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We develop a Galois theory for systems of linear difference equations with an action of an endomorphism σ. This

provides a technique to test whether solutions of such systems satisfy σ-polynomial equations and, if yes, then

characterize those. We also show how to apply our work to study isomonodromic difference equations and

difference algebraic properties of meromorphic functions.

1 Introduction

Inspired by the numerous applications of the differential algebraic independence results

from [36], we develop a Galois theory with an action of an endomorphism σ for systems of linear

difference equations of the form φ(y) = Ay , where A ∈ GLn(K ) and K is a φσ-field, that is, a field

with two given commuting endomorphisms φ and σ, like in Example 2.1. This provides a tech-

nique to test whether solutions of such systems satisfy σ-polynomial equations and, if yes, then

characterize those. Galois groups in this approach are groups of invertible matrices defined by

σ-polynomial equations with coefficients in the σ-field Kφ := {a ∈ K |φ(a) = a}. In more technical

terms, such groups are functors from Kφ-σ-algebras to sets represented by finitely σ-generated
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Kφ-σ-Hopf algebras [23]. Also, our work is a highly non-trivial generalization of [5], where sim-

ilar problems were considered but σ was required to be of finite order (there exists n such that

σn = id).

Our main result is a construction of aσ-Picard–Vessiot (σ-PV) extension (see Theorem 2.28),

that is, a minimal φσ-extension of the base φσ-field K containing solutions of φ(y) = Ay . It

turns out that the standard constructions and proofs in the previously existing difference Galois

theories do not work in our setting. Indeed, this is mainly due to the reason that even if the field

Kφ is σ-closed [56], consistent systems of σ-equations (such that the equation 1 = 0 is not a

σ-algebraic consequence of the system) with coefficients in Kφ might not have a solution with

coordinates in Kφ (see more details in Remarks 2.19 and 2.22). However, our method avoids this

issue. In our approach, a σ-PV extension is built iteratively (applying σ), by carefully choosing a

suitable usual PV extension [58] at each step, and then “patching” them together. This is a difficult

problem and requires several preparatory steps as described in §2.4. A similar approach was also

taken in [63, Theorem 8] for systems of differential equations with parameters. However, our case

is more subtle and, as a result, requires more work. A Tannakian approach is taken in [49] to

build a foundation that will allow several endomorphisms by considering semigroup actions on

Tannakian categories.

Galois theory of difference equations φ(y) = Ay without the action of σ was studied in

[58, 13, 1, 2, 3, 4, 62], with a non-linear generalization considered in [31, 44], as well as with

an action of a derivation ∂ in [33, 34, 36, 19, 20, 21, 22, 18, 17]. The latter works provide

algebraic methods to test whether solutions of difference equations satisfy polynomial differential

equations (see also [40] for a general Tannakian approach). In particular, these methods can be

used to prove Hölder’s theorem that states that the Γ-function, which satisfies the difference

equation Γ(x+1) = x ·Γ(x), satisfies no non-trivial differential equation over C(x). A Galois theory

of differential equations ∂(y) = Ay (the matrix A does not have to be invertible in this case) with

an action of σ was also developed in [23].

Our work has numerous applications to studying difference and differential algebraic

properties of functions. Isomonodromic q-difference equations, which lead to q-difference

Painlevé equations, have been recently studied in [37, 45, 38, 39]. In Theorem 2.55, we show

how this property can be detected using our σ-PV theory, which can be combined with [48,

Theorem 4.1] to study difference isomonodromy with several parameters. On the other hand,

Theorem 3.1 gives a general σ-algebraic independence (called difference hypertranscendency

in [55]) test for first-order φ-difference equations. Theorem 3.5 translates this to a σ-algebraic

dependence test over the field of meromorphic functions with Nevanlinna growth order less than



σ-Galois theory of linear difference equations 3

1 (see (3.6)). It turns out that our methods allow us to generalize a modification (Lemma 3.4)

of complex-analytic results from [6], which is another interesting application. Theorem 3.6

combined with either Theorems 3.1 or 3.5 can be used as computational tool. We illustrate this in

Examples 3.7 and 3.8 as well as show how our work could be used to study differential algebraic

properties of functions given by power series in Example 3.9. Not only do we show practical

applications of our work, we also hope that our theory will be applied in the future in diverse

areas, such as described in [52, 15] and the papers on isomonodromic q-difference equations

mentioned above.

The paper is organized as follows. We start with the basic definitions, notation, and review

of existing results in Sections 2.1 and 2.2. We then introduce σ-PV extensions and study their

basic properties in Section 2.3. The main result, existence of σ-PV extensions, is contained in

Section 2.4, which starts by developing the needed technical tools. We extend the main result in

Section 2.5 to include more useful situations in which σ-PV extensions exist. Uniqueness for σ-

PV extensions is established in Section 2.6. We recall from the appendix of [23] what difference

algebraic groups are, establish the σ-Galois correspondence, and show that the σ-dimension

of the σ-Galois group coincides with the σ-dimension of the σ-PV extension in Section 2.7.

The relation between isomonodromic difference equations and our Galois theory is given in

Section 2.8. Applications to difference and differential algebraic properties of functions, including

functions with a slow Nevanlinna growth order, and illustrative examples are given in Section 3.
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2 σ-PV extensions

2.1 Basic definitions and preliminaries

We need to introduce some terminology from difference algebra. Standard references for differ-

ence algebra are [16] and [43]. All rings are assumed to be commutative. By a φ-ring, we mean

a ring R equipped with a ring endomorphism φ : R → R. We do not require that φ is an auto-

morphism. If φ is an automorphism, we say that R is inversive. By a φσ-ring, we mean a ring

equipped with two commuting endomorphisms φ and σ. A morphism of φ-rings (or φσ-rings) is

a morphism of rings that commutes with the endomorphisms. If the underlying ring is a field, we

speak of φ-fields (or φσ-fields). Here are some basic examples of φσ-fields of interest to us:
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Example 2.1.

(i) the φσ-field M of meromorphic functions on C with φ( f )(z) = f (z + zφ) and σ( f )(z) =
f (z + zσ), f ∈ M , zφ, zσ ∈ C and its φσ-subfields C(z) and M<1, the field of meromorphic

functions on Cwith Nevanlinna growth order less than one (see Section 3.2),

(ii) the φσ-field M with φ( f )(z) = f (z · qφ) and σ( f )(z) = f (z · qσ), f ∈ M , qφ, qσ ∈ C× and its

subfields C(z) and M<1,

(iii) theφσ-fieldC(z, w) withφ( f )(z, w) = f (z+zφ, w) andσ( f )(z, w) = f (z, w+wσ), f ∈C(z, w),

zφ, wσ ∈C and various other actions of φ and σ that commute.

Recall that:

(i) A φ-ideal in a φ-ring R is an ideal a of R such that φ(a) ⊂ a. Similarly, one defines φσ-ideals

in φσ-rings.

(ii) A φ-ring is called φ-simple if the zero ideal and the whole ring are the only φ-ideals.

(iii) A φ-ideal q in a φ-ring R is called φ-prime if q is a prime ideal of R and φ−1(q) = q.

(iv) If φ is an endomorphism of a ring R, then φd is also an endomorphism of R for every d ≥ 1,

and we can speak of φd -prime ideals of R.

(v) A φ-ring R is called a φ-domain if its zero ideal is φ-prime. (Equivalently, R is an integral

domain and φ : R → R is injective.)

(vi) Aφ-ideal in aφ-ring R is calledφ-maximal if it is a maximal element in the set of allφ-ideals

of R, not equal to R, ordered by inclusion.

The theory of difference fields does exhibit some pathologies. For example, two extensions

of the same difference field can be incompatible, see [43, Chapter 5]. As it has been recognized

in [58], the Galois theory of linear difference equations runs much smoother if one allows certain

finite products of fields instead of fields. In this context, the following definition has turned out to

be useful.

Definition 2.2. A φ-pseudo field is a φ-simple, Noetherian φ-ring K such that every non-zero

divisor of K is invertible in K .

The concept of φ-pseudo fields (in certain variants) is also used in [2, 60, 61, 56, 57, 36, 5].

If K is aφ-pseudo field, then there exist orthogonal, idempotent elements e1, . . . ,ed of K such

that
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(i) K = e1 ·K ⊕·· ·⊕ed ·K ,

(ii) φ(e1) = e2, φ(e2) = e3, . . . ,φ(ed ) = e1 and

(iii) ei ·K is a field for i = 1, . . . ,d (so, ei ·K is a φd -field)

(see, for example, [60, Proposition 1.3.2, p. 9]). The integer d is called the period of K and denoted

by period(K ).

Definition 2.3. A φ-ideal p of a φ-ring R is called φ-pseudo prime if it is the kernel of a morphism

from R into some φ-pseudo field. Equivalently, p is of the form

p= q∩φ−1(q)∩ . . .∩φ−(d−1)(q) (2.1)

for some φd -prime ideal q of R. The smallest number d such that (2.1) holds for some φd -prime

ideal q of R is called the period of p.

Definition 2.4. By a φ-pseudo domain, we mean a φ-ring whose zero ideal is φ-pseudo prime. If

R is a φ-pseudo domain, the period of the zero ideal of R is also called the period of R.

Note that every φ-subring of a φ-pseudo field is a φ-pseudo domain. The total ring of

fractions of a φ-pseudo domain is a φ-ring in a natural way, indeed it is a φ-pseudo field.

Definition 2.5. A φσ-ring R is called a φ-pseudo σ-domain if (R,φ) is a φ-pseudo domain.

Definition 2.6. A φσ-ring K is called a φ-pseudo σ-field if (K ,φ) is a φ-pseudo field.

Most of the employed nomenclature is self-explanatory. For example,

(i) A K -φσ-algebra is a K -algebra R equipped with the structure of a φσ-ring such that the

K -algebra structure map K → R is a morphism of φσ-rings.

(ii) Constants are denoted by upper indices. For example, if R is a φ-ring, then the φ-constants

of R are

Rφ := {r ∈ R |φ(r ) = r }.

If K is a φ-pseudo σ-field, then Kφ is a σ-field (as Rφ is a field for any φ-simple φ-ring R

[58, Lemma 1.7a), p. 6].)

(iii) If R is a ring, we denote the total quotient ring of R, i.e., the localization of R at the

multiplicatively closed subset of all non-zero divisors, by Quot(R).
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(iv) If K is a ring, R a K -algebra, and S a subset of R, then K (S) denotes the smallest K -

subalgebra of R that contains S and is closed under taking inverses. So, explicitly

K (S) = {
a/b |a ∈ K [S], b ∈ K [S]∩R×}⊂ R.

(v) If K is a σ-ring, R a K -σ-algebra, and S a subset of R, then K {S}σ denotes the K -σ-

subalgebra of R generated by S, i.e., the K -subalgebra of R generated by all elements of

the form σd (s) where s ∈ S and d ≥ 0. (By definition, σ0 is the identity map.) If R = K {S}σ

with S finite, we say that R is finitely σ-generated over K .

