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1 INTRODUCTION

In this paper, we give a new Galois theory of systems of linear difference equations
with periodic (of finite order) difference parameters. This appears to be the first time that
equations with difference parameters have been treated in the literature. In this theory, the
Galois groups are linear difference algebraic groups, and they measure difference algebraic
dependence of solutions of difference equations. Our Galois theory and Galois correspon-
dence works over fields of any characteristic. In characteristic p, our Galois correspondence
is presented here for separable extensions of difference pseudofields1. Among numerous
potential applications of our approach, we show how this can be applied to studying prop-
erties of solutions of q-difference equations.

For the purposes of this introduction, we briefly describe the setup and motivation
in the following simple case. Let q ∈ C\{0}. A q-difference equation of order n is an
equation in f of the form

f (qnz)+an−1(z) · f
(
qn−1z

)
+ . . .+a0(z) · f (z) = 0, (1)

∗Address correspondence to Prof. Alexey Ovchinnikov, Department of Mathematics, CUNY Queens College,
65-30 Kissena Blvd., Queens, NY 11367, USA; E-mail: aovchinnikov@qc.cuny.edu

1Our proofs apply to the non-separable case by using non-reduced Hopf algebras, as pointed out to us by
Michael Wibmer.
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where a0(z), . . . ,an−1(z) ∈ C(z) are given. Over C(z), a solution to such an equation will
not exist in general. However, there is a ring extension of C(z), called the Picard–Vessiot
ring for the equation that is universal for the property of having a full set of solutions to the
equation. Let f (z) be the solution in the Picard–Vessiot ring. When, in addition, we fix a
primitive tth root of unity, ζ, and we let Z/(t) act on C(z) by f (z) 7→ f (ζt), we show in
this paper that we can construct a Picard–Vessiot extension and an action of Z/(t) on the
ring extending the action of ζ on C(z). The motivation for developing a Galois theory of
difference equations with periodic parameters is to study the algebraic relations satisfied
by

f (z), f (ζz), . . . , f
(
ζ

t−1z
)
.

In particular, as an application of the method of our difference Galois groups with pa-
rameters, Theorem 4.9 gives an explicit, complete description of all first-order q-difference
equations

f (qz) = a(z) f (z) (2)

with rational coefficients whose solutions are ζ-difference algebraically independent over
the rational functions in variable z with coefficients belonging to the field k of q-invariant
meromorphic functions on C\{0}. This description is easy to use: the inputs are simple
functions in the multiplicities of the zeros and poles of a(z). Our proof requires a similar
approach to that of [21, Section 3], but it is substantially modified to take into account dif-
ference algebraic independence and make the result as explicit as possible. As an example
of our methods, we include a deduction of some algebraic independence properties of theta
functions (see Theorem 4.5).

The approach of this paper resembles the Galois theory of difference equations with
differential parameters studied in [20, 21, 22, 14, 15, 16, 17, 13, 12], where algebraic meth-
ods have been developed to test whether solutions of difference equations satisfy polyno-
mial differential equations (see also [23] for a general Tannakian approach). In particular,
these methods can be used to prove Hölder’s theorem which says that the Γ-function, which
satisfies the difference equation Γ(x+1) = x ·Γ(x), satisfies no non-trivial differential equa-
tion over C(x). However, when treating difference equations with differential parameters,
one may use fields as the rings of constants. This is not available when using difference
parameters, as Example 2.3 and [29, Proposition 7.3] show. The constants in our theory
are rings that have zero-divisors, and this fact requires numerous additional subtleties into
our approach. The key idea is to find a suitable notion of a difference closed ring. We
use the difference-closed pseudofields of [30], which we review in Section 2. Another ap-
proach to the question of difference algebraic closure is in [24], where difference versions
of valuation rings are given. However, since we require zero-divisors, Lando’s approach is
insufficient.

Picard–Vessiot extensions with zero divisors for systems of linear difference equation
have been considered in [32, 10, 27] with a non-linear generalization considered in [19].
Also, Galois theories of linear difference equations, without parameters, when the ground
ring has zero divisors have been studied in [4, 3, 1, 2, 34], where including zero divisors into
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the ground ring is needed and provides a much more transparent Galois correspondence. In
all the mentioned cases, the ground ring must be a finite product of fields (called Noetherian
difference pseudofields).

Our approach allows us not only to treat parameters, but also prepares a foundation for
studying the non-Noetherian case as we base our methods on a natural geometric approach
to difference varieties developed in [30], which has been further generalized to the non-
Noetherian case in [31]. However, to extend the theory to infinite parameter groups, it
is necessary to treat the non-Noetherian case, as the same construction results in a non-
Noetherian ring. This generalization has been carried out in [28] using the methods of [34,
35] and the present paper (see also [18] for the Galois theory of linear differential equations
with difference parameters).

Some of our results can be treated in another way, via the method of faithfully flat
descent from algebraic geometry [26]. However, our theory gives a more flexible theory
than that obtained via descent, as explained in Section 3.6.

The paper is organized as follows. We give basic definitions in Section 2.1. The
main properties of difference pseudofields are detailed in Sections 2.2 and 2.3. Section 3
contains the development of our main technique, difference Galois theory (also called dif-
ference Picard–Vessiot theory) with periodic parameters. Difference algebraic groups are
introduced and studied in Section 3.3. We finish by showing in Section 4 how to use our
theory to study periodic difference algebraic dependencies among solutions of difference
equations. In particular, we apply these results to study Jacobi’s theta-function in Sec-
tion 4.3 and to give a complete characterization to all first-order q-difference equations
with ζ-difference algebraically independent solutions over rational functions in variable z
with coefficients belonging to the field of q-invariant meromorphic functions on C\{0} in
Section 4.4.

2 BASIC DEFINITIONS

2.1 Difference rings

Most of the basic notions on difference algebra can be found in [11, 25]. Below, we
will introduce those that we use here. Let

Σ0 = Z, Σ1 = Z/t1 Z⊕ . . .⊕Z/ts Z, and Σ = Σ0⊕Σ1,

where each ti > 2. Let σ be a generator of Σ0 and ρi, 1 6 i 6 s, generate each component
of Σ1.

A ring R equipped with an action of a fixed subgroup Σ′ ⊂ Σ by automorphisms is
called a Σ′-ring.

Example 2.1. Let R = C(x) and σ(x) = px, ρ(x) = qx with p,q∈C∗, |p| 6= 1 and q a primi-
tive m-th root of unity for some m > 2. Then Σ0 = {σn |n ∈Z} and Σ1 =

{
id,ρ, . . . ,ρm−1

}
.
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Let R be a Σ′-ring and let R [Σ′] =
{

∑rττ
∣∣ rτ ∈ R, τ ∈ Σ′

}
denote the ring of difference

operators on R. The multiplication on R[Σ′] is given by τ · r = τ(r)τ. For a set Y , let

R{Y}Σ′ = R
[
. . . ,τy, . . . | τ ∈ Σ

′, y ∈ Y
]

denote the ring of Σ′-polynomials over R with Y as the set of Σ′-indeterminates.

Example 2.2. For example, if Σ′ = Σ1 = Z/2Z and ρ is a generator of Σ1, then R{y}Σ′ =
R[y,ρy] with the action of ρ given by ρ(y) = ρy and ρ(ρy) = y.

An ideal a⊂ R is called a Σ′-ideal if Σ′(a)⊂ a, where

Σ
′(a) :=

{
σ(a) |σ ∈ Σ

′,a ∈ a
}

.

The smallest Σ′-ideal containing a set F ⊂ R is denoted by [F ]Σ′ . If Σ′ = Σ, then it is also
denoted simply by [F ]. Let R1 and R2 be Σ′-rings. A ring homomorphism f : R1→ R2 is
called a Σ′-homomorphism if f (τ(r)) = τ( f (r)), for all τ ∈ Σ′, r ∈ R1.

The following example shows that even if we start with a base field, the constants of
the solution space as constructed in Section 3 have zero divisors.

Example 2.3. Let Σ1 = Z/4Z with a generator ρ. Consider the equation σx = −x. The
procedure of constructing a solution space (called Picard–Vessiot extension) of the above
equation described in Section 3 first takes C{x,1/x}ρ, with σx = −x, and then quotients
by
[
ρx− ix,x4−1

]
, which is a maximal Σ-ideal. Thus, we arrive at the ring C[x]

/(
x4−1

)
,

σx = −x and ρx = ix, which is a Σ-pseudofield generated by the solution of the equation.
The subring of constants is generated by x2 and is isomorphic to C[t]

/(
t2−1

)
, which is

not a field.

Denote the ring of Σ′-constants of R by RΣ′ . In other words,

RΣ′ =
{

r ∈ R | τ(r) = r for all τ ∈ Σ
′} .

The set of all Σ′-ideals of R will be denoted by IdΣ′(R).

Definition 2.4. A Σ′-ideal p of R is called pseudoprime if there exists a multiplicatively
closed subset S⊂ R such that p is a maximal Σ-ideal with p∩S = ∅.

Lemma 2.5. Let A and B be Σ-rings and ϕ : A→ B be a Σ-homomorphism. Then for any
pseudoprime ideal q in B the ideal ϕ−1(q) is pseudoprime.

Proof. See [30, Section 2].

The set of all pseudoprime ideals of R will be denoted by PSpecR or PSpecΣ′ R. For
s ∈ R, (PSpecR)s denotes the set of pseudoprime ideals of R not containing s. Let R1 and
R2 be Σ′-rings and f : R1 → R2 be a Σ′-homomorphism. Then f ∗(q) := f−1(q) defines a
map

f ∗ : PSpecR2→ PSpecR1
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by Lemma 2.5. For an ideal a ⊂ R denote by aΣ′ the largest Σ′-ideal of R contained in a.
Note that if p is a prime ideal of R, then the ideal pΣ′ is pseudoprime.

Recall that an R-module M with an action of Σ′ is called a Σ′-module if for all τ ∈ Σ′,
r ∈ R, and m ∈M, we have τ(rm) = τ(r)τ(m). A Σ′-ring is called simple if it contains no
proper Σ′-ideals except for (0).

Definition 2.6. A ring R is called absolutely flat if every R-module is flat. An absolutely
flat simple Σ′-ring k is called a Σ′-pseudofield (see [30]).

For every subset E ⊂ R{y1, . . . ,yn}Σ′ , let V(E) ⊂ Rn be the set of common zeroes of
E in Rn. Conversely, for every subset X ⊂ Rn, let

I(X)⊂ R{y1, . . . ,yn}Σ′

be the Σ′-ideal of all polynomials in R{y1, . . . ,yn}Σ′ vanishing on X . One sees that, for any
reduced R and Σ′-ideal I ⊂ R{y1, . . . ,yn}Σ′ , we have

√
I ⊂ I(V(I)).

Definition 2.7. [30, Section 4.3] A Σ′-pseudofield R is called difference closed if, for every
Σ′-ideal I ⊂ R{y1, . . . ,yn}Σ′ , we have

√
I = I(V(I)).

2.2 Properties of pseudofields

Proposition 2.8. Let L be Σ′-simple ring and K ⊂ L be an absolutely flat Σ′-subring. Then,
K is a Σ′-pseudofield.

Proof. Let 0 6= a ∈ K. We will show that the Σ′-ideal of K generated by a contains 1. Since
K is absolutely flat, we may assume that a2 = a, since every principal ideal is generated by
an idempotent [5, Exercise II.27]. Since the Σ′-ideal generated by a in L contains 1, there
exist hi ∈ L, 0 6 i 6 r, such that

1 = h0a+h1σ1(a)+ . . .+hrσr(a) (3)

for some σk ∈ Σ′. Set σ0 = id for notation. We will show by induction on k 6 r that the hi’s
can be selected so that hi ∈ K, 0 6 i 6 k. The base k = 0 is done in the same way as the
inductive step. Assume the statement for k−1≥ 0. We will show it for k. Multiplying (3)
by 1−σk(a) and using a2 = a, we have:

1−σk(a) = (1−σk(a))(h0 ·a+ . . .+hk−1 ·σk−1(a)+hk+1 ·σk+1(a)+ . . .+hr ·σr(a)).

