,. Let y € K be a solution of (28) and

put
K:=E(@,()~%o/(¥) ~,(¥),...) C L.
Since Gal”Z (L/E) = G,,, the parameterized Galois theory implies that y ¢ K. The element b := x'~'e™ € K satisfies

D) =dx(a), D:=d —1, a:=3(y)—veK.

The operator D is of the smallest order, because b ¢ d,(K) as y ¢ K. Note that K is of infinite transcendence degree
over Q(r,x), because Gal?# (K /E) = G,,.

Example 6.9. This example comes from the Gauss—Manin connection for the Legendre family of elliptic curves.
Namely, put K := Q(¢,x,7), where z> = x(x — 1)(x —t). Then the element

b:=1/z€ekK

satisfies
D(b) = 0y(a), D:=—2t(t—1)0>— (4t —2)9;—1/2, a:=z/(x—1)* €K.

The operator D is of the smallest order (for example, this follows from a monodromy argument, see [11, §2.10]).
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