(vi) Let

K 〈S〉σ := {
a/b |a ∈ K {S}σ, b ∈ K {S}σ∩R×}⊂ R. (2.2)

If L|K is an extension ofσ-pseudo fields, we say that L is finitelyσ-generated over K if there

exists a finite subset S of L such that K 〈S〉σ = L.

(vii) Tensor products of difference rings are considered as difference rings in a natural fashion.

For example, if R is aφ-ring and S, T are R-φ-algebras then S⊗R T becomes an R-φ-algebra

by setting φ(s ⊗ t ) =φ(s)⊗φ(t ).

Finally, we record some simple and well-known lemmas which we shall use repeatedly

throughout the text.

Lemma 2.7 ([60, Lemma 1.1.5, p. 4]). Let R be a φ-simple φ-ring. Then Quot(R)φ = Rφ.

Lemma 2.8. Let R be a φ-simple φ-ring and D a Rφ-algebra (considered as constant φ-ring). The

map b 7→ R ⊗Rφ b defines a bijection between the set of all ideals in D and the set of all φ-ideals in

R ⊗Rφ D . The inverse map is given by a 7→ a∩D .

Proof. In [60, Proposition 1.4.15, p. 15], this is stated for the case that R is a φ-pseudo field.

However, the proof given there only uses the assumption that R is φ-simple.

Lemma 2.9. Let R be aφ-simple φ-ring and D a (φ-constant) field extension of Rφ. Then R⊗Rφ D

is φ-simple.

Proof. This is clear from Lemma 2.8.

Lemma 2.10 ([60, Lemma 1.1.6, p. 4]). Let K be a φ-simple φ-ring and R a K -φ-algebra. Then K

and Rφ are linearly disjoint over Kφ.



σ-Galois theory of linear difference equations 7

Lemma 2.11. Let R be a φ-simple φσ-ring that is a φ-pseudo domain. Then σ is injective on R

and the zero ideal of R is the finite intersection of σ-pseudo prime ideals. Moreover, Quot(R) is

naturally a φ-pseudo σ-field.

Proof. Since φ and σ commute, the kernel of σ is a φ-ideal. Therefore, σ must be injective. Since

R is aφ-pseudo domain, the zero ideal of R is a finite intersection of prime ideals. Asσ is injective,

the map q 7→ σ−1(q) is a permutation of the set of minimal prime ideals of R. Every cycle in the

cycle decomposition of this permutation corresponds to a σ-pseudo prime ideal. Since R is a

finite direct sum of integral domains ([60, Proposition 1.1.2, p. 2]), it is clear that σ and φ extend

to Quot(R).

2.2 Review of the classical PV theory

In order to maximize the applicability of our σ-Galois theory, we have been careful to avoid

unnecessary technical conditions on the base field:

(i) we work in arbitrary characteristic,

(ii) we do not assume that our endomorphisms are automorphisms, and

(iii) we do not make any initial requirements on the constants.

Unfortunately, the assumptions in the standard presentations of the classical Galois theory of

linear difference equations (e.g. [58]) are somewhat more restrictive. Since, at some points in the

development of our σ-Galois theory, we need to use the classical Galois theory, we have to give

the definitions and recall the results in our slightly more general setup. This review of the classical

theory will also help the reader see the analogy between the classical Galois theory and the σ-

Galois theory.

Definition 2.12. Let K be a φ-pseudo field and A ∈ GLn(K ). An extension L|K of φ-pseudo fields

with Lφ = Kφ is called a Picard–Vessiot (PV) extension for φ(y) = Ay if there exists a matrix

Y ∈ GLn(L) such that φ(Y ) = AY and L = K (Y ) := K (Yi j | 1 ≤ i , j ≤ n).

A φ-simple K -φ-algebra R is called a PV ring for φ(y) = Ay if there exists Y ∈ GLn(R) such

that φ(Y ) = AY and R = K [Y ,1/det(Y )].

It is easy to describe a construction of a PV ring. Indeed, let X be the n × n-matrix of

indeterminates over K . We turn K [X ,1/det(X )] into a K -φ-algebra by setting φ(X ) = AX . Then

K [X ,1/det(X )]/m
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is a PV ring for φ(y) = Ay for every φ-maximal φ-ideal m of K [X ,1/det(X )]. Moreover, every PV

ring for φ(y) = Ay is of this form.

The existence of PV extensions is a more delicate issue, unless we assume that Kφ is

algebraically closed. The problem is that a PV ring might contain new constants. The following

lemma guarantees that the constants of a PV ring over K are an algebraic field extension of Kφ.

Lemma 2.13. Let K be aφ-pseudo field and R aφ-simple K -φ-algebra which is finitely generated

as K -algebra. Then Rφ is an algebraic field extension of Kφ.

Proof. This is a slight generalization of [58, Lemma 1.8, p. 7]. It also follows from [61, Proposi-

tion 2.11, p. 1389].

The following proposition explains the intimate relation between PV extensions and PV

rings:

Proposition 2.14. Let K be a φ-pseudo field and A ∈ GLn(K ). Let R be a K -φ-algebra that is a

φ-pseudo domain. Assume that R = K [Y ,1/det(Y )] for some Y ∈ GLn(R) with φ(Y ) = AY . Then R

is φ-simple if and only if Quot(R)φ is algebraic over Kφ.

Proof. It is clear from Lemmas 2.13 and 2.7 that Quot(R)φ is algebraic over Kφ if R isφ-simple. So,

we assume that Quot(R)φ is algebraic over Kφ. Indeed, we will first assume that Quot(R)φ = Kφ.

Let

R ′ = K
[
Y ′,1/det

(
Y ′)]

be a PV ring for φ(y) = Ay , where Y ′ ∈ GLn(R ′) satisfies φ(Y ′) = AY ′. Note that L := Quot(R) is a

φ-pseudo field. The matrix

Z := (
Y −1 ⊗1

) · (1⊗Y ′) ∈ GLn
(
L⊗K R ′)

satisfies

φ(Z ) = (
(AY )−1 ⊗1

) · (1⊗ AY ′)= Z .

It follows from Lemma 2.10 that

L⊗Kφ Kφ[Z ,1/det(Z )] = L · (K [Z ,1/det(Z )]) = L[Z ,1/det(Z )] = L[Y ⊗1, Z ,1/det(Y )⊗1,1/det(Z )]

(2.3)

= L
[
1⊗Y ′,1⊗1/det

(
Y ′)]= L⊗K R ′.
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Since Kφ[Z ,1/det(Z )] is finitely generated as Kφ-algebra, there exists an algebraic field extension

C of Kφ and a Kφ-morphism

ψ : Kφ[Z ,1/det(Z )] →C .

Composing the inclusion R ′ → L⊗K R ′ with (2.3) and id⊗ψ, we obtain a K -φ-morphism

R ′ → L⊗Kφ C .

Since R ′ is φ-simple, we can identify R ′ with a subring of L ⊗Kφ C . The two solution matrices Y

and Y ′ in GLn
(
L ⊗Kφ C

)
only differ by multiplication by an invertible matrix with entries in C .

Therefore,

R ⊗Kφ C = K [Y ,1/det(Y )]⊗Kφ C = K [Y ,1/det(Y ),C ] = K
[
Y ′,1/det

(
Y ′),C

]= R ′⊗R ′φ C ,

by Lemma 2.10 again. From Lemma 2.9, we know that R ′⊗R ′φ C is φ-simple. This implies that R is

φ-simple, because a non-trivial φ-ideal of R would give rise to a non trivial φ-ideal of R ⊗Kφ C .

In the general case, we set

K̃ = K ⊗Kφ Lφ ⊂ L.

We claim that K̃ is a φ-pseudo field. We already know from Lemma 2.9 that K̃ is φ-simple and,

since L is a φ-pseudo domain, K̃ is also a φ-pseudo domain. Then K̃ is a finite direct sum of

integral domains Ri [60, Proposition 1.1.2, p. 2]. Since Lφ is algebraic over Kφ, K̃ is integral over

K . As K is a direct sum of fields K j , this implies that each Ri is integral over some K j . But, since

Ri is an integral domain and K j a field, Ri must be a field. So, K̃ is a finite direct sum of fields.

Consequently, K̃ is a φ-pseudo field.

From the first part of the proof, it follows that K̃ [Y ,1/det(Y )] is φ-simple. We have to show

that R = K [Y ,1/det(Y )] is φ-simple. Suppose that a ⊂ R is a non-trivial φ-ideal of R. Since Lφ

is algebraic over Kφ, K̃ [Y ,1/det(Y )] is integral over R. Therefore, the ideal a′ of K̃ [Y ,1/det(Y )]

generated by a does not contain 1 [24, Proposition 4.15, p. 129]. As a′ is a φ-ideal, this yields a

contradiction.

Corollary 2.15. Let K be a φ-pseudo field and A ∈ GLn(K ). If L|K is a PV extension for φ(y) = Ay

with fundamental solution matrix Y ∈ GLn(L), then K [Y ,1/det(Y )] is a PV ring for φ(y) = Ay .

Conversely, if R is a PV ring with Rφ = Kφ, then Quot(R) is a PV extension for φ(y) = Ay .

Proof. This is clear from Proposition 2.14 and Lemma 2.7.
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Theorem 2.16. Let K be a φ-pseudo field. Let R1 and R2 be two PV rings for the same equation

φ(y) = Ay , A ∈ GLn(K ). Then there exists a finite algebraic field extension k̃ of k := Kφ, containing

k1 := Rφ
1 and k2 := Rφ

2 and an isomorphism

R1 ⊗k1 k̃ ' R2 ⊗k2 k̃

of K ⊗k k̃-φ-algebras.

Proof. This is a straightforward generalization of [58, Proposition 1.9, p. 7].

Of course, the above result immediately gives the uniqueness (up to K -φ-isomorphisms) of

PV extensions provided that Kφ is algebraically closed.

2.3 σ-PV extensions and σ-PV rings

In this section, we define σ-PV extensions and σ-PV rings and clarify the relation between them.

Let K be a φ-pseudo σ-field. We study a linear difference equation

φ(y) = Ay, where A ∈ GLn(K ).

We are mainly interested in the case when K is a field. Typically, K will be one of the φσ-fields

from Example 2.1. However, for consistency reasons, we will give all definitions over a general

φ-pseudo σ-field.

If R is a K -φσ-algebra, then a matrix Y ∈ GLn(R) is called a fundamental solution matrix for

φ(y) = Ay if φ(Y ) = AY .

Remark 2.17. If Y1,Y2 ∈ GLn(R) are two fundamental solution matrices for φ(y) = Ay , then there

exists a matrix C ∈ GLn(Rφ) such that Y2 = Y1C .

Proof. This follows from the well-known computation φ
(
Y −1

1 Y2
)= (AY1)−1 AY2 = Y −1

1 Y2.

Let L be a φ-pseudo σ-field extension of K and Y ∈ GLn(L) a fundamental solution matrix

for φ(y) = Ay . If L = K 〈Y 〉σ, we say that L is σ-generated by Y .