Hence,

1 =(1−σk(a))h0 ·a+ . . .+(1−σk(a))hk−1 ·σk−1(a)+
+σk(a)+(1−σk(a))hk+1 ·σk+1(a)+ . . .+(1−σk(a))hr ·σr(a)

with (1−σk(a))h0, . . . ,(1−σk(a))hk−1,1 ∈ K, which finishes the proof.
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Proposition 2.9. Let L be an absolutely flat ring and H ⊂ Aut(L). Then the ring LH is
absolutely flat.

Proof. Let 0 6= a ∈ LH . Then by [5, Exercise II.27] there exist unique an idempotent e and
a′ in L such that

e = aa′, a = ea, and a′ = ea′. (4)

To see uniqueness, note that if (ē, ā′) is another such pair, then eē = eaā′ = aā′ = ē and,
similarly, eē = e. So, the element e is unique. Now, a′ = ea′ = ēa′ = aā′a′ and, in the same
manner, ā′ = ēā′ = eā′ = aa′ā′.

We will show now that e and a′ are H-invariant. For σ ∈ H we have

a = σ(a) = σ(ae) = aσ(e).

Multiplying by a′, we obtain e = eσ(e). Similarly, we obtain e = eσ−1(e), which implies
that σ(e) = eσ(e). Hence, σ(e) = e. We, therefore, have

e = aσ(a′), a = ea, and σ(a′) = eσ(a′). (5)

Since the pair (e,a′) is unique, (4) and (5) imply that σ(a′) = a′. Applying [5, Exer-
cise II.27] again, we conclude that LH is absolutely flat.

Proposition 2.10. Let A be a Σ1-closed pseudofield. Then the ring R = A[Σ1] is completely
reducible: R∼= A⊕ . . .⊕A as Σ1-modules over A. In other words, every Σ1-module over A
has a basis of Σ1-invariant elements. Moreover, A[Σ1]∼= Mn(C) as rings, where C = AΣ1 .

Proof. Follows [30, Proposition 26 and Remark 27].

Proposition 2.11. Let R be a Σ-simple ring and A := Rσ be a Σ1-difference closed pseud-
ofield. Let B be any Σ-A-algebra with σ acting as the identity. Then the Σ-homomorphism
B→ R⊗A B, with b 7→ 1⊗b, b ∈ B, induces a bijection

IdΣ1(B)←→ IdΣ(R⊗A B)

via a⊂ B−→ ae := R⊗A a, bc := b∩B←− b⊂ R⊗A B.

Proof. Let I be a Σ-ideal of the ring R⊗A B and let Ic = J. We will show that I = Je.
In other words, by passing to R⊗A (B/J), we will show that if Ic = (0), then I = (0).
By Proposition 2.10, there exists a basis {bi}i∈I of B over A consisting of Σ1-invariant
elements. Then, every element of R⊗A B is of the form

a1⊗bi1 + . . .+an⊗bin

for some ai ∈ R, 1 6 i 6 n. Let 0 6= u ∈ I have the shortest expression of the form u =
a1⊗b j1 + . . .+ak⊗b jk ,

M =
{

a ∈ R | ∃c2, . . . ,ck ∈ R, i1, . . . , ik ∈ I : a⊗bi1 + c2⊗bi2 + . . .+ ck⊗bik ∈ I
}

.
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As 0 6= a1 ∈M, and since Σ(bi) = bi, 1 6 i 6 n, the set M is a non-zero Σ-ideal of R. Hence,
1 ∈M. Therefore, there exists u with a1 = 1. Since

u−σ(u) = (a2−σ(a2))⊗bi2 + . . .+(ak−σ(ak))⊗bik ∈ I (6)

and has a shorter expression than u, we have

u−σ(u) = 0. (7)

Since {bi}i∈I is a basis of B over A, {1⊗bi}i∈I is a basis of R⊗A B over R. Therefore, (6)
and (7) imply that σ(a2) = a2, . . . ,σ(ak) = ak, that is, a2, . . . ,ak ∈ A. Thus,

u = 1⊗
(
bi1 +a2bi2 + . . .+akbik

)
.

Hence,
0 6= bi1 +a2bi2 + . . .+akbik ∈ Ic,

contradicting Ic = (0). Therefore, we have shown that (Ic)e = I. On the other hand, since R
is a free A-module, the B-module R⊗A B is also free and, therefore, faithfully flat. Thus, by
[5, Exercise III.16] for every ideal J ⊂ B we have (Je)c = J, which finishes the proof.

Corollary 2.12. Let B be a Σ-ring containing a Σ-pseudofield L with CL := Lσ being a
Σ1-closed pseudofield. Let C⊂ Bσ be a Σ1-subring such that CL ⊂C. Then L ·C = L⊗CL C.

Proof. The kernel I of the Σ-homomorphism

L⊗CL C→ L ·C ⊂ B, l⊗ c 7→ l · c,

is a Σ-ideal with Ic = (0)⊂C. By Proposition 2.11, we conclude that I = 0.

2.3 Noetherian pseudofields

Lemma 2.13. Let A⊂ B be Σ-rings such that for some s ∈ A the map SpecBs→ SpecAs is
surjective. Then the map ϕ : (PSpecB)s→ (PSpecA)s is surjective as well.

Proof. Let q ⊂ A be a pseudoprime ideal with s /∈ q. Then, since the maximal ideal not
intersecting a multiplicative subset is prime, by definition, there exists a prime ideal p⊃ q
such that

q =
\

τ∈Σ
τ(p)

with q being a maximal Σ-ideal contained in τ(p), τ ∈ Σ. Since s /∈ q, there exists τ ∈ Σ

such that s /∈ τ(p). By our assumption, there exists a prime ideal p′ ⊂ B with p′∩A = pτ.
Then the ideal p′

Σ
is the pseudoprime ideal in B that is mapped to p by ϕ.

Lemma 2.14. Let A ⊂ B be Σ-rings such that A is Noetherian and reduced and B is a
finitely generated A-algebra. Then there exists 0 6= s ∈ A such that the map (PSpecB)s→
(PSpecA)s is surjective.
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Proof. There exists s ∈ A such that As is an integral domain. For instance, suppose that
(0) = p1∩·· ·∩pt is the representation of (0) as the intersection of the finitely many minimal
prime ideals in the Noetherian ring A. Let s ∈ p2∩ ·· ·∩pt be such that t /∈ p1. Then, As is
a reduced ring with a single minimal prime ideal. Thus, it is integral. By [30, Lemma 30],
there exists t ∈ A such that the map SpecBst → SpecAst is surjective. The statement now
follows from Lemma 2.13.

Theorem 2.15. Let L be a Noetherian Σ-pseudofield with C := Lσ being a Σ1-closed pseud-
ofield. Let R be a Σ1-finitely generated Σ-simple ring over L. Then Rσ = C.

Proof. Let b ∈ Rσ. Since |Σ1| < ∞, the ring R is finitely generated over L. Since R is Σ-
simple, it is reduced. Therefore, the Σ-subring of R generated by L and b, denoted by L{b},
is reduced as well. Hence, by Lemma 2.14, there exists a non-nilpotent element s ∈ L{b}
such that the map

(PSpecR)s→ (PSpecL{b})s

is surjective. Therefore, since PSpecR = {(0)}, every non-zero pseudoprime ideal in L{b}
contains s. By Corollary 2.12, we have L{b}= L⊗C C{b}. By Proposition 2.10, L is a free
C-module. Let {li}i∈I be a Σ1-invariant basis over C. Then there exist r1, . . . ,rk ∈ C{b}
such that

s = l1⊗ r1 + . . .+ lk⊗ rk.

Since the ring L{b} is reduced, r1 is not nilpotent. Therefore, by [30, Proposition 34], there
exists a maximal Σ-ideal m in C{b} such that C{b}/m = C and r1 /∈m. Let

ϕ : L{b}= L⊗C C{b}→ L⊗C C{b}/m = L⊗C C = L.

Then,
ϕ(s) = l1r̄1 + . . .+ lk r̄k,

where r̄i are the images of ri modulo m, 1 6 i 6 k. Since {l1, . . . , lk} are linearly independent
over C and r̄1 6= 0, the ideal L⊗C m does not contain s. Since ϕ is a Σ-homomorphism,
L⊗C m = ϕ−1((0)), and (0) is a pseudoprime ideal in L, the ideal L⊗C m is pseudoprime
by Lemma 2.5. Therefore, L⊗C m = (0) by the above. Thus, we see that b ∈C by taking
σ-invariants as ϕ is an injective Σ-homomorphism.

Recall that an idempotent that is not a sum of several distinct orthogonal idempotents
is called indecomposable.

Proposition 2.16. Let L be a Noetherian Σ-pseudofield and let F = L/m, where m is a
maximal ideal in L. Then, L ∼= F × . . .×F. Moreover, Σ acts transitively on the set of
indecomposable idempotents of L.
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Proof. Since the ring L is Noetherian and dimL = 0, by [5, Theorem 8.5], the ring L is
Artinian. Therefore, by [5, Theorem VII.7], it is a finite product of local Artinian rings.
Since L is reduced, by [5, Proposition VIII.1],

L = F1× . . .×Fn, (8)

where Fi is a field, 1 6 i 6 n. Since L is Σ-simple, the group Σ acts transitively on SpecL.
Therefore, Fi ∼= F1, 1 6 i 6 n, as residue fields. Let e be an indecomposable idempotent in
L. Let OrbΣ(e) = {e1, . . . ,ek}. Then, the idempotent

E := e1 + . . .+ ek

is Σ-invariant. Since L is Σ-simple, we have E = 1. Decomposition (8) implies that L has n
indecomposable idempotents, each one is of the form

(0, . . . ,0,1,0, . . . ,0)

and, thus, k = n and Σ acts transitively on the set of indecomposable idempotents of L.

Let B be a Σ0-ring and let

FΣ1(B) = ∏
µ∈Σ1

B = { f : Σ1→ B}, (9)

which is a Σ0-ring with the component-wise action of Σ0. Define

(µ f )(τ) = f
(
µ−1

τ
)
, f ∈ FΣ1(B), µ,τ ∈ Σ1.

The above makes FΣ1(B) a Σ-ring. For every µ ∈ Σ1 define a Σ0-homomorphism

γµ : FΣ1(B)→ B, f 7→ f (µ). (10)

Moreover, we have
γτ(µ f ) = (µ f )(τ) = f

(
µ−1

τ
)

= γµ−1τ( f ).

Proposition 2.17. Let A be a Σ-ring, B be a Σ0-ring, and ϕ : A→B be a Σ0-homomorphism.
Then for every µ ∈ Σ there exists unique Σ-homomorphism Φµ : A→ FΣ1(B) such that the
following diagram

FΣ1(B)

γµ

��

A
ϕ

//

Φµ
<<yyyyyyyy

B

is commutative.



10 ANTIEAU ET AL.

Proof. Since
Φµ(a)

(
τ
−1µ
)

= (τΦµ(a))(µ) = ϕ(τa),

where a ∈ A and τ ∈ Σ, the homomorphism Φµ is unique if it exists. Define

Φµ(a)(τ) = ϕ
(
µτ
−1a
)
.

For every α ∈ Σ1 we have

Φµ(αa)(τ) = ϕ
(
µτ
−1

αa
)

= ϕ
(
µ
(
α
−1

τ
)−1a

)
= Φµ(a)

(
α
−1

τ
)

= (αΦµ(a))(τ)

Φµ(νa)(τ) = ϕ
(
µτ
−1

νa
)

= ν
(
ϕ
(
µτ
−1a
))

= ν(Φµ(a)(τ)) = ν(Φµ(a))(τ)

for all α,τ ∈ Σ1, ν ∈ Σ0, and a ∈ A. Thus, Φµ is a Σ-homomorphism.