Definition 2.18. Let K be a φ-pseudo σ-field and A ∈ GLn(K ). A φ-pseudo σ-field extension L of

K is called aσ-PV extension (orσ-parameterized PV extension in case we need to be more precise)

for φ(y) = Ay if Lφ = Kφ and L is σ-generated by a fundamental solution matrix for φ(y) = Ay .



σ-Galois theory of linear difference equations 11

A K -φσ-algebra R that is a φ-pseudo σ-domain is called a σ-PV ring for φ(y) = Ay if R is φ-

simple and σ-generated by a fundamental solution matrix for φ(y) = Ay , i.e, R = K {Y ,1/det(Y )}σ

for some fundamental solution matrix Y ∈ GLn(R).

Remark 2.19. A Noetherian φ-simple φ-ring is automatically a φ-pseudo domain [60, Proposi-

tion 1.1.2, p. 2]. This is why the condition that R should be aφ-pseudo domain does not appear in

the definition of classical PV rings (Definition 2.12). Here, in the σ-parameterized setting, one of

the more subtle steps in the existence proof ofσ-PV rings (or extensions) is to verify theφ-pseudo

domain property (cf. Corollary 2.27.)

By a σ-PV extension L|K , we mean a φ-pseudo σ-field extension L of K that is a σ-PV

extension for some linear φ-equation φ(y) = Ay , with A ∈ GLn(K ). Similarly for σ-PV rings. The

σ-field of φ-constants of a σ-PV extension L|K will usually be denoted by k, that is,

k := Kφ = Lφ.

To clarify the relation between σ-PV extensions and σ-PV rings, we will use the following

important observation.

Lemma 2.20. Let L|K be a σ-PV extension for φ(y) = Ay with fundamental solution matrix

Y ∈ GLn(L). Set

Ld = K
(
Y ,σ(Y ), . . . ,σd (Y )

)⊂ L, d ≥ 0.

Then Ld |K is a PV extension for the φ-linear system φ(y) = Ad y , where

Ad =


A 0 · · · 0

0 σ(A) · · · 0
...

. . .
...

0 · · · 0 σd (A)

 ∈ GLn(d+1)(K ).

Proof. Note that K
[
Y ,σ(Y ), . . . ,σd (Y )

]
is a φ-subring of L. Therefore, K

(
Y ,σ(Y ), . . . ,σd (Y )

)
is

a φ-pseudo field by [60, Lemma 1.3.4, p. 9]. Applying σi to φ(Y ) = AY for i = 0, . . . ,d yields
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φ
(
σi (Y )

)=σi (A)σi (Y ). Therefore,

Yd =


Y 0 · · · 0

0 σ(Y ) · · · 0
...

. . .
...

0 · · · 0 σd (Y )

 ∈ GLn(d+1)(Ld ).

is a fundamental solution matrix for φ(y) = Ad y . Since Lφd ⊂ Lφ = Kφ, Ld |K is a PV extension for

φ(y) = Ad y .

The following proposition is the σ-analogue of Corollary 2.15.

Proposition 2.21. Let K be a φ-pseudo σ-field and A ∈ GLn(K ).

(i) If L|K is aσ-PV extension forφ(y) = Ay with fundamental solution matrix Y ∈ GLn(L), then

R := K {Y ,1/det(Y )}σ ⊂ L is a σ-PV ring for φ(y) = Ay .

(ii) Conversely, if R is aσ-PV ring forφ(y) = Ay with Rφ = Kφ, then Quot(R) is aσ-PV extension

for φ(y) = Ay .

Proof. Clearly, R := K {Y ,1/det(Y )}σ is a φ-pseudo domain. So, we only have to show that R is

φ-simple. We know from Lemma 2.20 that

Ld := K
(
Y ,σ(Y ), . . . ,σd (Y )

)⊂ L

is a PV extension of (K ,φ) for every d ≥ 0. It, thus, follows from Corollary 2.15 that

Rd := K
[
Y ,σ(Y ), . . . ,σd (Y ),1

/(
det(Y ) · . . . ·det(σd (Y ))

)]⊂ R

is a PV ring over K . So, Rd is φ-simple for every d ≥ 0 and R =⋃
d≥0 Rd . Thus, R must be φ-simple.

Now assume that R is a σ-PV ring with Rφ = Kφ. From Lemma 2.11, we know that Quot(R) is

a φ-pseudo σ-field and, by Lemma 2.7, we have Quot(R)φ = Rφ = Kφ.

2.4 Existence of σ-PV extensions

In this section, we will establish the existence of σ-PV rings (Theorem 2.28) and σ-PV extensions

(Corollary 2.29) for a given linear φ-equation φ(y) = Ay under rather mild conditions on the
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base φσ-field K . The key idea for the existence proof is the prolongation construction from [61,

Lemma 2.16, p. 1392]. The differential analogue of this construction has also been recently used

to establish the existence of ∂-parameterized PV extensions for linear differential or difference

equations provided that the constants are algebraically closed (see [63, 22]). A more elaborate

discussion of the existence of differentially parameterized PV extensions for linear differential

equations (including the case of several differential parameters) can be found in [28].

Remark 2.22. The idea of the prolongation construction is easy to explain. Indeed, let K be a φσ-

field and A ∈ GLn(K ). We would like to construct a σ-PV ring or a σ-PV extension for φ(y) = Ay .

Let

S := K {X ,1/det(X )}σ

be the generic solution ring for φ(y) = Ay . By this, we mean that X is the n × n-matrix of

σ-indeterminates, and the action of φ is determined by φ(X ) = AX . Finding a σ-PV ring for

φ(y) = Ay is equivalent to finding a φσ-ideal m of S that is φ-pseudo prime and φ-maximal. The

existence of a φ-maximal ideal in S is, of course, guaranteed by Zorn’s lemma, but it is unclear if

we can find a φ-maximal ideal that is additionally a σ-ideal and φ-pseudo prime.

If L is a σ-PV extension for φ(y) = Ay with fundamental solution matrix Y ∈ GLn(L), then Rd

is a PV ring over K for φ(y) = Ad y , as we have already seen in Lemma 2.20 and Proposition 2.21.

Thus, we should better find a φσ-ideal m of S such that

md :=m∩Sd , Sd := K
[

X , . . . ,σd (X ),1/det
(
X · . . . ·σd (X )

)]⊂ S

is φ-maximal in Sd for every d ≥ 0. Note that not every φ-maximal φ-ideal of Sd is of the form md

for some φ-maximal φσ-ideal m of S. A necessary condition is given by

σ(md ∩Sd−1) ⊂md .

However, if we assume that we have already constructed a φ-maximal φ-ideal md of Sd that

satisfies this condition, we can try to construct md+1 by a choosing a φ-maximal φ-ideal of Sd+1

that contains md and σ(md ). Then we could define m as the union of all the md ’s.

There are two obstructions to this procedure that we will have to overcome:

(i) The ideal of Sd+1 generated by md andσ(md ) might contain 1. In this case, the construction

would not apply.
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(ii) The union
⋃

md is a φ-maximal φσ-ideal, but, a priori, it is unclear why it should be a φ-

pseudo prime ideal.

The following Lemma 2.24 is the crucial ingredient to overcome the first difficulty. The second

difficulty will be resolved in Lemma 2.26, which will eventually provide a bound for the period of

md .

To prove Lemma 2.24 we need an algebraic version of Chevalley’s theorem on constructible

sets (cf. [32, Theorem 1.8.4, p. 239]).

Lemma 2.23. Let K be a field and R ⊂ S an inclusion of finitely generated K -algebras. Then there

exists an element r ∈ R that is not contained in any minimal prime ideal of R and has the following

property: for every prime ideal q of R with r ∉ q, there exists a prime ideal q′ of S with q′∩R = q.

Proof. If R is an integral domain, this follows from [9, Corollaire 3, Chapitre V, §3.1, p. 58]. The

general case can be reduced to the case in which R is an integral domain as follows. Let p1, . . . ,pn

denote the minimal prime ideals of R. By [8, Proposition 16, Chapitre II, §2.6, p. 96], there exist

minimal prime ideals p′1, . . . ,p′n of S with p′i ∩R = pi for i = 1, . . . ,n. For i = 1, . . . ,n, consider the

inclusion of integral domains R/pi ,→ S/p′i , and let ri ∈ R be such that the image ri of ri in R/pi is

non–zero and has the property that, for every prime ideal q of R/pi with ri ∉ q, there exists a prime

ideal q′ of S/p′i with

q′∩ (R/pi ) = q.

For i = 1, . . . ,n, let

ei ∈ (p1 ∩ . . .∩pi−1 ∩pi+1 ∩ . . .∩pn)àpi

and set

r = e1r1 +·· ·+enrn .

Since r = ei ri ∈ R/pi , we see that r does not belong to any minimal prime ideal of R. Let q be a

prime ideal of R with r ∉ q. Then there exists an i ∈ {1, . . . ,n} such that pi ⊂ q. Since the image of q

in R/pi does not contain ri ∈ R/pi , it follows from the construction of ri that there exists a prime

ideal q′ of S with q′∩S = R.

Lemma 2.24. Let K be a field and let R be a finitely generated K -algebra. For d ≥ 0, let R0, . . . ,Rd+1

denote isomorphic copies of R. Let a⊂ R0⊗·· ·⊗Rd and b⊂ R1⊗·· ·⊗Rd+1 be ideals not containing

1. (The tensors are understood to be over K .) Assume that

a∩ (R1 ⊗·· ·⊗Rd ) = b∩ (R1 ⊗·· ·⊗Rd ). (2.4)
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Then the ideal of R0 ⊗·· ·⊗Rd+1 generated by a and b does not contain 1.

Proof. Let c= a∩ (R1 ⊗·· ·⊗Rd ) = b∩ (R1 ⊗·· ·⊗Rd ) ⊂ R1 ⊗·· ·⊗Rd and consider the inclusions

B := (R1 ⊗·· ·⊗Rd )/c ,→ (R0 ⊗·· ·⊗Rd )/a ,→ ((R0 ⊗·· ·⊗Rd )/a)⊗Rd+1 = (R0 ⊗·· ·⊗Rd+1)/(a).

By Lemma 2.23, there exists an element ra ∈ B not contained in any minimal prime ideal of B and

such that, for every prime ideal q of B with r ∉ q, there exists a prime ideal q′ of (R0 ⊗·· ·⊗Rd )/(a)

with q′∩B = q.

Let rb ∈ B be defined similarly. Since rarb does not belong to any minimal prime ideal of

B , there exists a prime ideal q of B with ra,rb ∉ q. Then, by construction of ra and rb, there exist

prime ideals

q′a ⊂ (R0 ⊗·· ·⊗Rd+1)/(a) and q′b ⊂ (R0 ⊗·· ·⊗Rd+1)/(b)

such that

q′a∩B = q= q′b∩B.

Then q′a and q′
b

correspond to prime ideals qa and qb of R0 ⊗·· ·⊗Rd+1 with

qa∩ (R1 ⊗·· ·⊗Rd ) = qb∩ (R1 ⊗·· ·⊗Rd ) =: d.

Denoting the residue field of a prime ideal p of a ring S by k(p) = Quot(S/p), we have k(d) ⊂ k(qa)

and k(d) ⊂ k(qb). Let L be a field extension of k(d) containing k(qa) and k(qb) and let

ψ : R0 ⊗·· ·⊗Rd+1 → L

be the morphism of K -algebras that extends the canonical map

R1 ⊗·· ·⊗Rd → k(d) ⊂ L

by sending R0 and Rd+1 to their canonical images in k(qa) and k(qb), respectively. Since a⊂ qa and

b ⊂ qb, the kernel of ψ is a prime ideal of R0 ⊗ ·· ·⊗Rd+1, which contains a and b. Therefore, the

ideal generated by a and b does not contain 1.
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For the convenience of the readers who prefer the geometric language, we have included a

geometric proof of Lemma 2.24 below. This proof is more intuitive than the algebraic proof given

above, but the algebraic proof is more accessible.

Proof. We set Xi := Spec(Ri ) for i = 0, . . . ,d + 1. Let Y and Z denote the closed subschemes of

X0 ×·· ·×Xd and X1 ×·· ·×Xd+1 defined by a and b, respectively. Then the ideal a′ generated by a

in R0 ⊗·· ·⊗Rd+1 defines the closed subscheme

Y ×Xd+1 ⊂ X0 ×·· ·×Xd+1.

Similarly, the ideal b′ generated by b in R0 ⊗·· ·⊗Rd+1 defines the closed subscheme

X0 ×Z ⊂ X0 ×·· ·×Xd+1.

Since the sum of the ideals a′ and b′ corresponds to the intersection of the closed subschemes

Y ×Xd+1 and X0 ×Z , the statement of the lemma is equivalent to

(Y ×Xd+1)∩ (X0 ×Z ) ⊂ X0 ×·· ·×Xd+1

being non-empty. Let

π1d : X0 ×·· ·×Xd+1 → X1 ×·· ·×Xd , (x0, . . . , xd+1) 7→ (x1, . . . , xd ),

denote the projection onto the factors “in the middle”. The ideal

a∩ (R1 ⊗·· ·⊗Rd )

of R1 ⊗ ·· · ⊗Rd corresponds to the Zariski closure π1d (Y ×Xd+1) ⊂ X1 × ·· · × Xd ; similarly for b.

Assumption (2.4), thus, means that

π1d (Y ×Xd+1) =π1d (X0 ×Z ) =: W.

By Chevalley’s theorem, the image of a morphism of schemes of finite type over a field contains a

dense open subset of its closure. Thus, there exist open dense subsets U ,V ⊂W with

U ⊂π1d (Y ×Xd+1) and V ⊂π1d (X0 ×Z ).
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Then U ∩V is also dense and open in W . In particular,

U ∩V ⊂π1d (Y ×Xd+1)∩π1d (X0 ×Z )

is non-empty. But, if x = (x0, . . . , xd+1) ∈ Y ×Xd+1 and x ′ = (
x ′

0, . . . , x ′
d+1

) ∈ X0 ×Z satisfy

(x1, . . . , xd ) =π1d (x) =π1d (x ′) = (
x ′

1, . . . , x ′
d

)
,

then
(
x0, x1, . . . , xd , x ′

d+1

) ∈ (Y ×Xd+1)∩ (X0 ×Z ).

If R is a φ-ring, we denote the ring of its φ-periodic elements by

Rφ∞ = {
r ∈ R | ∃ m ≥ 1 such that φm(r ) = r

}
.

It is a φ-subring of R.

Remark 2.25. If K is a φ-field, then Kφ∞
is the relative algebraic closure of Kφ in K [43,

Theorem 2.1.12, p. 114]. In particular, if Kφ is algebraically closed, then Kφ∞ = Kφ.

Analogues of the generic solution field U in the following lemma appear in [13, Section 4]

and [50]. The relation between the periodic elements in a universal solution field and the period

of a PV ring, which we shall eventually use to bound the period of md , has been found in [13].

In the language of [13], the following lemma essentially says that the m-invariant of the systems

φ(y) = Ad y is bounded (as a function of d ≥ 0).

Lemma 2.26. Let K be a φσ-field such that Kφ∞ = Kφ. Let A ∈ GLn(K ) and let X denote the

n ×n-matrix of σ-indeterminates over K . Set

U = K 〈X 〉σ(= Quot(K {Xi j |1 ≤ i , j ≤ n}σ))

and define a φσ-structure on U by

φ(σi (X )) =σi (A)σi (X ), i Ê 0.

Then Uφ∞
is a finite field extension of Uφ.

Proof. We have a tower of φσ-fields KUφ ⊂ KUφ∞ ⊂ U . By construction, U is a finitely σ-

generatedσ-field extension of KUφ. Since an intermediateσ-field of a finitelyσ-generatedσ-field
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extension is itself finitelyσ-generated ([43, Theorem 4.4.1, p. 292]), it follows that KUφ∞
is finitely

σ-generated over KUφ. Hence, we can find

a1, . . . , am ∈Uφ∞

that σ-generate KUφ∞
as a σ-field extension of KUφ. We claim that

Uφ∞ =Uφ〈a1, . . . , am〉σ.

The inclusion “⊃” is clear. So, let a ∈Uφ∞
. Let (bi )i∈I be a Kφ-basis of Uφ〈a1, . . . , am〉σ. As

a ∈ KUφ∞ = KUφ〈a1, . . . , am〉σ,

we can write

a =
∑
λi ·bi∑
µi ·bi

with λi ,µi ∈ K . Multiplying by the denominator yields

∑
µi ·a ·bi =

∑
λi ·bi . (2.5)

We can choose an integer e ≥ 1 such that a,bi ∈ Uφe
whenever λi or µi is non-zero. Then, (2.5)

signifies that the family (
a ·bi ,b j

)
i , j∈I in Uφe

is K -linearly dependent. Since K is linearly disjoint from Uφe
over Kφe = Kφ (Lemma 2.10), we

can find a non-trivial relation ∑
µ′

i ·a ·bi =
∑
λ′

i ·bi (2.6)

with µ′
i ,λ′

i ∈ Kφ. Suppose that ∑
µ′

i bi = 0.

Then also
∑
λ′

i bi = 0. Since the bi ’s are Kφ-linearly independent, this is only possible if relation

(2.6) is trivial. Therefore, we can divide by the denominator to find that

a =
∑
λ′

i ·bi∑
µ′

i ·bi
∈Uφ〈a1, . . . , am〉σ,
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as desired. Now let e ≥ 1 be such that a1, . . . , am ∈Uφe
. Then it follows from

Uφ∞ =Uφ〈a1, . . . , am〉σ

that Uφ∞ =Uφe =: F . Let g =φ|F and

G = {
g 0, g , . . . , g e−1}⊂ Aut

(
F |Uφ

)
.

Since F G =Uφ, we have
[
F : Uφ

]= |G| [42, Chapter VI, Theorem 1.8]. Since |G| ≤ e, we, therefore,

obtain
[
Uφ∞

: Uφ
]≤ e.

Corollary 2.27. Let K be a φσ-field such that Kφ∞ = Kφ. Let A ∈ GLn(K ). For d ≥ 0, let Rd be a PV

ring for φ(y) = Ad y , where

Ad =


A 0 · · · 0

0 σ(A) · · · 0
...

. . .
...

0 · · · 0 σd (A)

 ∈ GLn(d+1)(K ).

Then the sequence (period(Rd ))d≥0 is bounded.

Proof. Let U = K 〈X 〉σ as in Lemma 2.26. We will show that, for d ≥ 0,

period(Rd ) ≤ [
Uφ∞

: Uφ
]
.

Let Uφ denote an algebraic closure of Uφ, considered as a constant φ-ring. We know that K is a

regular field extension of Kφ. (By assumption, Kφ = Kφ∞
is relatively algebraically closed in K (see

Remark 2.25) and K is always separable over Kφ [60, Corollary 1.4.16, p. 16]). Therefore, K ⊗Kφ Uφ

is an integral domain. Moreover, K ⊗Kφ Uφ is φ-simple by Lemma 2.9. It follows that

K ′ := Quot
(
K ⊗Kφ Uφ

)
is a φ-field with

K ′φ = (
K ⊗Kφ Uφ

)φ =Uφ
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(by Lemma 2.7) algebraically closed. Indeed, let {b j } be a basis of Uφ over Kφ and, for some m,

c =
m∑

i=1
ai ⊗bi ∈

(
K ⊗Kφ Uφ

)φ.

Then

0 =φ(c)− c =
m∑

i=1
(φ(ai )−ai )⊗bi ,

which implies that, for all i , 1 ≤ i ≤ m, ai ∈ Kφ. It is clear from the definition of U that

KUφ
(
X , . . . ,σd (X )

)⊂U

is a PV extension of KUφ for the linear φ-equation φ(y) = Ad y . It follows from Corollary 2.15 that

Sd := KUφ
[

X , . . . ,σd (X ),1/det
(
X · . . . ·σd (X )

)]
is a PV ring over KUφ. Then S′

d := Sd ⊗Uφ Uφ is a PV ring over

KUφ⊗Uφ Uφ = Quot
(
K ⊗Kφ Uφ

)⊗Uφ Uφ = Quot
(
K ⊗Kφ Uφ

)= K ′

by Lemma 2.9. Note that Sd ⊂U is an integral domain and that

period
(
S′

d

)≤ [
Uφ∞

: Uφ
]

as Uφ∞
is the relative algebraic closure of Uφ in U . As Rd is a PV ring for φ(y) = Ad y over K ,

Rd ⊗
R
φ

d
Uφ is φ-simple by Lemma 2.9. (Note that Rφ

d can be embedded in Uφ by Proposition 2.14.)

The canonical map

K ⊗Kφ Uφ→ Rd ⊗
R
φ

d
Uφ

is injective, because K ⊗Kφ Uφ is φ-simple. Localizing this inclusion at the non-zero divisors of

K ⊗Kφ Uφ, we obtain a PV ring R ′
d over K ′. Since K ′φ =Uφ is algebraically closed, R ′

d and S′
d are

isomorphic. It follows that

period(Rd ) ≤ period
(
R ′

d

)= period
(
S′

d

)≤ [
Uφ∞

: Uφ
]
.
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We are now prepared to establish the main existence theorem.

Theorem 2.28. Let K be a φσ-field such that Kφ∞ = Kφ, σ : Kφ → Kφ is an automorphism, and

A ∈ GLn(K ). Then there exists a σ-PV ring R for φ(y) = Ay such that Rφ is an algebraic field

extension of Kφ.

Proof. We first assume that σ : K → K is an automorphism. Let X be the n × n-matrix of σ-

indeterminates over K . We denote the localization of the σ-polynomial ring K {Xi j | 1 ≤ i , j ≤ n}
σ

at the multiplicatively closed subset generated by det(X ),σ(det(X )), . . . by S. This is naturally a

K -σ-algebra. We define a φσ-structure on S by setting

φ(X ) = AX , φ(σ(X )) =σ(A)σ(X ), φ
(
σ2(X )

)=σ2(A)σ2(X ), . . .