Proposition 2.18. Let L be a Noetherian Σ-pseudofield such that Lσ is a Σ1-closed pseud-
ofield. Then, there exists a Noetherian Σ0-pseudofield B such that L∼= FΣ1(B).

Proof. By [30, Theorem 17(4)], there exists an algebraically closed field K such that

Lσ = FΣ1(K).

Let δτ ∈ FΣ1(K) be the indicator of the point τ ∈ Σ1 and e = δid. Let also B = eL, which is
a Noetherian absolutely flat ring as a quotient of a Noetherian Σ-pseudofield. By Proposi-
tion 2.17, the homomorphism L→ B, with a 7→ e ·a, lifts to a unique Σ-homomorphism

φ : L→ FΣ1(B).

Since L is Σ-simple, φ is injective. To show that φ is surjective, we will prove that φ(L)
contains all indecomposable idempotents of FΣ1(B). Every indecomposable idempotent of
the ring FΣ1(B) is of the form δτ · f , f is an indecomposable idempotent of B. Let f = eh,
where h ∈ L. Since

φ(τ(e)h)(ν) = (eτ(e)h)(ν) = (τ(e) f )(ν) = e
(
τ
−1

ν
)

f = δτ(ν) f ,

we are done. Finally, B is Σ0-simple. Indeed, let b ⊂ B be a Σ0-ideal. Let I ⊂ FΣ1(B)
consist of all functions f with image contained in b. Since I is an ideal and Σ1 is acting on
the domain, I is invariant under the Σ1-action. Since b is a Σ0 ideal, then I is a Σ0-ideal as
well. Therefore, I is a Σ-ideal, which contradicts to L being a pseudofield.

Proposition 2.19. Let L be a Noetherian Σ-pseudofield such that Lσ is a Σ1-closed pseud-
ofield. Then,

L∼=
n

∏
i=1

FΣ1(F)

as Σ1-rings, where F is a field.
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Proof. By Proposition 2.18, L = FΣ1(B), where B is a Noetherian Σ0-pseudofield. Let
f1, . . . , fn be all indecomposable idempotents of B. Then

L = f1L× . . .× fnL.

On the other hand,
fiFΣ1(B) = FΣ1( fiB) = FΣ1(Fi),

where Fi = fiB and F1 ∼= Fi, 1 6 i 6 n.

Proposition 2.20. Let L be a Noetherian Σ-pseudofield and K ⊂ L be a Σ-pseudofield as
well. Then K is Noetherian.

Proof. Note that a pseudofield is Noetherian if and only if it contains a finite set of inde-
composable idempotents e1, . . . ,en with

e1 + . . .+ en = 1. (11)

Necessity has been discussed above. To show sufficiency, note that if e is an indecompos-
able idempotent of an absolutely flat ring R, then eR is a field. Indeed, eR is an absolutely
flat ring without nontrivial idempotents [5, Exercise II.27]. Moreover, for every element
x ∈ R we have x = ax2. Therefore, ax is an idempotent. So, either ax = 0 and, thus,
x = ax2 = 0, or ax = 1. Hence, equality (11) implies that R is finite product of fields and,
therefore, is Noetherian.

Thus, since every idempotent of K is an idempotent of L, which is Noetherian, the
ring K has finitely many indecomposable idempotents f1, . . . , fk. Since f1 + . . .+ fk is left
fixed by Σ, we have f1 + . . .+ fk = 1. Again, by the above, the ring K is Noetherian.

Proposition 2.21. Let L be a Σ-field such that the subfield C := Lσ is algebraically closed.
Then there exists a Σ-pseudofield A and a Σ-embedding ϕ : L → A such that Aσ is the
Σ1-closure of the Σ1-field ϕ(C).

Proof. Set A = FΣ1(L) and and let ϕ be the Taylor homomorphism for id : L→ L by Propo-
sition 2.17. Then, Aσ = FΣ1(C) is the Σ1-closure of C [30, discussions preceding Proposi-
tion 19].

3 PICARD–VESSIOT THEORY

3.1 Picard–Vessiot ring

Let K be a Noetherian Σ-pseudofield and let C = Kσ be a Σ1-closed pseudofield. Let
A ∈ GLn(K). Consider the following difference equation

σY = AY. (12)

Let R be a Σ-ring containing K.
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Definition 3.1. A matrix F ∈ GLn(R) is called a fundamental matrix of equation (12) if
σF = AF .

Let F1 and F2 be two fundamental matrices of (12). Then for M := F−1
1 F2 we have

σ(M) = σ(F1)−1
σ(F2) = F−1

1 A−1AF2 = F−1
1 F2 = M,

that is, M ∈ GLn (Rσ).

Definition 3.2. A Σ-ring R is called a Picard–Vessiot ring for equation (12) if

1. there exists a fundamental matrix F ∈ GLn(R) for (12),

2. R is a Σ-simple ring, and

3. R is Σ-generated over K be the matrix entries Fi j and 1/detF .

Proposition 3.3. Let K be a Noetherian Σ-pseudofield, Kσ be a Σ1-closed pseudofield, and
R be a Picard–Vessiot ring for equation (12). Then, Rσ = Kσ.

Proof. Since R is a Σ1-finitely generated algebra over K and |Σ1|< ∞, R is finitely generated
over K. Then the result follows from Theorem 2.15.

Proposition 3.4. Let K be a Noetherian Σ-pseudofield with Kσ being a Σ1-closed pseud-
ofield. Then there exists a unique Picard–Vessiot ring for equation (12).

Proof. For existence, define the action of σ on the Σ1-ring

R := K{Fi j,1/detF}Σ1

by σF = AF . Let m be any maximal Σ-ideal in R. Then R/m is the Picard–Vessiot ring for
equation (12). For uniqueness, let R1 and R2 be two Picard–Vessiot rings of equations (12).
Let

R = (R1⊗K R2)/m,

where m is a maximal Σ-ideal. Since R1 and R2 are Σ-simple, the Σ-homomorphisms

ϕ1 : R1→ R, r 7→ r⊗1, ϕ2 : R2→ R, r 7→ 1⊗ r,

are injective. Let F1 and F2 be fundamental matrices of R1 and R2, respectively. Then there
exists M ∈ GLn(Rσ) such that ϕ1(F1) = ϕ2(F2)M. Proposition 3.3 implies that Rσ = Kσ.
Therefore, ϕ1(F1) ⊂ ϕ2(R2). Similarly, ϕ2(F2) ⊂ ϕ1(R1). Hence, ϕ1(R1) = ϕ2(R2) and,
thus, R1 ∼= R2 ∼= R.

Proposition 3.5. Let K be a Noetherian Σ-pseudofield with Kσ being a Σ1-closed pseud-
ofield and R be a Picard–Vessiot ring of equation (12). Then the complete quotient ring
L := Qt(R) is a Noetherian Σ-pseudofield with Lσ = Kσ.
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Proof. We will first show that L is Σ-simple. Let a be a non-zero Σ-ideal of L. Then
a∩R 6= (0) and, therefore, 1 ∈ a.

We will now show that L is a finite product of fields. Since the ring K is Noetherian and
R is finitely generated over K, the ring R is Noetherian as well by the Hilbert basis theorem.
Hence, there exists a smallest set of prime ideals p1, . . . ,pn in R such that (0) = p1∩ . . .∩pn.
The set of non-zero divisors in R coincides with R \

Sn
i=1 pi. In Qt(R), all prime ideals

correspond to the pi’s, that is, they are all maximal and their intersection is (0). Therefore,
by [5, Proposition 1.10]

Qt(R)∼= Qt(R/p1)× . . .×Qt(R/pn),

which is absolutely flat and Noetherian.
Let c = a

b ∈ Lσ. Using Theorem 2.15, it suffices to show that R{c}Σ1 is a Σ-simple
Σ-ring, since this would imply that c ∈ Kσ. For this, we will show that every Σ-subring
D ⊂ L containing K is Σ-simple. Indeed, for every 0 6= d ∈ L there exists a ∈ R such that
0 6= ad ∈ R, which is true because L is the localization with respect to the set of non-zero
divisors. Therefore, for every nonzero ideal a of D we have a∩R 6= {0}. Since R is Σ-
simple, 1 ∈ a.

3.2 Picard–Vessiot pseudofield

Let K be a Noetherian Σ-pseudofield with Kσ being Σ1-closed.

Definition 3.6. A Noetherian Σ-pseudofield L is called a Picard–Vessiot pseudofield for
equation (12) if

1. there is a fundamental matrix F of equation (12) with coefficients in L,

2. Lσ = Kσ,

3. L is Σ1-generated over K by the entries of F .

It follows from Proposition 3.5 that every equation (12) has a Picard–Vessiot pseud-
ofield. We will show that all Picard–Vessiot pseudofields are of this form.

Proposition 3.7. Let K be a Noetherian Σ-pseudofield, with C := Kσ being a Σ1-closed
pseudofield, and L be a Picard–Vessiot pseudofield for equation (12). Then, L ∼= Qt(R),
where R is the corresponding Picard–Vessiot ring.

Proof. Let σ act on the Σ1-ring R := L{Xi j,1/detX}Σ1 by σX = AX . Let F be a fundamen-
tal matrix of (12) with coefficients in L. Define Y = F−1X . Then R = L{Yi j,1/detY}Σ1

and σY = Y . Therefore,
Rσ = C{Yi j,1/detY}Σ1 .

Moreover, we have a Σ-isomorphism

L⊗K K{Xi j,1/detX}Σ1
∼= L⊗C C{Yi j,1/detY}Σ1 . (13)
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Recall that the Picard–Vessiot ring is given by R = K{Xi j,1/detX}Σ1/I, where I is a max-
imal Σ-ideal. By Proposition 2.11 and isomorphism (13), the ideal L⊗K I corresponds to
a Σ-ideal of the form L⊗C J, where J is a Σ1-ideal of C{Yi j,1/detY}Σ1 . This induces a
Σ-isomorphism

φ : L⊗K R→ L⊗C B,

where B = C{Yi j,1/detC}Σ1/J consists of σ-constants. Let m be a maximal Σ-ideal in B.
By [30, Proposition 14], we have

γ : B→ B/m∼= C,

since C is a Σ1-closed pseudofield. Let ϕ be the Σ-homomorphism defined by

R r 7→1⊗r−−−−→ L⊗K R
φ−−−−→ L⊗C B

idL⊗γ−−−−→ L⊗C C l⊗c7→l·c−−−−→ L.

Since R is Σ-simple, the homomorphism ϕ is injective. By the universal property, ϕ extends
to a Σ-embedding ϕ of Qt(R) into L. Since L is generated by the entries of its fundamental
matrix F , we finally conclude that ϕ(Qt(R)) = L.

3.3 Difference algebraic groups

3.3.1 Definitions

In analogy with differential algebraic groups [8, 9], we make the following definitions.
Throughout, C will denote a Σ1-closed pseudofield. Recall that for E ⊆C{y1, . . . ,yn}Σ1 , the
set V(E) is the set of all common zeroes for elements of E in Cn. The sets of the form V(E),
for some E, are called C-Σ1-algebraic varieties (also called pseudovarieties in [30]).

Also recall that, for an arbitrary C-Σ1-algebraic variety X , the set of all difference
polynomials vanishing on X will be denoted by I(X). Every difference polynomial defines
a polynomial function on X . The ring of all polynomial functions, thus, coincides with
C{y1, . . . ,yn}Σ1/I(X).

Definition 3.8. A regular map f : X → Y of C-Σ1-algebraic varieties is a map given by
difference polynomials in coordinates (for a general definition see [30, Section 4.6], in
particular, Theorem 40 there).

Definition 3.9. A C-Σ1-algebraic group is a group supplied with a structure of a C-Σ1-
algebraic variety such that the multiplication and inverse maps are regular.

Definition 3.10. A C-Σ1-Hopf algebra is a C-Σ1-algebra H supplied with comultiplication,
counit, and antipode morphisms that are all C-Σ1-algebra morphisms.

Note that the ring of polynomial functions of a C-Σ1-algebraic variety is a reduced
Hopf algebra such that the comultiplication, antipod, and counit are homomorphisms of
C-Σ1-algebras.
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An example of a C-Σ1-algebraic group is the group GLm,Σ1(C), that is the set of all
m×m matrices with coefficients in C and having invertible determinant. The corresponding
ring of regular functions is

Hm = C{x11, . . . ,xmm,1/detX}Σ1 .

The C-Σ1-algebra Hm has a Hopf algebra structure defined on the Σ1-generators in the usual
way and is extended by commuting to the Σ1-monomials in the generators.

Example 3.11. Let us describe the structure of GL1,Σ1(C) explicitly. Let

Σ1 =
{

id,ρ,ρ2, . . . ,ρt−1}
and consider

H1 = C{x,1/x}Σ1 = C
[
x,1/x,ρ(x),1/ρ(x), . . . ,ρt−1(x),1/ρ

t−1(x)
]
.

Then, the comultiplication is
ρ

l(x) 7→ ρ
l(x)⊗ρ

l(x),

and the antipode map is
ρ

l(x) 7→ 1/ρ
l(x).

Since C is Σ1-closed, it is of the form FΣ1(K) for some algebraically closed field K. Then
the group GL1,Σ1(C) has a natural structure of a K-algebraic group such that

GL1,Σ1(C) = GL1(K)t .

Definition 3.12. A linear C-Σ1-algebraic group is a closed subgroup in GLm,Σ1(C), that is
a subgroup given by difference polynomials.

In particular, this means that the C-Σ1-Hopf algebra H of a linear C-Σ1-algebraic group
is a quotient of Hm by a radical Σ1-Hopf-ideal. More explicitly, the above equivalence also
follows from the equivalence of the categories of affine pseudovarieties and the category of
reduced Σ1-finitely generated algebras [30, Proposition 42].

3.3.2 Difference algebraic subgroups of Gm,Σ1

Example 3.13. In the usual case of varieties over a field k, the algebraic subgroups of Gm
are given by equations xl = 1. The corresponding ideal of k

[
x,x−1

]
is (xl−1). In the case

of C-Σ1-groups, where

Σ1 = Z/t1 Z⊕ . . .⊕Z/tp Z =: {id = α1, . . . ,αt}, t := t1 · . . . · tp,

there are more Σ1-algebraic subgroups of Gm,Σ1 . Let C be an arbitrary Noetherian Σ1-
pseudofield. Let also {e0, . . . ,es−1} be all indecomposable idempotents of C with αi(e0) =
ei−1, 1 6 i 6 s. Then the Σ1-Hopf algebra of Gm,Σ1 is

C{x,1/x}Σ1 = (K× . . .×K)[xα,1/xα |α ∈ Σ1],
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where K = C/m for a maximal ideal m of C. We have

C{x,1/x}Σ1 = e0C{x,1/x}Σ1 × . . .× es−1C{x,1/x}Σ1 ,

Ri = eiC{x,1/x}Σ1 = K[xα,1/xα |α ∈ Σ1].

As we can see, each Ri is a Hopf algebra. Let I be the Σ1-ideal defining our Σ1-closed
subgroup of Gm,Σ1 . Then,

I = e0I× . . .× es−1I.

For each i, 0 6 i 6 s−1, the ideal eiI ⊂ Ri is defined by equations

x
ki,1,α1
α1 · . . . · xki,1,αt

αt = 1,

...

x
ki,m,α1
α1 · . . . · xki,m,αt

αt = 1.

So, if we collect all equations of all ideals eiI, 0 6 i 6 s−1, we obtain the equations

e0xk0,1,1α2
(
xk0,1,2

)
· . . . ·αt

(
xk0,1,t

)
= e0,
...

es−1xks−1,m,1α2
(
xks−1,m,2

)
· . . . ·αt

(
xks−1,m,t

)
= es−1.

Applying α
−1
i to the equations with ei, 0 6 i 6 s, we can rewrite the above system in the

form
e0xk1,1α2

(
xk1,2

)
· . . . ·αt

(
xk1,t
)

= e0,
...

e0xkm,1α2
(
xkm,2

)
· . . . ·αt

(
xkm,t

)
= e0,

(14)

which generate I as a Σ1-ideal. The latter equations also give generators of the ideal e0I.
So, by [33, Section 2.2] we must have m 6 t.

Now we claim that there is an equation in I of the form ϕ(x)−1 = 0, where ϕ(xy) =
ϕ(x)ϕ(y). Indeed, for this, denote the first equation in (14) by ψ(x)−e0. Then, the equation

∑
16k6s

αk(ψ(x)− e0) = ∑
16k6s

αk(ψ(x))−1.

is of the desired form, where the sum ∑16k6s αk(ψ(x)) is multiplicative because the ei’s
are orthogonal.

Now suppose that s = t (this is the case, for example, when C is Σ1-closed). In this
case, we know that the number m of equations does not exceed the number s of our idem-
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potents. Then the following system defines the ideal I.

e0xk1,1α2(xk1,2) · . . . ·αt(xk1,t ) = e0, (1)
...

e0xkm,1α2(xkm,2) · . . . ·αt(xkm,t ) = e0, (m)
e0 = e0, (m+1)

...
e0 = e0. (t)

Applying αi to the ith equation, 1 6 i 6 t, we obtain

e0xk1,1α2(xk1,2) · . . . ·αt(xk1,t ) = e0, (1)
...

em−1αm(xkm,1)(αmα2)(xkm,2) · . . . · (αmαt)(xkm,t−1) = em−1, (m)
em = em, (m+1)

...
et−1 = et−1. (t)

By taking the sum of the above equations, we arrive at an equation of the form

ϕ(x) = 1. (15)

Since the ei’s are orthogonal, the left-hand side is multiplicative. Moreover, this equation
defines the same subgroup. Vice versa, every multiplicative ϕ(x) ∈C{x,1/x}Σ1 defines a
Σ1-subgroup of Gm,Σ1 via (15). Note that it might happen that the set of solutions is empty.
For example, this is the case for ϕ = e, where e is idempotent and not equal to 1.

Example 3.14. Let C = C×C×C with ρ(a0,a1,a2) = (a2,a0,a1), ai ∈C. By [30, Propo-
sition 15], (C,ρ) is a Σ1-closed pseudofield. Let

G = {a ∈C |a ·ρ(a) = 1}, (16)

a Σ1-subgroup of Gm considered in Example 3.13. A calculation shows that G =
{(1,1,1), (−1,−1,−1)}. This demonstrates a major difference between Σ1-subgroups and
differential algebraic subgroups (see [8, Chapter IV]) of Gm. More precisely, in the differ-
ential case the order of the defining equation coincides with the algebraic dimension of the
subgroup.

In our case, the order of ρ in (16) is equal to 1, however, the group is finite. Therefore,
in order to compute the algebraic dimension of a Σ1-group one needs to do more calculation
than just to look at the ρ-order of the equation.
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3.4 Galois group

As before, let K be a Noetherian Σ-pseudofield with C := Kσ being Σ1-closed.

Definition 3.15. Let L be a Picard–Vessiot pseudofield of equation (12). Then the group of
Σ-automorphisms of L over K is called the difference Galois group of (12) and denoted by
AutΣ(L/K).

Let L be a Picard–Vessiot pseudofield of equation (12) and F ∈ GLn(L) be a funda-
mental matrix. Then for any γ ∈ AutΣ(L/K) we have

γ(F) = FMγ, (17)

where Mγ ∈ GLn(C), which, as usual, defines an injective group homomorphism from
AutΣ(L/K) into GLn(C). Since L is generated by the entries of F , the action of γ on L is de-
termined by its action on F . This induces an identification of AutΣ(L/K) with AutΣ(R/K),
where R is the Picard–Vessiot ring corresponding to F .

We will now construct a map AutΣ(R/K)→MaxΣ(R⊗K R), the maximal Σ-ideals of
R⊗K R. For this, let F be a fundamental matrix of equation (12) with entries in R and
γ ∈ AutΣ(R/K). As above, γF = FMγ, where Mγ ∈ GLn(C). We will then map

γ 7→ [F⊗1−1⊗FMγ]Σ,

the smallest Σ-ideal containing F ⊗ 1− 1⊗FMγ. Since R is Σ-simple, the kernel of the
surjective Σ-homomorphism

(γ, Id) : R⊗K R→ R,

which is [F⊗1−1⊗FMγ]Σ, is a maximal Σ-ideal in R⊗K R.
To construct a map in the reverse direction, let

φ1,φ2 : R→ R⊗K R,

with r 7→ r⊗1 and r 7→ 1⊗ r, respectively. Let m be a maximal Σ-ideal of R⊗K R. Then,
(R⊗K R)/m is a Picard–Vessiot ring of equation (12). As in Proposition 3.4, the composi-
tion homomorphisms

φi : R→ R⊗K R→ (R⊗K R)/m

are isomorphisms. This induces an automorphism of the ring R defined by

φm := φ
−1
2 ◦φ1.

Proposition 3.16. The correspondence AutΣ(R/K)→MaxΣ(R⊗K R) constructed above
is bijective. Moreover, these bijections are inverses of each other.
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Proof. Let γ ∈ AutΣ(R/K) and M ∈ GLn(C) be such that γ(F) = FM. Set m = [F ⊗ 1−
1⊗FM]Σ. Since

φ1(F) = F⊗1, F⊗1 = 1⊗FM in (R⊗K R)/m, and φ2(FM) = 1⊗FM,

we have φm(F) = FM.
Conversely, let m∈MaxΣ(R⊗K R). Then φm(F) = FM for some M ∈GLn(C). Hence,

φ1(F) = φ2(FM).

Thus,
[F⊗1−1⊗FM]Σ ⊂m .

Since, as above, the former ideal is Σ-maximal, it coincides with m.

Proposition 3.17. The Galois group G of equation (12) is a closed subgroup of GLn(C).
Moreover, if the ring R⊗K R is reduced, then

R⊗K R∼= R⊗C C{G},

where C{G} is the ring of regular functions on G and R is a Picard–Vessiot ring of (12).

Proof. As before, define σ on the Σ1-ring R{Xi j,1/detX}Σ1 by σX = AX . Let F be a
fundamental matrix of (12) with coefficients in R and let, as above, Y = F−1X , which
implies that σY = Y . We have a Σ-isomorphism

R⊗K K{Xi j,1/detX}Σ1
∼= R⊗C C{Yi j,1/detY}Σ1 .

As in the proof of Proposition 3.7, this induces a Σ-isomorphism

R⊗K R∼= R⊗C B, (18)

where B = C{Yi j,1/detY}Σ1/J and J is a Σ1-ideal.
By Proposition 3.16, AutΣ(R/K) as a set can be identified with MaxΣ(R⊗K R). The

latter set, by Proposition 2.11 and isomorphism (18), can be identified with MaxΣ1 B. Since
C is Σ1-closed, by [30, Proposition 14], the set MaxΣ1 B can be identified with a closed
subset of GLn(C). The group structure of G is preserved under this identification due
to (17). If the ring R⊗K R is reduced, then the ideal J is radical and, therefore, B is the
coordinate ring of G.

3.5 Galois correspondence

Proposition 3.18. Let L be a Picard–Vessiot pseudofield of equation (12), R be its Picard–
Vessiot ring, and G be its Galois group. If the ring R⊗K R is reduced, then LG = K.
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Proof. Let
a/b ∈ L\K, (19)

where a, b ∈ R and b is not a zero divisor. Set

d = a⊗b−b⊗a ∈ R⊗K R.