For 0 ≤ i ≤ j , we also define the following K -φ-subalgebras of S:

Si , j = K
[
σi (X ), 1

σi (det(X ))
, . . . ,σ j (X ), 1

σ j (det(X ))

]
= K

[
σi (X ), . . . ,σ j (X ), 1

det(σi (X )·...·σ j (X ))

]
⊂ S,

S j : = S0, j .

We will show by induction on d ≥ 0 that there exists a sequence (md )d≥0 with the following

properties:

(i) md is a φ-maximal φ-ideal of Sd ,

(ii) md ∩Sd−1 =md−1, and

(iii) σ−1(md ) =md−1, where σ : Sd−1 → Sd .

For d = 0, we can choose m0 to be any φ-maximal φ-ideal of S0 = K [X ,1/det(X )]. Assume that a

sequence m0, . . . ,md with the desired properties has been already constructed. We will construct

md+1. Let a denote the ideal of Sd+1 generated by md and σ(md ). The crucial step now is to show

that 1 ∉ a. For this, we would like to apply Lemma 2.24. Note that Sd+1 is the d + 2-fold tensor

product of S0 with itself. Since σ is an automorphism on K ,

σ : Sd → S1,d+1

is an isomorphism and so σ(md ) is an ideal of S1,d+1. We need to verify that

md ∩S1,d =σ(md )∩S1,d .
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Let f ∈md ∩S1,d . Then f is of the form f =σ(g ) for some g ∈ Sd−1. Since f ∈md , we have

g ∈σ−1(md ) =md−1 ⊂md .

Thus, f ∈σ(md ). Now let f ∈σ(md )∩S1,d . Then f is of the form f =σ(g ) with

g ∈md ∩Sd−1 =md−1.

So f = σ(g ) ∈ md . We can thus apply Lemma 2.24 to conclude that 1 ∉ a. By construction, a is a

φ-ideal of Sd+1. Let md+1 be a φ-maximal φ-ideal of Sd+1 containing a. Then

md+1 ∩Sd and σ−1(md+1)

are φ-ideals of Sd containing md . As md is φ-maximal in Sd , it follows that

md+1 ∩Sd =md and σ−1(md+1) =md .

This concludes the inductive step. Now that we have constructed the sequence (md )d≥0, we can

define

m := ⋃
d≥0

md .

This is aφσ-ideal of S =⋃
d≥0 Sd . Since the md ’s areφ-maximal, it follows that m is alsoφ-maximal.

The next crucial step is to show that m is φ-pseudo prime.

In general, aφ-maximalφ-ideal need not beφ-pseudo prime. However, aφ-maximalφ-ideal

that has only finitely many minimal prime ideals is φ-pseudo prime [60, Proposition 1.1.2, p. 2].

In particular, in a Noetherian φ-ring, every φ-maximal φ-ideal is φ-pseudo prime. So the md ’s are

φ-pseudo prime ideals.

For any prime ideal q⊂ Sd that is minimal above md , there exists a prime ideal q′ ⊂ Sd+1 that

is minimal above md+1 such that q′∩Sd = q by [8, Proposition 16, §2, Chapter II]. Therefore, the

sequence

(period(md ))d≥0

is non-decreasing. Since Rd := Sd /md is a PV ring for φ(y) = Ad y , it follows from Corollary 2.27

that there exists an integer b ≥ 1 such that period(md ) = b for all sufficiently large d . This shows

that there are precisely b prime ideals minimal above m.
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So, m isφ-pseudo prime and R := S/m is aφ-pseudo domain. It is clear from the construction

that R is a σ-PV ring for φ(y) = Ay over K . It remains to see that Rφ is algebraic over Kφ. But R is

the union of the Rd ’s and the Rd ’s are PV rings over K , so Rφ

d is algebraic over Kφ (Lemma 2.13)

and, consequently, Rφ is algebraic over Kφ. This concludes the proof for the case that σ : K → K

is surjective.

Now let σ : K → K be arbitrary. We consider the inversive closure K ∗ of K with respect to σ

(see [43, Definition 2.1.6, p. 109].) For every a ∈ K ∗, there exists an integer l ≥ 1 such thatσl (a) ∈ K .

We naturally extend φ from K to K ∗ by

φ(a) =σ−l (φ(
σl (a)

))
.

Suppose that a ∈ K ∗φd
. Then

a =φd (a) =σ−l (φd (
σl (a)

))
and so

σl (a) =φd (
σl (a)

)
,

that is, σl (a) ∈ Kφd = Kφ. By the hypothesis, Kφ is σ-inversive. Therefore, a ∈ Kφ. It follows that

K ∗φ∞ = Kφ = K ∗φ.

By the first part of the proof, there exists a σ-PV ring R∗ over K ∗ for φ(y) = Ay with R∗φ algebraic

over Kφ. Let Y ∈ GLn(R∗) denote a fundamental matrix. We claim that

R := K {Y ,1/det(Y )}σ ⊂ R∗

is a σ-PV ring for φ(y) = Ay over K with Rφ algebraic over Kφ. As R∗φ is algebraic over K ∗φ = Kφ,

Rφ is algebraic over Kφ. So it only remains to show that R is φ-simple. For this, it suffices to show

that

Rd := K
[
Y ,1/det(Y ), . . . ,σd (Y ),1/det

(
σd (Y )

)]
is φ-simple for every d ≥ 0. Let L∗ denote the total quotient ring of R∗ and Ld the total quotient

ring of Rd . Since R∗ is φ-simple, we have

L∗φ = R∗φ
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by Lemma 2.7. As Ld ⊂ L∗, it follows that Lφd is algebraic over Kφ. By Proposition 2.14, this implies

that Rd is φ-simple.

Corollary 2.29 (Existence of σ-PV extensions). Let K be a φσ-field and A ∈ GLn(K ). Assume

that Kφ is an algebraically closed inversive σ-field. Then there exists a σ-PV extension for φ(y) =
Ay .

Proof. By Remark 2.25, if Kφ is algebraically closed, then Kφ∞ = Kφ. The statement now follows

from Theorem 2.28 and Proposition 2.21.

2.5 Existence of σ-PV extensions for some specific base fields

The purpose of this section is to establish the existence of σ-PV extensions over important φσ-

fields like K =C(t , z), where

φ( f (t , z)) = f (t , z +1) and σ( f (t , z)) = f (qt , z) or σ( f (t , z)) = f (t +α, z)

for some q,α ∈C×. Note that the general existence result forσ-PV extensions (Corollary 2.29) does

not apply because Kφ =C(t ) is not algebraically closed.

We will show quite generally that, for every linear φ-equation φ(y) = Ay over K = k(z), there

exists a σ-PV extension, where k is an arbitrary σ-field of characteristic zero. Moreover, we give

a very concrete recipe how σ-PV rings over such K can be constructed inside rings of sequences.

Cf. [58, Proposition 4.1, p. 45].

Let k be a field. The ring Seqk of sequences in k (cf. [58, Example 1.3, p. 4]) consists of all

sequences

a = (a(0), a(1), . . .), a(0), a(1), . . . ∈ k,

and two sequences are identified if they agree starting from some index. The ring structure of

Seqk is given by the componentwise addition and multiplication. By setting

φ((a(0), a(1), a(2), . . .)) = (a(1), a(2), . . .),

we turn Seqk into an inversive φ-ring. If k is a σ-field, then Seqk naturally becomes a φσ-ring by

setting

σ((a(0), a(1), . . .)) = (σ(a(0)),σ(a(1)), . . .).
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Note that Seqφk = k. We consider k(z), the field of rational function in one variable over k, as φσ-

field by setting

φ( f (z)) = f (z +1), f ∈ k(z), and σ(z) = z.

If chark = 0, we can define a φσ-embedding

k(z) → Seqk by f 7→ ( f (0), f (1), . . .).

The expression f (i ) is well-defined for i À 0, as the denominator of f ∈ k(z) has only finitely

many zeros.

Proposition 2.30. Let k be a σ-field of characteristic zero and consider K = k(z) as a φσ-field via

φ( f (z)) = f (z +1) and σ(z) = z.

Let A ∈ GLn(K ) and i0 ≥ 0 be an integer such that A(i ) is well-defined and det(A(i )) 6= 0 for all

i ≥ i0. Define Y ∈ GLn(Seqk ) by

Y (i0) = id and Y (i ) = A(i −1)Y (i −1), i > i0.

Then Y is a fundamental solution matrix for φ(y) = Ay and

K {Y ,1/det(Y )}σ ⊂ Seqk

is a σ-PV ring for φ(y) = Ay . Moreover, there exists a σ-PV extension for φ(y) = Ay .

Proof. It is clear that Y is a fundamental solution matrix and that

R := K {Y ,1/det(Y )}σ

is a φσ-ring. It remains to see that R is a φ-simple φ-pseudo domain. To see that R is φ-simple, it

suffices to show that

Rd := K
[
Y , . . . ,σd (Y ),1/det

(
Y · · ·σd (Y )

)]
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is φ-simple for every d ≥ 0. Note that

Yd =


Y 0 · · · 0

0 σ(Y ) · · · 0
...

. . .
...

0 · · · 0 σd (Y )

 ∈ GLn(d+1)(R).

is a fundamental solution matrix for φ(y) = Ad y (cf. Lemma 2.20). By [64, Proposition 2.4, p. 4],

there exists a PV ring Sd for φ(y) = Ad y over K inside Seqk . As Seqφk = k and two fundamental

solution matrices for the same equation only differ by multiplication by a matrix with constant

entries, it follows that Rd = Sd . In particular, Rd is φ-simple. As in the proof of Theorem 2.28, it

follows from Corollary 2.27 that R is a φ-pseudo domain.

As Seqφk = k = Kφ, Proposition 2.21 implies that Quot(R) is a σ-PV extension for φ(y) =
Ay .

Remark 2.31. Let Y ∈ GLn(Seqk ) be defined as in Proposition 2.30. It is unclear whether or not

K 〈Y 〉σ ⊂ Seqk (see (2.2)) is a σ-PV extension for φ(y) = Ay . The difficulty here is to know that a

non-zero divisor of K {Y ,1/det(Y )}σ ⊂ Seqk is a unit in Seqk . This problem is closely related to the

generalization of the Skolem–Mahler–Lech theorem to rational function coefficients (see [64]).

It follows from [64, Corollary 3.4, p. 8] that K 〈Y 〉σ ⊂ Seqk is a σ-PV extension for φ(y) = Ay if

A ∈ GLn(k[z]).

2.6 Uniqueness

In this section, we will establish the uniqueness of σ-PV rings and σ-PV extensions (for a given

equation φ(y) = Ay). In other words, we prove a result analogous to the classical uniqueness

theorem (Theorem 2.16). The main difficulty is to understand what the σ-analogue of the

algebraic closure in the classical case is. There is a notion of a difference closed difference field

that has been used and studied extensively by model theorists (see, for example, [11, 12]).

Definition 2.32. Aσ-field k is calledσ-closed if for every finitelyσ-generated k-σ-algebra R which

is a σ-domain, there exists a k-σ-morphism R → k.