We will show that d 6= 0. For this, let {e1, . . . ,en} be all indecomposable idempotents of
the Noetherian Σ-pseudofield K. Since b is not a zero divisor,

ei ·b 6= 0, 1 6 i 6 n. (20)

Suppose that for each i, 1 6 i 6 n, ei · a and ei · b are linearly dependent over eiK, that is,
λi · ei ·a = µi · ei ·b for all i. Then (20) implies that λi 6= 0, 1 6 i 6 n. Since eiK is a field,
we have ei ·a = ei ·b ·µi/λi. Hence,

a =
n

∑
i=1

eia =

(
n

∑
i=1

µi

λi
ei

)
b, that is,

a
b

=
n

∑
i=1

µi

λi
ei ∈ K,

which is a contradiction to (19). Therefore, there exists i, 1 6 i 6 n, such that ei ·a and ei ·b
are linearly independent over eiK. Then,

ei ·a⊗ ei ·b− ei ·b⊗ ei ·a 6= 0

in eiR⊗eiK eiR. Hence,
a⊗b−b⊗a 6= 0 in R⊗K R.

We will now show that there is a maximal Σ-ideal in R⊗K R that does not contain d. Since
R⊗K R is reduced, then by Proposition 3.17 we have R⊗K R∼= R⊗C C{G}. Let {li}i∈I be
a basis of R over K. Then there exist r1, . . . ,rm ∈C{G} such that

d = l1⊗ r1 + . . . lm⊗ rm.

Since r1 is not nilpotent, there exists a maximal Σ1-ideal m ⊂ C{G} such that r1 6= 0 in
C{G}/m. Then image of d in R⊗C C{G}/m∼= R is

d = l1r1 + . . .+ lmrm.

Since r1 6= 0, we have d 6= 0. Thus, d /∈ R⊗C m. Using the correspondence between
maximal Σ-ideals in R⊗K R and Σ-automorphisms of R over K, let

φm = φ
−1
2 ◦φ1

correspond to m as in the proof of Proposition 3.16. Then our choice of m implies that

(R⊗K R)/m 3 φ1(a)φ2(b)−φ1(b)φ2(a) 6= 0. (21)

Applying φ
−1
2 to both sides of (21), we obtain that φm(a)b− φm(b)a 6= 0. Therefore,

φm

( a
b

)
6= a

b .
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Lemma 3.19. Let K⊂ L be Noetherian Σ-pseudofields. Let H ⊂AutΣ(L) such that LH = K.
Suppose that K ∼= ∏

n
i=1 FΣ1(F) as Σ1-rings, where F is a field. Let {ei} be the correspond-

ing idempotents. Then for each i the abstract group generated by Σ1 and H acts transitively
on the set of indecomposable idempotents of the ring eiL.

Proof. Let e ∈ eiL be an idempotent and S be its Σ1 ∗H-orbit. The set S coincides with the
set of indecomposable idempotents if and only if ∑ f∈S f = 1. This sum is H-invariant and,
therefore, it belongs to FΣ1(F). Since it is Σ1-invariant as well, it is equal to 1, because a
Σ1-invariant idempotent of FΣ1(F) generates a Σ1-ideal.

Proposition 3.20. Let L be a Picard–Vessiot pseudofield for equation (12) and H be a
closed subgroup of the Galois group G. Then LH = K implies H = G.

Proof. As before, let F be a fundamental matrix with entries in L and σX = AX define the
action of Σ on the Σ1-ring D := L{Xi j,1/detX}Σ1 . Let also Y = F−1X . Again, as before,

L⊗K K{Xi j,1/detX}Σ1
∼= L⊗C C{Yi j,1/detY}Σ1 .

Suppose that H ( G and let I ( J be the defining ideals of G and H, respectively. Denote
their extensions to L{Xi j,1/detX} by (I) and (J), respectively. By Proposition 2.11, we
have (I) ( (J). Explicitly, we have

(I) =
{

f (X) ∈ L{Xi j,1/detX}Σ1 | f (FM) = 0 for all M ∈ G
}

and
(J) =

{
f (X) ∈ L{Xi j,1/detX}Σ1 | f (FM) = 0 for all M ∈ H

}
. (22)

Let T = (J)\ (I) 6= ∅. Define the action of H on L⊗K K{Xi j,1/detX}Σ1 by

h(a⊗b) = h(a)⊗b, h ∈ H.

Then, equality (22) implies that (J) is stable under this action of H. By Proposition 2.19,

K ∼= FΣ1(F)× . . .×FΣ1(F)

as Σ1-rings, where F is a field. Let e1, . . . ,en be the idempotents corresponding to the
components FΣ1(F) in the above product. By Proposition 2.10, the ring K{Xi j,1/detX}Σ1

has a Σ1-invariant basis {Qα}. Then every element of the ring D is of the form

Q = q1Qα1 + . . .+qnQαn , (23)

where qi ∈ L, 1 6 i 6 n. Let Q be an element in T with the shortest presentation of the
form (23). Since Q = ∑i eiQ, there exists i such that eiQ ∈ T . Denote the latter polynomial
by Q as well. Now, we have Q ∈ eiD. Let { f1, . . . , fm} be all indecomposable idempotents
of the Noetherian ring eiL. Then,

Q = ∑
m
j=1 f jQ.
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Hence, there exists j such that f jQ ∈ T . By Lemma 3.19, there exist ht ∈ Σ1 ∗H such that
the coefficients of

Q′ := ∑
t

ht(Q)

are invertible in eiL. Therefore,

Q′ = eiQ1 +g2Q2 + . . .+gmQm.

Since the ideal (J) is stable under the action of Σ1 ∗H, we have Q′ ∈ T . Since ei ∈ K,
for every h ∈ H the polynomial Q′′h := Q′− h(Q′) has a shorter presentation than Q and,
therefore, Q′′h /∈ T . That is,

Q′′h ∈ (I) for all h ∈ H. (24)

We will show now that Q′′h = 0 for all h∈H. Suppose that Q′′h 6= 0 for some h∈H. Then (24)
implies that there exists j such that 0 6= f jQ′′h ∈ (I). Since Σ1 ∗H acts transitively on the
indecomposable idempotents of eiL, there exist φt ∈ Σ1 ∗H such that

Qh := ∑
t

φt
(
Q′′h
)

= r2Q2 + . . .+ rmQm ∈ (I),

where r2 is invertible in eiL. Therefore, there exists r ∈ eiL such that g2 = rr2. Then,
the polynomial Q′− rQ ∈ T has a shorter presentation than Q′, which is a contradiction.
We have shown that h(Q′) = Q′ for all h ∈ H. Hence, all coefficients of Q′ are in K and,
therefore, are invariant under the action of G as well. Since 0 = Q′(F · id) = Q′(F), we
have

0 = g(Q′(F)) = g(Q′)(FMg) = Q′(FMg)

for all g ∈ G. Thus, Q′ ∈ (I), which contradicts to Q′ ∈ T .

Lemma 3.21. Let M be a field,

D := M× . . .×M, (25)

F ⊂ D be a subfield and H ⊂ Aut(D) with DH = F. Let f := (1,0, . . . ,0) ∈ D and H1 ⊂ H
be the stabilizer of f . Then, f F = MH1 , where M is from the first component in (25).

Proof. Since f F is H1-invariant, we have f F ⊆MH1 . We will show the reverse inclusion.
Let l ∈ ( f D)H1 = MH1 . We need to show that there is an element a ∈ F such that l = f a.
Let the H-orbit of l be {l1, . . . , lk}, where l = l1. For each i, 1 6 i 6 k, there exists ai ∈ D
such that li = ai fi, where fi is the idempotent corresponding to the ith factor in D (so we
have f = f1), since if l 6= 0, then H1 is the stabilizer of l. Hence, for d = ∑

k
i=1 li we have

f d =
k

∑
i=1

f1li = l1 = l

and H permutes the li’s. Thus, d ∈ DH = F as desired.
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Proposition 3.22. Let K be a Noetherian Σ-pseudofield, R be a Σ-simple Noetherian alge-
bra over K, and L = Qt(R). Then for the statements

1. the ring R⊗K R is reduced,

2. the ring L⊗K L is reduced,

3. there exists a subgroup H ⊂ AutΣ(L/K) such that LH = K,

we have: (1) is equivalent to (2) and (3) implies (2). Moreover, if R is a Picard–Vessiot
ring over K, then the above statements are equivalent.

Proof. The equivalence of (1) and (2) follows from the fact that R⊗K R⊂ L⊗K L and that
the latter ring is a localization of the former one. We will show that (3) implies (2). Let
{e1, . . . ,en} be the indecomposable idempotents of K. Then,

L⊗K L =
n

∏
i=1

eiL⊗eiK eiL.

It is enough to show that the ring eiL⊗eiK eiL is reduced. Note that eiK is a field. Since ei ∈
K, they are all invariant under H and, moreover, (eiL)H = eiK. Let now { f1, . . . , fm} be the
indecomposable idempotents of the ring eiL and let H1 be the stabilizer of f1. Lemma 3.21
with D = eiL and F = eiK implies that

(ei f1L)H1 = f1eiK.

Since
eiL⊗eiK eiL = ∏

s,t
ei fsL⊗eiK ei ftL,

it remains to show that the ring

D := ei fsL⊗eiK ei ftL

is reduced. By [6, Corollary 1, §7, no. 2], with A = ei fsL, B = ei ftL, N = B, and K = eiK,
the Jacobson radical of the ring D is zero. In particular, the ring D is reduced.

The last statement follows from Proposition 3.18.

Definition 3.23. A Picard–Vessiot extension L/K is called separable if one of the three
equivalent conditions in Proposition 3.22 is satisfied.

Theorem 3.24. Let R be a Picard–Vessiot ring of equation (12) and L = Qt(R) be separable
over K. Let F denote the set of all intermediate Σ-pseudofields F such that L is separable
over K and G denote the set of all Σ1-closed subgroups H in the Galois group G of L over
K. Then the correspondence

F ←→ G , F 7→ AutΣ(L/F), H 7→ LH

is bijective and the above maps are inverses of each other. Moreover, H is normal in G if
and only if the Σ-pseudofield F := LH is G-invariant.
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Proof. The map F −→ G is well-defined by Proposition 3.17. Propositions 2.8 and 2.9
imply that LH ⊂ L is a Σ-pseudofield. By Proposition 2.20, it is Noetherian and, by Propo-
sition 3.22, it is separable.

Let F ∈ F . Then the extension L over F is separable and is a Picard–Vessiot pseud-
ofield for equation (12) considered over F . Moreover, F = FAutΣ(L/F) by Proposition 3.18.
Conversely, let H be a Σ1-closed subgroup of G. Set F = LH . Then L is a Picard–Vessiot
pseudofield for equation (12) over F . By Proposition 3.20, we have H = AutΣ(L/F). The
equality

g(F) =
{

r ∈ L |ghg−1r = r for all h ∈ H
}

implies the statement about normality.

Remark 3.25. The base pseudofield K is a product of the fields, say L× . . .×L. If the field
L is perfect, then for every pseudofields F and E containing K the ring F⊗K E is reduced.
Indeed, let e0, . . . ,et−1 be all indecomposable idempotents of K, then

F⊗K E =
t−1

∏
i=0

eiF⊗L eiE.

Since L is perfect and L-algebras eiF and eiE are reduced, then eiF⊗L eiE is reduced as well
(see [7, A.V. 119, No. 5, Théorèm 3(d)]). Therefore, if L is perfect, then any Picard–Vessiot
extension is separable. If the field L is finite, algebraically closed or of characteristic zero,
then L is perfect. In this case, the set F contains all intermediate Σ-pseudofields.

3.6 Extension to non-faithful action

In the introduction, we alluded to the fact that some of our results could instead be
obtained via faithfully flat descent [26]. However, this requires the additional assumption2

that Σ1 acts faithfully in the setup for faithfully flat descent. The theory we have developed
in this paper works more generally, as we now illustrate. Let L be a field, Σ1 = Z/4Z, and
ρ be a generator. Suppose that Σ1 acts on L faithfully and K = Lρ2

. Then

Autρ(L/K)∼= Z/2Z but Aut
(
LΣ1/KΣ1

)
= {1},

where Autρ is the set of ρ-automorphisms (so, we also have to store the order of ρ – not
only the field of invariants). Roughly speaking, replacing a difference object by a non-
difference one, we cannot recover the group of difference automorphisms. This example
(where L is a Picard–Vessiot extension and K is a base field) appears naturally in the Picard–
Vessiot theory if, for instance, the initial field contains only ρ-constants. Also note that if
we replace L by LΣ1 , then the σ-constants of LΣ1 are not necessarily algebraically closed.

2We also assume this in Section 3, but it is only needed to guarantee the uniqueness of a parameterized PV-
extension, which we do not use in the applications. It also implies the existence, but is only a sufficient condition,
and there are situations when one does not have to make this assumption. The Galois correspondence in its
Hopf-algebraic version does not need this as we show below.
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Therefore, using descent, extra preparatory steps are required before we are able to apply
the standard non-parametric difference Galois theory.

Here is another example in which it is preferable to consider not necessarily faithful
actions of Σ1. Let

L = C(x), σ(x) = 2 · x, ρ(x) =−x, K = C
(
x2), Σ1 = {id,ρ}

and the difference equation be
σ(y) = 2 · y. (26)

There are no solutions of (26) in K and L is a Picard–Vessiot extension of the equation,
on which Σ1 acts faithfully, while the action of Σ1 on K is trivial. Of course, the field L
considered with the trivial action of ρ is also a Picard–Vessiot extension, but restricting
to this would not allow us to consider more interesting and useful cases outlined in this
example. We will show how one can generalize our results to include non-faithful actions
of Σ1.

Theorem 3.26 ((Instead of Theorem 3.24)). Let R be a Picard–Vessiot ring over a pseud-
ofield K with the corresponding Σ1-Hopf-algebra H (which replaces the Galois group –
see [3, Section 2]) and L = Qt(R) be the pseudofield of fractions. Let F denote the set of
all intermediate Σ-pseudofields and G denote the set of all Σ1-Hopf-ideals in H. Then the
correspondence

G → F , I 7→ LI := {x ∈ L |1⊗ x− x⊗1 ∈ I · (L⊗K L)}

is bijective. Moreover, I is normal in H if and only if the Σ-pseudofield LI is H-invariant.
A Σ1-Hopf-ideal I is radical if and only if L is separable over LI .

In order to prove this result, one extends the Hopf-algebraic approach given in [2].
The main technical results one uses are [2, Proposition 3.10] and

Proposition 3.27 ((Instead of Proposition 2.11)). Let R be a Picard-Vessiot ring over K and

R⊗K R∼= R⊗C H

be the torsor isomorphism for R, where H is a Σ1-Hopf-algebra over Σ1-pseudofield C =
Rσ. Then this isomorphism induces a 1− 1 correspondence between Σ1-Hopf-ideals of H
and Σ-coideals of R⊗K R. That is, if I ⊆ R⊗K R is a Σ-coideal, then I ∩H is a Σ1-Hopf-
ideal; if a is a Σ1-Hopf-ideal, then R⊗C a is a Σ-coideal.

From the Hopf-algebraic point of view, the Galois correspondence can be derived from
Theorem 3.26 above using the following result:

Theorem 3.28. Let H be a reduced Σ1-Hopf-algebra over a difference closed pseudofield
K. Then H induces a functor F from the category of Σ1-K-algebras to the category of
groups by the rule

F(R) = homΣ1−K(H,R).

Then H can be recovered from F(K).
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3.7 Torsors

Let C be a Σ1-closed pseudofield and K ⊃ C be a Noetherian Σ-pseudofield. Let G
be a Σ1-group over C be C{G} be its Σ1-Hopf algebra with comultiplication ∆, antipode S,
and counit ε.

Definition 3.29. A Σ1-finitely generated K-algebra R supplied with a Σ-K-algebra homo-
morphism

ν
∗ : R→ R⊗C C{G}

is called a G-torsor over K if the following statements are true:

1. R is a C{G}-comodule with respect to ν∗,

2. the vertical arrow in the following diagram is an isomorphism:

R⊗K R

��

R

idR⊗1 88ppppp

ν∗ &&MMM
MM R

1⊗idRffNNNNN

1⊗idR
xxqqq

qq

C{G}⊗C R

In the above notation, the rings R and C{G} are finitely generated algebras over Ar-
tinian rings. Then the Krull dimension is defined for them, which we will denote by dimR
and dimC{G}, respectively. The isomorphism in (2) implies that dimR = dimC{G}.
Moreover, let e be an indecomposable idempotent in C and F := eC be the correspond-
ing residue field. Then F ⊗C C{G} is a finitely generate F-algebra of dimension equal to
dimC{G}. Hence, for any minimal prime ideal p of the ring F⊗C C{G},

tr.deg.F k(p) = dimC{G}= dimR,

where k(p) is the residue field of p.

Proposition 3.30. Let K be a Noetherian Σ-pseudofield with Kσ being a Σ1-closed pseud-
ofield. Let R be a Picard–Vessiot ring for equation (12) with L = Qt(R). Let G be the
Galois group of L over K. If R is separable over K, then R is a G-torsor over K.

Proof. Follows from Proposition 3.17.

4 APPLICATIONS

We will start by giving a difference dependence statement in the spirit of [21], which
we prove using our own methods. We then show how this is related to Jacobi’s theta-
function in Section 4.3 and demonstrate our applications in Section 4.4, in particular, in
Theorem 4.9, which provides a very explicit difference dependence test.
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4.1 General approach

For any nonzero complex number a we define an automorphism σa : C(z)→ C(z) by

σa( f )(z) = f (az).

Let Σ1 ⊆ C∗ be a finite subgroup. Then Σ1 is a cyclic group generated by a root of unity
ζ of degree t. Let q ∈ C be a complex number such that |q| > 1. Now we have an action
of the group Σ = Z⊕Z/t Z on C(z), where the first summand is generated by σq and the
second one is generated by σζ. Throughout this section the ring C(z) is supplied with this
structure of a Σ-ring.

Theorem 4.1. Let R be a Σ-ring containing the field C(z) such that k := Rσq is a field.
Suppose additionally that R contains the field k(z). Let f ∈ R and a ∈ C(z) be such that f
is an invertible solution of

σq( f ) = a f . (27)

Then f is σζ-algebraically dependent over k(z) if and only if

ϕ(a) = σq(b)/b (28)

for some 0 6= b ∈ C(z) and 1 6= ϕ(x) = xn0σζ(x)
n1 · . . . ·σt−1

ζ
(x)

nt−1 .

Proof. If (28) holds, then

σq(ϕ( f )/b) = ϕ(σq( f ))/σq(b) = ϕ(a f )/σq(b) = ϕ(a)ϕ( f )/σq(b) = ϕ( f )/b.

Therefore,
ϕ( f )/b = c ∈ Rσq = k .

Thus, ϕ( f ) = c · b ∈ k(z), which gives a Σ1-algebraic dependence for f over k(z). First,
note that z is algebraically independent over k. Indeed, suppose that there is a relation

an · zn +an−1 · zn−1 + . . .+a0 = 0

for some ai ∈ k. Applying σq n times, we obtain the following system of linear equations
1 1 . . . 1 1
qn qn−1 . . . q 1
...

...
. . .

...
...

(qn)n (qn−1)n
. . . qn 1




an · zn

an−1 · zn−1

...
a0

= 0

Since the matrix is invertible, our relation is of the form a · zk = 0 for some a ∈ k. Since k
is a field, we have zk = 0. However, z ∈ C(z), which is a contradiction.

Assume now that f is Σ1-algebraically dependent over k(z). Let C be the Σ1-closure
of k and K be the total ring of fraction of the polynomial ring C[z], where σq(z) = qz and
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σζ(z) = ζz. So, the field k(z) is naturally embedded into K. Let D be the smallest Σ-subring
in R generated by k(z), f , and 1/ f and let

m⊆ K⊗k(z) D

be a maximal Σ-ideal. Then,
L =

(
K⊗k(z) D

)
/m

is a Picard–Vessiot ring over K for equation (27). The image of f in L will be denoted by
f̄ . Since f is Σ1-algebraically dependent over k(z), f̄ is Σ1-algebraically dependent over
K.

It follows from Section 3.7 that f̄ is Σ1-algebraically dependent over K if and only the
Σ-Galois group G of equation (27) is a proper subgroup of Gm,Σ1 . Then, by Example 3.13,
there exists a multiplicative

ϕ ∈ (FΣ1 Q){x,1/x}Σ1

(see also (9)) such that G is given by the equation ϕ(x) = 1. Therefore, for all φ in the
Galois group,

φ(ϕ( f̄ )) = ϕ(φ( f̄ )) = ϕ(cφ · f̄ ) = ϕ(cφ) ·ϕ( f̄ ) = 1 ·ϕ( f̄ ) = ϕ( f̄ ).

Hence, by Proposition 3.18, we have

b := ϕ( f̄ ) ∈ K = C(z),

as in [22, Proposition 3.1]. Since f is invertible, f̄ is also invertible and, since ϕ is multi-
plicative, ϕ( f̄ ) is invertible as well. Therefore,

ϕ(a) = ϕ
(
σq( f̄ )/ f̄

)
= σq

(
ϕ( f̄ )

)
/ϕ( f̄ ) = σq(b)/b. (29)

We will show now that b can be chosen from (FΣ1 C)(z) satisfying (28) as in [22, Corol-
lary 3.2]. We have the equalities a = ā/c and b = b̄/d, where ā,c ∈ C[z] and b̄,d ∈C[z].
Consider the coefficients of b̄ and d as difference indeterminates. Then, equation (29) can
be considered as a system of equations in the coefficients of b̄ and d. Indeed, equation (29)
is equivalent to

ϕ(ā/c) = σq
(
b̄/d
)/(

b̄/d
)
.

So, we have
ϕ(ā) ·σq(d) · b̄−ϕ(c) ·σq(b̄) ·d = 0 (30)

The left-hand side of equation (30) is a polynomial in z. The desired system of equations
is given by the equalities for all coefficients. Now note that the condition of y ∈C[z] being
invertible in C(z) is given by the inequation

y ·σζ(y) · . . . ·σt−1
ζ

(y) 6= 0.
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Therefore, the coefficients of the polynomials b̄ and d are given by the system of equations
and inequalities. Since the pseudofield FΣ1 C is Σ1-closed, existence of invertible b̄ and
d with coefficients in C implies existence of invertible b̄ and d with coefficients in FΣ1 C
(see [30, Proposition 25 (3)]).

We will now show that b ∈ C(z) and ϕ can be found of the desired form. We have
proven that

ϕ(a) = σq(b)/b (31)

for some b ∈ (FΣ1 C)(z). It follows from Example 3.13 that

ϕ(x) =e0 · xn0,0 ·σζ(x)
n0,1 · . . . ·σt−1

ζ
(x)n0,t−1 + . . .+

+ et−1 · xnt−1,0 ·σζ(x)
nt−1,1 · . . . ·σt−1

ζ
(x)nt−1,t−1 .

Note that if a ∈ (FΣ1 C)(z) belongs to C(z), then

γe(a) = a and γe(σi
ζ
(a)) = σ

i
ζ
(γe(a)),

where the σq-homomorphism γe : (FΣ1 C)(z)→ C(z) is defined in (10). Applying this ho-
momorphism to (31), we obtain

an0,0 ·σζ(a)n0,1 · . . . ·σt−1
ζ

(a)n0,t−1 = σq(γe(b))/γe(b),

which concludes the proof.

4.2 Setup for meromorphic functions

The ring of all meromorphic functions on C∗ will be denoted by M . For any nonzero
complex number a we define an automorphism σa : M →M by

σa( f )(z) = f (az).

Let Σ1 ⊆C∗ be a finite subgroup. Then Σ1 is a cyclic group generated by a root of unity ζ of
degree t. Let q∈C be such that |q|> 1. Now, we have an action of the group Σ = Z⊕Z/tZ,
where the first summand is generated by σq and the second one is generated by σζ.

The set of all σq-invariant meromorphic functions will be denoted by k. As we can
see k is a Σ1-ring. Let C be the Σ1-closure of the field k. Supply the polynomial ring C[z]
with the following structure of a Σ-ring:

σq(z) = qz and σζ(z) = ζz.