In contrast to differential algebra, there appears to be no satisfactory notion of a σ-closure

of a σ-field. Kolchin preferred the term “constrainedly closed” to “differentially closed” because

a differentially closed differential field can have proper differential algebraic extensions. The
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following definition can be seen as an adaptation of Kolchin’s notion of constrained extensions

of differential fields ([41]) to difference algebra.

Definition 2.33. Let L|K be an extension of σ-pseudo fields. We say that L is constrained over K

if, for every finite tuple a from L, there exists a non-zero divisor b ∈ L such that (0) is the only

σ-pseudo prime ideal of K {a,1/b}σ.

The basic properties of constrained extensions of σ-pseudo fields have been established

in [61, Section 2.1]. The relation to σ-closed σ-fields is given by the fact that a σ-closed σ-field

does not have proper constrained σ-field extensions. More generally, every finitely σ-generated

σ-pseudo field extension of a σ-closed σ-field k is of the form k ⊕ ·· · ⊕ k (see [61, Example 2.8,

p. 1388]).

The following theorem is the crucial tool from difference algebra for proving our uniqueness

result. It can be seen as a difference analogue of a theorem of Chevalley. For a prime ideal q in a

σ-ring R and r ∈ R, we write

r ∉σ q

if σd (r ) ∉ q for every d ≥ 0.

Theorem 2.34. Let R ⊂ S be an inclusion of σ-rings such that S is finitely σ-generated over R.

Assume that R is a σ-domain and (0) ⊂ S is a finite intersection of σ-pseudo prime ideals. Then

there exist 0 6= r ∈ R and an integer l ≥ 1 such that, for every d ≥ 1 and σd -prime ideal q of R with

r ∉σ q, there exists a σl d -prime ideal q′ of S with q′∩R = q.

Proof. This is a slight generalization of [61, Theorem 1.15, p. 1384], where it is assumed that S is

a σ-domain. There exists a minimal prime ideal q̂ of S with q̂∩R = (0) [8, Chapter II, §2, Sec. 6,

Proposition 16, p. 74]. By assumption, q̂ is a σd̂ -prime ideal for some d̂ ≥ 1.

We can now apply [61, Theorem 1.15, p. 1384] to the inclusion R ⊂ S/q̂ of σd̂ -domains to

obtain 0 6= r ∈ R and an integer l̂ ≥ 1 such that, for every σdd̂ -prime ideal q of R with r ∉
σd̂ q, there

exists a σl̂ d d̂ -prime ideal q′ of S/q̂ with q′∩R = q. Set l := d̂ l̂ . Observing that a σd -prime ideal is a

σdd̂ -prime ideal and that r ∉σ q implies r ∉
σd̂ q yields the claim of the theorem.

We will need a few more preparatory results.

Lemma 2.35. Let k be an inversive σ-field and R a k-σ-algebra with σ : R → R injective. If

(λi ) is a family of k-linearly independent elements from R, then the family (σ(λi )) is k-linearly

independent as well.
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Proof. If
∑

aiσ(λi ) = 0 with ai ∈ k, then, as k is inversive, we can find bi ∈ k with σ(bi ) = ai .

We have σ(
∑

biλi ) = 0, and this implies
∑

biλi = 0. Therefore, the bi ’s and also the ai ’s are all

zeroes.

Lemma 2.36. Let k be an inversive σ-field and R a k-σ-algebra with σ : R → R injective. Then

σ : R ⊗k K → R ⊗k K is injective for every σ-field extension K of k. Moreover, if a is a reflexive

σ-ideal of R (i.e., σ−1(a) = a), then a⊗k K is a reflexive σ-ideal of R ⊗k K .

Proof. Let (λi ) be a k-basis of K and s =∑
ri ⊗λi ∈ R ⊗k K with σ(s) = 0. Then

∑
σ(ri )⊗σ(λi ) = 0

implies σ(ri ) = 0, because the family (σ(λi )) is k-linearly independent by Lemma 2.35. Since σ is

injective on R, s = 0. The latter claim of the lemma follows by applying the above result to R/a.

Proposition 2.37. Let K be a φσ-field such that Kφ∞ = Kφ and σ : Kφ→ Kφ is surjective. Let R be

a φ-simple K -φσ-algebra that is a φ-pseudo domain and finitely σ-generated over K . Then Rφ is

a finitely σ-generated constrained σ-field extension of Kφ.

Proof. We set k = Kφ. The assumption Kφ∞ = Kφ means that k is relatively algebraically closed

in K . We also know that K is separable over k [60, Corollary 1.4.16, p. 16]. Thus, K is a regular field

extension of k. Let c be a finite tuple with coordinates in Rφ. Then

K {c}σ = K ⊗k k{c}σ

is an integral domain, because k{c}σ is contained in the field Rφ and K is regular over k. Moreover,

(0) ⊂ R is a finite intersection of σ-pseudo prime ideals of R by Lemma 2.11. We can thus apply

Theorem 2.34 to the inclusion K {c}σ ⊂ R to find 0 6= r ∈ K {c}σ and an integer l ≥ 1 such that every

σd -prime ideal q′ of K {c}σ with r ∉σ q′ lifts to a σld -prime ideal of R. We may write

r =λ1 ⊗a1 +·· ·+λm ⊗am ∈ K ⊗k k{c}σ = K {c}σ

with the λi ’s linearly independent over k. Let b ∈ k{c}σ denote one of the non-zero ai ’s. We will

show that k{c,1/b}σ has no σ-pseudo prime ideals other than (0). Let q be a σd -prime ideal of

k{c}σ with b ∉σ q (for some d ≥ 1). We have to show that q= (0).

Since K is a regular field extension of k, q′ := K⊗q is a prime ideal of K⊗k k{c}σ. It follows from

Lemma 2.36 that q′ is a σd -prime ideal of K ⊗k k{c}σ. We claim that r ∉σ q′. Suppose the contrary.

Then σn(r ) ∈ q′ for some n ≥ 1. By Lemma 2.35, the family (σn(λi )) is linearly independent over
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k. By considering the image of σn(r ) in

(K ⊗k k{c}σ)/q′ = K ⊗k (k{c}σ/q),

we see that this implies σn(b) ∈ q. This contradicts b ∉σ q. Therefore, r ∉σ q′. By the construction

of r , this implies the existence of a σld -prime ideal q′′ of R with

q′′∩K {c}σ = q′.

In particular, q′′ ⊃ qR. But, since the elements of q are φ-constants, qR is a φ-ideal. Since R is

φ-simple, we must have qR = (0). So, also q= (0) as desired.

It remains to see that Rφ is finitely generated as a σ-field extension of k = Kφ. Let q be a

minimal prime ideal of R. Then there exists d ≥ 1 such that q is φd -prime and σd -prime (Lemma

2.11). Since R is finitely generated as K -σ-algebra, we see that R/q is finitely generated as K -σd -

algebra. So, Quot(R/q) is finitely generated as σd -field extension of K . As k = Kφd
by assumption,

it follows from Lemma 2.9 that K ⊗k Rφ is φd -simple. Therefore, the canonical map

K ⊗k Rφ = K ·Rφ→ Quot(R/q)

is injective, and we can think of K Rφ = Quot
(
K · Rφ

)
as a σd -subfield of Quot(R/q). By [43,

Theorem 4.4.1, p. 292], every intermediate difference field of a finitely generated difference field

extension is finitely generated. Therefore, K Rφ is finitely generated as aσd -field extension of K . A

fortiori, K Rφ is finitely generated as σ-field extension of K . We can, therefore, find a1, . . . , am ∈ Rφ

such that

K Rφ = K 〈a1, . . . , am〉σ.

So,

Quot
(
K ⊗k Rφ

)= Quot(K ⊗k k〈a1, . . . , am〉σ).

As K ⊗k Rφ and K ⊗k Kφ〈a1, . . . , am〉σ are φ-simple (Lemma 2.9), it follows from Lemma 2.7 that

Rφ = Quot
(
K ⊗k Rφ

)φ = Quot(K ⊗k k〈a1, . . . , am〉σ)φ = k〈a1, . . . , am〉σ.

Corollary 2.38. Let K be a φσ-field and R a σ-PV ring over K with Kφ being a σ-closed σ-field.

Then Rφ = Kφ.
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Proof. Since a σ-closed σ-field is algebraically closed and inversive, the hypotheses of Proposi-

tion 2.37 are met, and it follows that Rφ is a constrainedσ-field extension of k. By [61, Example 2.8,

p. 1388], a σ-closed σ-field cannot have a proper constrained σ-field extension.

Lemma 2.39. Let K be aφσ-field and R, R ′ σ-PV rings over K . Then there exists aσ-pseudo prime

ideal in R ⊗K R ′.

Proof. We begin the proof with a general observation on φ-pseudo σ-fields. Let L be a φ-pseudo

σ-field. Then L need not be a σ-pseudo field. However, if we write

L = e1 ·L⊕·· ·⊕et ·L

as after Definition 2.2, then σ-permutes the ei ’s and it follows that L is a finite direct sum (or

product) of σ-pseudo fields (cf. Lemma 2.11.) In other words, there are idempotent elements

f1, . . . , fm ∈ L such that

L = f1 ·L⊕·· ·⊕ fm ·L,

with the fi ·L’s σ-pseudo fields. Set L = Quot(R) and L′ := Quot(R ′). It suffices to show that there

exists a σ-pseudo prime ideal in L⊗K L′, because a σ-pseudo prime ideal of L⊗K L′ contracts to a

σ-pseudo prime ideal of R ⊗K R ′. As above, we can write

L = f1 ·L⊕·· ·⊕ fm ·L and L′ = f ′
1 ·L′⊕·· ·⊕ f ′

m′ ·L′

with the fi ·L’s and f ′
j ·L′’s σ-pseudo fields. Then

L⊗K L′ =⊕
i , j

fi ·L⊗K f ′
j ·L′.

Note that the fi · L’s are finitely σ-generated as σ-pseudo field extensions of K . Indeed, if Y ∈
GLn(L) is a suitable fundamental solution matrix, then fi · L = K 〈 fi ·Y 〉σ. Since f1 · L is finitely

σ-generated over K , it follows from [61, Theorem 1.2, p. 1375] that there exists a σ-pseudo prime

ideal p in f1 ·L⊗K f ′
1 ·L′. Then

p̃ := p
⊕

i , j
(i , j )6=(1,1)

fi ·L⊗K f ′
j ·L′

is a σ-pseudo prime ideal of L⊗K L′.

Finally we are prepared to prove our main uniqueness theorem:
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Theorem 2.40 (Uniqueness of σ-PV rings). Let K be a φσ-field such that Kφ = Kφ∞
and σ : Kφ→

Kφ is surjective. Let R1 and R2 be two σ-PV rings over K for the same equation φ(y) = Ay ,

A ∈ GLn(K ). Then there exists a finitely σ-generated constrained σ-pseudo field extension k ′ of

k := Kφ containing k1 := Rφ
1 and k2 := Rφ

2 and an isomorphism of K ⊗k k ′-φσ-algebras between

R1 ⊗k1 k ′ and R2 ⊗k2 k ′.