Let K be the total ring of fractions of C[z], so, K is a Noetherian Σ-pseudofield with Σ1-
closed subpseudofield of σq-constants C. The meromorphic function z is algebraically
independent over k. Hence, the minimal Σ-subfield in M generated by k and z is the ring
of rational functions k(z). Thus, this field can be naturally embedded into K with z being
mapped to z.
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4.3 Jacobi’s theta-function

We will study Σ1-relations for Jacobi’s theta-function (being a solution of θq(qz) =
−qz ·θq(z))

θq(z) =−∑
n∈Z

(−1)nq
−n(n−1)

2 zn, z ∈ C, (32)

with coefficients in k(z).

4.3.1 Relations for θq with q-periodic coefficients

First, we will show that there are many relations of such form:

1. Suppose that t > 3. Then, the function

λ = θq(z) ·θ−2
q (ζz) ·θq(ζ2z)

is σq-invariant. Therefore, θq vanishes the following nontrivial Σ1-polynomial:

y ·σζ2(y)−λ · (σζ(y))
2 ∈ k(z){y}.

2. Suppose that t = m · n, where m and n are coprime. Then, there exist two numbers
u 6= v such that the automorphisms σu

ζ
6= σv

ζ
but σun

ζ
= σvn

ζ
6= id. Then, the function

λ = θ
n
q(ζ

uz) ·θ−n
q (ζvz)

is σq-invariant. Therefore, θq vanishes the following nontrivial Σ1-polynomial:

(σζu(y))n−λ · (σζv(y))n ∈ k(z){y}.

3. For any given ζ, the function

λ = θ
t
q(z) ·θ−t

q (ζz)

is σq-constant. Therefore, θq vanishes the following nontrivial Σ1-polynomial:

yt −λ · (σζ(y))
t ∈ k(z){y}.

4.3.2 Periodic difference-algebraic independence for θq with q-periodic coefficients

We will show now that in some sense these relations are the only possible ones.

Lemma 4.2. Suppose that for some rational function b ∈ k(z) there is a relation

(−qz)k0 (−qζz)k1 · . . . ·
(
−qζ

t−1z
)kt−1 = σq(b)/b

for some ki ∈ Z. Then,
t−1
∑

i=0
ki = 0.
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Proof. The function σq(b)/b is of the following form σq(b)/b = h/g, where h and g have
the same degree and the same leading coefficient. The equality follows from the condition
on the degree.

Lemma 4.3. Suppose that there exist λ ∈ k(z) and η, q ∈C such that σq(λ) = η ·λ, where
|η|= 1 and 0 6= q is not a root of unity. Then, λ ∈ k and η = 1.

Proof. Let

λ = a · zr · (z−a1) · . . . · (z−an)
(z−b1) · . . . · (z−bm)

be the irreducible representation of λ, where ai,bi ∈ k, the algebraic closure of k. By the
hypothesis, we have

qr+n−m · (z−a1/q) · . . . · (z−an/q)
(z−b1/q) · . . . · (z−bm/q)

= η · (z−a1) · . . . · (z−an)
(z−b1) · . . . · (z−bm)

.

Therefore, qr+n−m = η. Thus, r+n−m = 0 and η = 1. Moreover, the sets {a1, . . . ,an} and
{a1/q, . . . ,an/q} must coincide. If λ /∈ k, then, from r + n−m = 0, it follows that either
n > 0 or m > 0. Suppose that the first inequality holds. There exists i such that a1 = ai

q .
If i = 1, then we set i0 = 1. Otherwise, i > 1 and, rearranging the elements {a j} for j > 1
suppose that i = 2. Again, a2 = ai

q . If i = 1, we set i0 = i. Otherwise, i > 2 and rearranging
the elements {a j} for j > 2, suppose that i = 3, and so on. Since there are only finitely
many elements, the process will stop and we obtain a number i0 with the following system
of equations:

a1 = a2/q, a2 = a3/q, . . . , ai0 = a1/q

Therefore, qi0 = 1. Thus, |q|= 1, which is a contradiction.

Proposition 4.4. Let the pseudofield K be as above. Let R be a Picard–Vessiot ring over
K for the equation σq(y) =−qz ·y and L be the corresponding Picard–Vessiot pseudofield.
Suppose f is an invertible solution in R. Then L⊗K R is a graded ring such that f is of
degree 1 and σq and σζ preserve the grading.

Proof. It follows from Proposition 3.17 that R⊗K R = R⊗C C{G}, where G is the corre-
sponding Galois group. Multiplying by L⊗R−, we obtain: L⊗K R = L⊗C C{G}. Since
group G is a subgroup of Gm,

C{G}= C{x,1/x}Σ1/J,

where the ideal J is generated by difference polynomials of the form

e0 · xk0 ·
(
σζx
)k1 · . . . · (σt−1

ζ
x)kt−1 − e0
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(see Example 3.13 for details). The ring C{x,1/x}Σ1 is a graded ring such that x is homo-
geneous of degree 1 and σζ preserves the grading. In the proof of Theorem 4.1, we have
obtained that

(−qz)k0 · (−qζz)k1 · . . . ·
(
−qζ

t−1z
)kt−1 = σq(b)/b

for some b ∈ C(z). Thus, it follows from Lemma 4.2 that

t−1

∑
i=0

ki = 0.

Therefore, the ideal J is homogeneous. Hence, C{G} is graded. Thus, L⊗C C{G} is
graded. Since f = f̄ · y, where f̄ ∈ L is a solution of the equation in L, then f is a ho-
mogeneous element of degree 1. Since x is σq-constant, σq preserves the grading.

Theorem 4.5. For every prime number t, every relation of the form

λ0 +
t−1

∑
d=1

(
λ0d ·θq(z)

d +λ1d ·θq(ζz)d + . . .+λt−1d ·θq
(
ζ

t−1z
)d
)

= 0, (33)

with λ0,λi j ∈ k(z), implies that λ0 = λi j = 0.

Proof. Let the pseudofield K be as above, R be a Picard–Vessiot ring over K for the equation
σq(y) = −qz · y, and L be the corresponding Picard–Vessiot pseudofield for R. It follows
from Proposition 4.4 that D = L⊗K R is a graded ring such that the image of θq in D is
homogeneous of degree 1. Suppose now that θq satisfies an equation of the form (33).
Then, the same equation holds in R and, after embedding R into D, it holds in D. Since D
is graded, our equation is homogeneous. Thus, it is of the form

λ0 ·θq(z)
d +λ1 ·θq(ζz)d + . . .+λt−1 ·θq

(
ζ

t−1z
)d

= 0

for some d. Consider the shortest equation and rewrite it as follows

θq(z)
d +λr ·θq(ζrz)d + . . .+λt−1 ·θq

(
ζ

t−1z
)d

= 0,

where λr ·θq(ζrz)d is the first nonzero summand immediately following θq(z)d . Applying
σq and dividing by (−qz)d , we obtain

θq(z)
d +σq(λr) · (ζr)d ·θq (ζrz)d + . . .+σq(λt−1) ·

(
ζ

t−1)d ·θq
(
ζ

t−1z
)d

= 0

Therefore,
σq(λr) = ζ

−rd ·λr.

Now, it follows from Lemma 4.3 that ζ−rd = 1, contradiction. Thus, θq(z)
d = 0 must hold,

but Picard–Vessiot pseudofield is reduced, which is a contradiction again.
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4.3.3 Difference-algebraic independence for θq over C(z)

We will now show difference-algebraic independence for θq over C(z).

Example 4.6. Consider an equation

F(θq) = ∑(n1,...,np)∈Zp gn1,...,np(z) ·θq(α1z)n1 · . . . ·θq(αpz)np = 0,

where gn1,...,np ∈ C(z) and 1 6= αi 6= α j in C∗ /qZ. We will show that all gn1,...,np are equal
to zero. Since the sum is finite, there exists a monomial

M(θq) = θq(α1z)d1 · . . . ·θq(αpz)dp

such that M(θq) ·F(θq) contains monomials with negative powers. Now, we will calculate
the poles of a given monomial with negative powers. The poles of the i-th factor of the
monomial

M(θq) =
1

θq(α1z)n1
· . . . · 1

θq(αpz)np
.

are α
−1
i qr for all r ∈ Z and the multiplicity of each of the poles is ni. The poles of distinct

factors are distinct. Indeed, suppose that

α
−1
i ·q

r1 = α
−1
j ·q

r2 .

Then, α j = αi · qr2−r1 . Therefore, αi = α j in C∗ /qZ, which is a contradiction. Thus, the
set of all poles of the monomial M(θq) is α

−1
i ·qr with multiplicity ni.

Every function g ∈ C(z) has only finitely many poles and zeros, so, all of them are
inside of a disk Ud = {z ∈ C | |z| < d}. So, the set of all poles for M(θq) and g ·M(θq)
coincides in C\Ud for some d. There exists a disk Ud such that this property holds for all
summands in F . We can rewrite F as follows:

F(θq) = ∑n1

(
∑n2,...,np

gn1,...,np ·θq(α1z)n1 · . . . ·θq(αpz)np
)

=

= ∑n1
Fn1(θq) = 0.

The point α
−1
1 qr1 (where r1 is large enough positive if q > 1 and large enough negative

if q < 1) is a pole for all summands Fni and the multiplicity of this pole is different for
different ni. To annihilate these poles, Fn1 = 0 must hold for all n1. Repeating the same
argument for all ni, we arrive at

gn1,...,np(z) ·θq(α1z)n1 · . . . ·θq(αpz)np = 0

for each n1, . . . ,np. Therefore, gn1,...,np = 0.
It follows from this result that for an arbitrary root of unity ζ the function θq is σζ-

algebraically independent over C(z) in the field of meromorphic functions on C∗. However,
to generalize this result to finitely many roots of unity, we need to require the following:

for all i and j ζ
k
i = ζ

m
j implies ζ

k
i = ζ

m
j = 1.
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Otherwise, the result is not true. Indeed, if ζk
i = ζm

j 6= 1, then the relation

σ
k
ζi
(θq)−σ

m
ζ j

(θq) = 0

is non-trivial. Indeed, note that the difference indeterminates σk
ζi

x and σm
ζ j

x are distinct
even in the difference polynomial ring Q{x}Σ1 in spite of the fact that they define the same
automorphisms of meromorphic functions.

4.4 General order one q-difference equations

We will start by discussing several examples of σζ-dependence and independence and
finish by providing a general criterion in Theorem 4.9.

Example 4.7. For a(z) = z+1
z−1 , t = 2, and ζ =−1, we have

σζ(a)(z) ·σ0
ζ
(a)(z) =

−z+1
−z−1

· z+1
z−1

= 1 = σq(1)/1.

Let g be a meromorphic function on C\{0} such that σq(g) = z+1
z−1 ·g. Then, g(z) ·g(−z) is

σq-invariant:

σq(g ·σζ(g)) =
z+1
z−1

·g ·σζ

(
z+1
z−1

·g
)

=
z+1
z−1

· −z+1
−z−1

·g ·σζ(g) = g ·σζ(g).

So, the function g is σζ-algebraically dependent over k.

Example 4.8. For a(z) = 2z and t = 4 with ζ = i, we have

σ
2
ζ
(a)(z) ·σ0

ζ
(a)(z) = 2−z ·2z = 1 = σq(1)/1.

As before, let g be a meromorphic function on C\{0} such that σq(g) = 2z · g. Then,
g(z) ·g(−z) is σq-invariant. Indeed,

σq(g ·σ2
ζ
(g)) = 2z ·g ·σ2

ζ
(2z ·g) = 2z ·2−z ·g ·σ2

ζ
(g) = g ·σ2

ζ
(g).

So, the function g is σζ-algebraically dependent over k.

4.4.1 General characterization of periodic difference-algebraic independence

Let a ∈ C(z) and q,ζ ∈ C∗ be such that |q| > 1 and ζ is a primitive root of unity of
order t. Then, a can be represented as follows

a = λ · zT ·
t−1

∏
k=0

N

∏
d=−N−1

R

∏
i=1

(
z−ζ

k ·qd · ri

)sk,d,i
,
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where λ,ri ∈ C∗ and the ri’s are distinct in C∗
/

ζZ ·qZ. Let

ai,k =
N

∑
d=−N−1

sk,d,i, dk,i =
t−1

∑
j=0

ζ
k· j ·ai, j, and D =


d0,1 d0,2 . . . d0,R
d1,1 d1,2 . . . d1,R

...
...

. . .
...

dt−1,1 dt−1,2 . . . dt−1,R

 .

The following result combined with Theorem 4.1 provides a complete characterization of
all equations (27) whose solutions are σζ-algebraically independent.

Theorem 4.9. Let a ∈ C(z) and D be as above. Then,

1. If T = 0 and, either λZ∩qZ 6= 1 or λ is a root of unity, then there exist b ∈ C(z) and
a multiplicative function

ϕ(x) = xn0 ·
(
σζx
)n1 · . . . · (σt−1

ζ
x)nt−1

such that ϕ(a) = σq(b)/b if and only if the matrix D contains a zero row.

2. If either T 6= 0 or, λZ∩qZ = 1 and λ is not a root of unity, then there exist b ∈ C(z)
and a multiplicative function

ϕ(x) = xn0 ·
(
σζx
)n1 · . . . · (σt−1

ζ
x)nt−1

such that ϕ(a) = σq(b)/b if and only if D contains a zero row other than the first
one.

Proof. We will write ϕ and b with undetermined coefficients and exponents. Suppose that

b = µ · zM ·
t−1

∏
k=0

N

∏
d=−N

R

∏
i=1

(
z−ζ

k ·qd · ri

)lk,d,i
and ϕ(x) = xn0 ·

(
σζx
)n1 · . . . · (σt−1

ζ
x)nt−1

are such that ϕ(a) = σq(b)/b. Let us calculate the right and left-hand sides of this equality.
We see that

σq(b) = µ ·qM+∑k,d,i lk,d,i · zM ·
t−1

∏
k=0

N

∏
d=−N

R

∏
i=1

(
z−ζ

k ·qd−1 · ri

)lk,d,i
.
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Hence,

σq(b)
b

= qM+∑k,d,i lk,d,i ·
t−1

∏
k=0

N−1

∏
d=−N−1

R

∏
i=1

(
z−ζ

k ·qd · ri

)lk,d+1,i
·

·
t−1

∏
k=0

N

∏
d=−N

R

∏
i=1

(
z−ζ

k ·qd · ri

)−lk,d,i
=

= qM+∑k,d,i lk,d,i ·
t−1

∏
k=0

R

∏
i=1

[(
z−ζ

k ·q−N−1 · ri

)lk,−N,i
·

·
N−1

∏
d=−N

(
z−ζ

k ·qd · ri

)lk,d+1,i−lk,d,i
(

z−ζ
k ·qN · ri

)−lk,N,i
]
.

Now, we calculate the left-hand side. We see that

σ
r
ζ
a = λ ·ζrT+∑k,d,i r·sk,d,i · zT ·

t−1

∏
k=0

N

∏
d=−N−1

R

∏
i=1

(
z−ζ

k−r ·qd · ri

)sk,d,i
=

= λ ·ζrT+∑k,d,i r·sk,d,i · zT ·
t−1

∏
k=0

N

∏
d=−N−1

R

∏
i=1

(
z−ζ

k ·qd · ri

)sk+r,d,i
.

Hence,
ϕ(a) = λ∑

t−1
r=0 nr ·ζ(T+∑k,d,i sk,d,i)·(∑

t−1
r=0 r·nr) · zT ·(∑

t−1
k=0 nr)·

·
t−1

∏
k=0

N

∏
d=−N−1

R

∏
i=1

(
z−ζ

k ·qd · ri

)
∑

t−1
r=0 nrsk+r,d,i

.

Now, the equation ϕ(a) = σq(b)/b gives the following system of equations



t−1

∑
r=0

sk+r,−N−1,i ·nr = lk,−N,i

t−1

∑
r=0

sk+r,d,i ·nr = lk,d+1,i− lk,d,i, −N 6 d 6 N−1

t−1

∑
r=0

sk+r,N,i ·nr =−lk,N,i

λ∑
t−1
k=0 nr ·ζ(T+∑k,d,i sk,d,i)·(∑

t−1
r=0 r·nr) = qM+∑k,d,i lk,d,i

T ·
t−1

∑
r=0

nr = 0

In this system, the unknown variables are lk,d,i, nr, and M. If lk,d,i,nr,M is a solution of the
system such that not all nr’s are zeroes, then t · lk,d,i, t ·nr, t ·M is a solution with the same
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property. Therefore, we can replace the second equation with

λ∑
t−1
k=0 nr = qM+∑k,d,i lk,d,i .

The first subsystem can be rewritten as follows:
sk,−N−1,i sk+1,−N−1,i . . . sk−1,−N−1,i
sk,−N,i sk+1,−N,i . . . sk−1,−N,i

...
...

. . .
...

sk,N,i sk+1,N,i . . . sk−1,N,i




n0
n1
...

nt−1

=


lk,−N,i

lk,−N+1,i− lk,−N,i
...

−lk,N,i

 .

This system has a solution in lk,d,i if and only if the sum of all equations is zero. Thus, we
can replace this system with the following:

n0 ·
N

∑
d=−N−1

sk,d,i +n1 ·
N

∑
d=−N−1

sk+1,d,i + . . .+nt−1 ·
N

∑
d=−N−1

sk−1,d,i = 0.

Using the definition of the ai, j’s, we obtain the following system:
ai,0 ai,1 . . . ai,t−1
ai,1 ai,2 . . . ai,0

...
...

. . .
...

ai,t−1 ai,0 . . . ai,t−2




n0
n1
...

nt−1

= 0.

Thus, for some integers γk,d,i, j, we have:


ai,0 ai,1 . . . ai,t−1
ai,1 ai,2 . . . ai,0

...
...

. . .
...

ai,t−1 ai,0 . . . ai,t−2




n0
n1
...

nt−1

= 0

λ∑
t−1
k=0 nr = qM+∑k,d,i lk,d,i

T ·
t−1

∑
r=0

nr = 0

lk,d,i =
t−1

∑
r=0

γk,d,i,r ·nr

Consider the first case: T = 0 and λZ ∩ qZ 6= 1. Then, for some u,v ∈ Z \ {0} we have
λu = qv. Hence, the second equation is equivalent to

v ·
t−1

∑
r=0

nr = u ·
(

M +∑k,d,i lk,d,i

)
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Suppose that nr and lk,d,i form a solution of all equations except for the second one, where
not all nr’s are zero. Then,

u ·nr, u · lk,d,i, M =
t−1

∑
r=0

(v ·nr)−∑k,d,i(u · lk,d,i)

form a solution of the whole system. Thus, in this case, we may exclude the second equa-
tion. Now we will check the case T = 0 and λw = 1 for some w ∈ Z\{0}. In this situation,
if nr, lk,d,i is a solution of all equations except for the second one, then

w ·nr, w · lk,d,i, M =−∑k,d,i w · lk,d,i

is a solution of the whole system. Therefore, in this case, the existence of ϕ and b is
equivalent to 

ai,0 ai,1 . . . ai,t−1
ai,1 ai,2 . . . ai,0

...
...

. . .
...

ai,t−1 ai,0 . . . ai,t−2




n0
n1
...

nt−1

= 0 (34)

having a nontrivial common solution.
Consider the second case: T 6= 0 or

(
λZ∩qZ = 1 and λ is not a root of unity

)
. If T 6=

0, then the third equation gives ∑
t−1
r=0 nr = 0, and if λZ∩qZ = 1 and λ is not a root of unity,

then the second equation gives ∑
t−1
r=0 nr = 0. Therefore, in both cases, the second equation

is of the form
M +∑k,d,i lk,d,i = 0.

Again, if nr, lk,d,i form a solution of all equations except the second one, where not all nr’s
are zeroes, then

nr, lk,d,i, M =−∑k,d,i lk,d,i

form a solution of the whole system with the same property. Thus, in this case, we need to
show the existence of a nontrivial solution of the system


ai,0 ai,1 . . . ai,t−1
ai,1 ai,2 . . . ai,0

...
...

. . .
...

ai,t−1 ai,0 . . . ai,t−2




n0
n1
...

nt−1

= 0,

n0 +n1 + . . .+nt−1 = 0.

(35)

Since all the coefficients in (34) and (35) are integers, there is a nontrivial solution with
integral coefficients if and only if there is a nontrivial solution with complex coefficients.
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Define

E+ =


1 1 1 . . . 1
1 ζ ζ2 . . . ζt−1

1 ζ2 ζ2·2 . . . ζ2·(t−1)

...
...

...
. . .

...
1 ζt−1 ζ(t−1)·2 . . . ζ(t−1)·(t−1)

 ,

E− =


1 1 1 . . . 1
1 ζ−1 ζ−2 . . . ζ−(t−1)

1 ζ−2 ζ−2·2 . . . ζ−2·(t−1)

...
...

...
. . .

...
1 ζ−(t−1) ζ−(t−1)·2 . . . ζ−(t−1)·(t−1)

 ,

Ai =


ai,0 ai,1 . . . ai,t−1
ai,1 ai,2 . . . ai,0

...
...

. . .
...

ai,t−1 ai,0 . . . ai,t−2

 , Di =


d0,i 0 . . . 0
0 d1,i . . . 0
...

...
. . .

...
0 0 . . . dt−1,i

 .

A straightforward calculation shows that E+ ·Ai = Di ·E−. Let n be the vector with the
coordinates n0,n1, . . . ,nt−1. Hence, in the first case, the systems E+ ·Ai ·n = Di ·E− ·n = 0
have a nontrivial solution. This is equivalent to the condition that the systems Di ·m = 0
have a nontrivial solution, where m = E− ·n. Since the Di’s are diagonal, there is a common
solution of all systems Di ·m = 0 if and only if the matrices Di have a zero in the same place.
In other words, there is an integer i0 such that for all i we have di0,i = 0. The latter condition
is equivalent to the condition that there is a zero row in the matrix D.

Consider the second case. Let l = (1,1, . . . ,1) with t coordinates. We must to show
that the systems

Ai ·n = 0, l ·n = 0

have a nontrivial solution. Multiplying by E+, we have

Di ·E− ·n = 0, l ·n = 0.

Let p1, . . . , pu be the positions of all zero rows in the matrix D. And let E1, . . . ,Eu be the
columns in E−1

− with the pi’s as indices. Since the matrices Di are diagonal, every common
solution of the systems Di ·E− ·n = 0 is of the form:

n = W ·µ, W := (E1, . . . ,Eu), µ := (µ1, . . . ,µn)T .

Then, the equation l ·n = 0 gives l ·W ·µ = 0 Now, we find a condition when l ·Ei is zero.
For this, note that (1,0, . . . ,0) ·E− = (1,1, . . . ,1) and, therefore,

(1,1, . . . ,1) ·E−1
− = (1,0, . . . ,0).
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Hence, only the first column of the matrix E−1
− gives nonzero elements in the vector l ·W .

The system l ·W ·µ = 0 has only the zero solution if and only if W is just one column and
l ·W 6= 0. Thus, this system has a nontrivial solution if and only if W contains a row of E−1

−
other than the first one. In other words, the elements dk,i are zeroes for some k 6= 0 and all
i, 1 6 i 6 R. This is equivalent to the condition that D contains a zero row other than the
first one.

Corollary 4.10. In the situation of Theorem 4.1, if the zeros and poles of a ∈C(z) are pair-
wise distinct modulo the group generated by ζ and q, then any non-zero solution f of the
equation σq( f ) = a f is σζ-independent over k(z).

Example 4.11. If 0 6= c ∈ C, then any non-zero solution f of σq( f ) = (z− c) · f is σζ-
independent over k(z).
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