Proof. We know from Proposition 2.37 that k1 and k2 are finitely σ-generated constrained σ-

field extensions of k. Let Y1 ∈ GLn(R1) and Y2 ∈ GLn(R2) be fundamental solution matrices for

φ(y) = Ay . Set

Z = (Y1 ⊗1)−1(1⊗Y2) ∈ GLn
(
R1 ⊗K R2

)
.

As noted in Remark 2.17, we have

Z ∈ GLn
(
(R1 ⊗K R2)φ

)
.

Since 1⊗Y2 = (Y1 ⊗1) ·Z , the entries of 1⊗Y2 lie in

R1 ·SZ , SZ := k1{Z ,1/det(Z )}σ ⊂ R1 ⊗K R2.

Using Lemma 2.10, it follows that

R1 ⊗K R2 = R1 ·SZ = R1 ⊗k1 SZ .

Our next goal is to find a k1-σ-morphism ψ : SZ → k ′ for some finitely σ-generated constrained

σ-pseudo field extension k ′ of k1. We know from Lemma 2.39 that there exists a σ-pseudo prime

ideal in R1 ⊗K R2. This σ-pseudo prime ideal contracts to a σ-pseudo prime ideal of SZ . We can

thus apply [61, Proposition 2.12, p. 1390] to find a maximal element p in the set of all σ-pseudo

prime ideals of SZ ordered by inclusion. By [61, Proposition 2.9, p. 1389], the residue σ-pseudo

field

k ′ := Quot(SZ /p)

is a constrained σ-pseudo field extension of k. Moreover, we have a natural k1-σ-morphism

ψ : SZ → k ′. Then

ϕ : R2 → R1 ⊗K R2 = R1 ⊗k1 SZ
id⊗ψ−−−→ R1 ⊗k1 k ′
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is a morphism of K -φσ-algebras. Since (R1 ⊗k1 k ′)φ = k ′, this yields an embedding of k2 into k ′,

and we can extend ϕ to a K ⊗k k ′-φσ-morphism

ϕ : R2 ⊗k2 k ′ → R1 ⊗k1 k ′.

As ϕ(Y2) and Y1 are fundamental solution matrices in R1 ⊗k1 k ′ for φ(y) = Ay , there exists C ∈
GLn(k ′) such that

Y1 =ϕ(Y2)C =ϕ(Y2C ).

Since R1 is σ-generated by Y1, this shows thatϕ is surjective. Now R2⊗k2 k ′ need not be φ-simple.

However, by Lemma 2.8, every φ-ideal of R2 ⊗k2 k ′ is of the form R2 ⊗k2 b for some ideal b of k ′.

Since the kernel of ϕ is a φ-ideal, this implies that ϕ is injective.

Lemma 2.41. Let K be aφ-pseudoσ-field and R aσ-Picard-Vessiot ring over K with Rφ = Kφ =: k.

Then

R ⊗K R = R ⊗k (R ⊗K R)φ.

Proof. This follows as in the beginning of the proof of Theorem 2.40 (with R1 = R2 = R).

Corollary 2.42 (Uniqueness of σ-PV extensions). Let K be a φσ-field and let L1,L2 be two σ-PV

extensions for the same equation φ(y) = Ay , A ∈ GLn(K ). Assume that Kφ is σ-closed. Then there

exists an integer l ≥ 1 and an isomorphism of K -φσl -algebras between L1 and L2.

Proof. Let R1 ⊂ L1 and R2 ⊂ L2 denote the corresponding σ-PV rings. As usual, we set k := Kφ.

We have Rφ
1 = k and Rφ

2 = k. By Theorem 2.40, there exists a finitely σ-generated constrained

σ-pseudo field extension k ′ of k and an isomorphism

ϕ : R1 ⊗k k ′ → R2 ⊗k k ′

of K ⊗k k ′-φσ-algebras. But, by [61, Example 2.8, p. 1388], every finitely σ-generated constrained

σ-pseudo field extension of a σ-closed σ-field is trivial. This means that there exists an integer

l ≥ 1 such that k ′ is of the form

k ′ = k ⊕·· ·⊕k

with σ given by

σ(a1 ⊕·· ·⊕al ) =σ(al )⊕σ(a1)⊕·· ·⊕σ(al−1).
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Let a be a maximal ideal of k ′. Then a is a σl -ideal with k ′/a= k as σl -rings. For i = 1,2, the ideal

Ri ⊗k a is a φσl -ideal of Ri ⊗k k ′, and ϕ is mapping R1 ⊗k a bijectively onto R2 ⊗k a. Passing to the

quotient, we obtain an isomorphism

ϕ :
(
R1 ⊗k k ′)/(R1 ⊗k a) → (

R2 ⊗k k ′)/(R2 ⊗k a)

of φσl -rings. But

Ri → Ri ⊗k k ′ → (
Ri ⊗k k ′)/(Ri ⊗k a) = Ri ⊗k

(
k ′/a

)= Ri

identifies Ri with
(
Ri ⊗k k ′)/(Ri ⊗k a) as φσl -ring. So, we have constructed a K -φσl -isomorphism

between R1 and R2. Finally, this isomorphism extends to the total quotient rings, that is, to the

σ-PV extensions.

Let K be a φσ-field and A ∈ GLn(K ). Even if, in all generality, a σ-PV extension for φ(y) = Ay

need not be unique, the following remark shows that, in some situations, it is possible to make a

more or less canonical choice. For example, if K = k(z) as in Section 2.5, then the σ-PV ring for

φ(y) = Ay inside Seqk is unique (as a subring of Seqk ).

Remark 2.43. Let K be a φσ-field and A ∈ GLn(K ). Let S be a K -φσ-algebra with Sφ = Kφ. If there

exists a σ-PV ring R for φ(y) = Ay in S, then R is unique in the sense that any other σ-PV ring for

φ(y) = Ay in S equals R.

Proof. Let R ′ be another σ-PV ring for φ(y) = Ay inside S. As R and R ′ are σ-generated by

appropriate fundamental solution matrices, it follows from Remark 2.17 and the fact that Sφ ⊂ K

that R ′ = R.

2.7 σ-Galois group and Galois correspondence

In this section, we will define the σ-Galois group of φ(y) = Ay (Definition 2.50), show that it

is a σ-algebraic group (Lemma 2.51), establish the Galois correspondence (Theorem 2.52), and

finish by showing that the σ-dimension, introduced in [23], of the σ-Galois group coincides with

the σ-dimension of a σ-PV ring of the equation (Lemma 2.53), which we will further use in our

applications, Theorems 3.1 and 3.5. For this, we first recall what a σ-algebraic group is using the

language of σ-Hopf algebras (and representable functors). See the appendix of [23] for a brief

introduction to σ-algebraic groups.

Throughout Sections 2.7 and 2.8 we will make the following assumptions. Let K be a φ-

pseudo σ-field and k := Kφ its σ-field of φ-constants. Assume that there exists a σ-PV ring
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R for the linear φ-equation φ(y) = Ay , A ∈ GLn(K ), with Rφ = k, and let L = Quot(R) be the

corresponding σ-PV extension (cf. Proposition 2.21). The category of k-σ-algebras is denoted by

Algk-σ.

Definition 2.44. A k-σ-Hopf algebra is a Hopf algebra over k in which the comultiplication ∆,

antipode S, and counit ε are k-σ-algebra homomorphisms.

Definition 2.45. A k-σ-algebraic group is a functor G : Algk-σ → Sets represented by a k-σ-Hopf

algebra H , which is finitely σ-generated over k. That is, for every B ∈ Algk-σ,

G(B) = Homk-σ(H ,B).

For simplicity, we say that H represents G .

In other words, a k-σ-algebraic group is a group object in the category of σ-algebraic k-σ-

schemes (in the sense of [23, Definition A.1]).

Definition 2.46 ([23, Definition A.37]). A k-σ-algebraic group G ′ is called a k-σ-subgroup of a

k-σ-algebraic group G if G ′(B) is a subgroup of G(B) for every k-σ-algebra B .

Proposition 2.47 ([23, Remark A.38]). For every k-σ-algebraic subgroup G ′ of a k-σ-algebraic

group G represented by H , there exists a σ-Hopf ideal I in H such that G ′ is represented by H/I

and vice versa.

The multiplicative k-σ-algebraic group Gm is the k-σ-algebraic group represented by

k{x,1/x}σ with ∆(x) = x ⊗x, S(x) = 1/x, and ε(x) = 1.

Proposition 2.48 ([23, Lemma A.40]). For every σ-Hopf ideal I of H := k{x,1/x}σ with the above

Hopf algebra structure, there exists a multiplicative functionϕ= xn0 ·σ(x)n1 · . . . ·σt (x)nt ∈ H such

that I contains ϕ−1.

Lemma 2.49. The k-σ-algebra

H := (R ⊗K R)φ

is a k-σ-Hopf algebra via the φσ-R-bimodule structure on C := R ⊗K R (see [3, (1.5,1.6)]):

∆ : C →C ⊗R C , ∆(a ⊗b) = a ⊗1⊗b ∈ R ⊗K R ⊗K R ∼= R ⊗K R ⊗R R ⊗K R,

ε : C → R, ε(a ⊗b) = ab
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and the K -φσ-linear flip homomorphism τ : C →C , τ(a ⊗b) = b ⊗a. Moreover,

µ : R ⊗k H → R ⊗K R, r ⊗h 7→ (r ⊗1) ·h (2.7)

is an isomorphisms of K -φσ-algebras.

Proof. The proof is a modification of the proof of [3, Proposition 1.7] and [2, Proposition 3.4].

We already noted in Lemma 2.41 that (2.7) is an isomorphism. It follows that the K -φσ-algebra

homomorphism

R ⊗k H ⊗k H
µ⊗id−−−−−→ R ⊗K R ⊗k H

id⊗µ−−−−−→ R ⊗K R ⊗K R

is an isomorphism. By taking φ-constants, we, therefore, obtain a k-σ-algebra isomorphism

H ⊗k H → (R ⊗K R ⊗K R)φ. (2.8)

To show that, given the above, H becomes a k-σ-Hopf algebra, one proceeds as in the proof of [3,

Proposition 1.7].

Definition 2.50. Let R and L be as above. Then the σ-Galois group of L over K is defined as the

functor

Galσ(L|K ) : Algk-σ→ Sets, B 7→ Galσ(L|K )(B) := Autφσ
(
R ⊗k B |K ⊗k B

)
,

where φ acts as the identity on B .

Lemma 2.51. Let R, L, and H be as above. Then G := Galσ(L|K ) is a k-σ-algebraic group

represented by H .

Proof. As in the proof of [3, Lemma 1.9], R is an H-comodule via

θ : R → R ⊗k H , r 7→µ−1(1⊗ r ),

which is a K -φσ-algebra homomorphism, whereµ is defined in (2.7). For every k-σ-algebra B and

g ∈ Homk-σ(H ,B), we have a K -φσ-algebra homomorphism

Φg : R ⊗k B
θ⊗idB−−−−−→ R ⊗k H ⊗k B

idR ⊗g⊗idB−−−−−−−→ R ⊗k B ⊗k B
idR ⊗m−−−−−→ R ⊗k B ,
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which is an automorphism by [59, Theorem 3.2]. Moreover, by [59, Theorem 3.2] as well, the map

g 7→ Φg is a group homomorphism. For the reverse direction, let Y ∈ GLn(R) be a fundamental

solution matrix of φ(y) = Ay and

Z = (Y ⊗1)−1(1⊗Y ) ∈ GLn(R ⊗K R).

Then H = k{Z ,1/det(Z )}σ and it follows from Remark 2.17 that, for any

ϕ ∈ Autφσ
(
R ⊗k B |K ⊗k B

)
,

there exists Cϕ ∈ GLn(B) such thatϕ(Y ) = Y ·Cϕ. We define a k-σ-algebra homomorphism H → B

by sending Z to Cϕ.

Theorem 2.52. There is a one-to-one correspondence between k-σ-algebraic subgroups in G and

intermediate φ-pseudo σ-fields in L|K given by

M = LG ′
:= {

a/b ∈ L |θ′(a) ·b = a ·θ′(b), a,b ∈ R
} ←→ G ′ := Galσ(L|M), (2.9)

or, alternatively,

M = LG ′
:= {

x ∈ L | for all B ∈ Algk-σ, g ∈G ′(B), g (x ⊗1) = x ⊗1
} ←→ G ′ := Galσ(L|M), (2.10)

where θ′ : R → R ⊗k H ′, and H ′ represents G ′.

Proof. We will show that there is a one-to-one correspondence between the σ-Hopf ideals in H

and intermediate φ-pseudo σ-fields in L|K given by

M = {x ∈ L |1⊗x −x ⊗1 ∈ I · (L⊗K L)} ←→ I = H ∩ker(L⊗K L → L⊗M L).

The proof below is partly an adaptation of [3, Proposition 2.3]. It follows from [60, Theorem 3.1.17]

that there is a one-to-one correspondence between the intermediate φ-pseudo σ-fields in L|K
and φσ-coideals of L⊗K L given by

M = {x ∈ L |1⊗x −x ⊗1 ∈ J ⊂ L⊗K L} ←→ J = ker(L⊗K L → L⊗M L).
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By Lemma 2.8, there is a one-to-one correspondence between φσ-ideals of L ⊗k H and σ-ideals

of H given by

b= a∩H ←→ a= L⊗k b. (2.11)

By localizing (2.7), we obtain K -φσ-algebra isomorphisms

ϕ1 : L⊗k H → L⊗K R and ϕ2 : L⊗k H → R ⊗K L. (2.12)

Therefore, we have a one-to-one correspondence between σ-ideals of H and φσ-ideals of L ⊗K L

given by composing (2.12) and (2.11) and using the fact that the set of ideals of the localization

L⊗K L consists of the intersection of the set of ideals in the smaller localizations L⊗K R and R⊗K L

inside the set of ideals in R ⊗K R.

We will now show that, under the above correspondence and in the above notation, (L⊗K L)·a
is a φσ-coideal of L ⊗K L if and only if b is a σ-Hopf ideal of H . For this, note that, similarly to the

above, we have a one-to-one correspondence between ideals in H⊗k H andφ-ideals in L⊗K L⊗K L.

Indeed, by Lemma 2.8 and isomorphisms (2.8) and (2.12), there is a one-to-one correspondence

between φσ-ideals of L ⊗K R ⊗K R (as well as those in R ⊗K L ⊗K R and R ⊗K R ⊗K L) and σ-ideals

of H ⊗k H with

H ⊗k b ←→ a= L⊗K b and b⊗k H ←→ a= b⊗K L,

therefore,

b1 := H ⊗k b+b⊗k H ←→ a1 := L⊗K a+a⊗K L

under the correspondence a⊂ L⊗K L ↔ b⊂ H from the preceding paragraph. Therefore,

∆(a) ⊂ a1, ε(a) = 0 ⇐⇒ ∆(b) ⊂ b1, ε(b) = 0.

By [47, Theorem 1(iv)], b is a Hopf ideal of H if and only if b is a coideal of H , which finishes the

proof. To show correspondence (2.9), note that, by Lemma 2.51, Galσ(L|M) is represented by

H/H ∩ker(L⊗K L → L⊗M L).
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Therefore, it remains to show that

L1 := {x ∈ L |1⊗x −x ⊗1 ∈ ker(L⊗K L → L⊗M L)} = L2 := {
a/b ∈ L |θ′(a) ·b = a ·θ′(b), a,b ∈ R

}=
= L3 := {

x ∈ L | for all B ∈ Algk-σ, g ∈G ′(B), g (x ⊗1) = x ⊗1
}
.

For every x = a/b ∈ L2, B ∈ Algk-σ, and g ∈G ′(B), we have

g (a/b ⊗1) = (θ′(a) ·b ⊗1)(g )/(θ′(b) ·b ⊗1)(g ) = (θ′(b) ·a ⊗1)(g )/(θ′(b) ·b ⊗1)(g ) = a/b ⊗1.

Hence, x ∈ L3. Now, for all x = a/b ∈ L3, we have θ′(a) ·b = a ·θ′(b) by taking B := H and g := idH .

Therefore, L2 = L3. For L1 = L3, see the proof of [60, Lemma 3.1.11].

For σ-dimension, see [23, Section A.7]. Let K be a φσ-field and R, L, and H be as above.

Lemma 2.53. We have

σ-dimK R =σ-dimk H .

Proof. Let Y ∈ GLn(R) be a fundamental solution matrix of φ(y) = Ay and Z = (Y ⊗1)−1(1⊗Y ) ∈
GLn(R ⊗K R). Then

R = K {Y ,1/det(Y )}σ and H = k{Z ,1/det(Z )}σ.

The claim now follows from [23, Definition A.25], Lemma 2.20, and [58, Theorem 1.13].

2.8 Isomonodromic difference equations

In this section, we develop a σ-Galois treatment for isomonodromic difference equations. In

particular, in Theorem 2.55, not assuming that the field k = Kφ is difference closed, we give a

criterion, which says that φ(y) = Ay is isomonodromic if and only if the matrices in its σ-Galois

group all satisfy an equation of a special form (2.14). This result is a difference analogue of the

corresponding results for isomonodromic differential equations, [10, Proposition 3.9] and [30,

Theorem 6.6], and can be combined with [48, Theorem 4.1] to study difference isomonodromy

of linear difference equations with several parameters. We further illustrate this by considering a

q-hypergeometric equation in Example 2.56.

Definition 2.54. The system φ(y) = Ay is called isomonodromic if there exists B ∈ GLn(K ) such

that

φ(B)AB−1 =σ(A). (2.13)
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Theorem 2.55. The equation φ(y) = Ay is isomonodromic if and only if there exists D ∈ GLn(k)

such that the following equation is in the defining ideal of the σ-Galois group G :

σ(xi j ) = D−1(xi j )D. (2.14)

Moreover, if (2.14) is in the defining ideal of G , then there exists a finitely generated σ-field

extension F of k and C ∈ GLn(F ) such that

σ
(
C−1(xi j )C

)=C−1(xi j )C (2.15)

is in the defining ideal of G , that is, G is conjugate over F to a group of matrices with σ-constant

entries.

Proof. Let Y ∈ GLn(R) be a fundamental solution matrix. Let B ∈ GLn(K ) be such that (2.13) is

satisfied. We have

φ
(
σ(Y )−1BY

)=σ(φ(Y ))−1φ(B)φ(Y ) =σ(AY )−1σ(A)B A−1 AY =σ(Y )−1BY .

Therefore, there exists D ∈ GLn(k) such that σ(Y ) = BY D . For every k-σ-algebra S and g ∈ G(S),

let Cg ∈ GLn(S) be such that g (Y ) = Y Cg . Then, on the one hand,

g (σ(Y )) = g (BY D) = BY Cg D.

On the other hand,

g (σ(Y )) =σ(g (Y )) =σ(Y Cg ) =σ(Y )σ(Cg ) = BY Dσ(Cg ).

Therefore, for all g ∈G(S), we have

σ(Cg ) = D−1Cg D,

showing (2.14). To show (2.15), let F be a σ-field generated over k by the entries of an invertible

matrix C satisfying σ(C ) = D−1C . Then,

σ
(
C−1Cg C

)=σ(C )−1σ(Cg )σ(C ) =C−1DD−1Cg DD−1C =C−1Cg C .
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Suppose now that, for all k-σ-algebras S and g ∈G(S), we have

σ(Cg ) = D−1Cg D,

where Cg := Y −1g (Y ). Let

B :=σ(Y )D−1Y −1.

Then, for all g ∈G ,

g (B) =σ(Y Cg )D−1(Y Cg )−1 =σ(Y )D−1Cg DD−1C−1
g Y −1 = B.

By Theorem 2.52, B ∈ GLn(K ). We, moreover, have

φ(B) =φ(σ(Y ))D−1φ(Y )−1 =σ(AY )D−1(AY )−1 =σ(A)σ(Y )D−1Y −1 A−1 =σ(A)B A−1,

showing (2.13).

Example 2.56. Consider a q-hypergeometric equation

y
(
q2x

)− 2ax −2

a2x −1
y(qx)+ x −1

a2x −1
y(x) = 0. (2.16)

It is shown in [51] that, over C(x), if a ∉ qZ, then, if a2 ∉ qZ, then the difference Galois

group of (2.16) is GL2(C), otherwise it is SL2(C). Equation (2.16) has been also studied from the

differential-parametric viewpoint in [36, Example 3.14]. Let now C be any field such that (2.16)

has a σ-PV extension over C (x, a), with a being transcendental over C (x, a), φ and σ acting as id

on C , and

φ(x) = qx, φ(a) = a, σ(x) = x, σ(a) = qa.

The existence can be shown as in Proposition 2.30. A calculation in MAPLE, similar to the

one given in [35], but using the procedure RationalSolution in the QDifferenceEquations

package, shows that (2.16), once transformed into the matrix form, is isomonodromic over C (x, a)

with

B =


1

a2x −1
−

2a

(a +1)(a2x −1)
2a(x −1)

(a +1)(a2x −1)(a2qx −1)

3a −1+ (a3 −3a2)x

(a +1)(a2x −1)(a2qx −1)

 .
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Therefore, (2.13) is in the defining ideal of the σ-PV group G of (2.16) by Theorem 2.55. It follows

from [4, Corollary 3.3.2.1] and [51, Theorem 10] that the (non-σ-parametric) PV group of (2.16)

over C (x, a) is GL2. Similarly to [36, Proposition 6.21], it follows from Theorem 2.52 that G is

Zariski dense in GL2. It follows from Theorem 2.55 that, G is conjugate to GL2(C ) over a (proper, as

RationalSolution shows) finitely generated σ-field extension of C (a), where GL2(C ) is defined

by

GL2(C )(B) = {g ∈ GL2(B) |σ(g ) = g }

for every C (a)-σ-algebra B .

3 Applications and examples

In this section, we will illustrate how our Galois theory can be used to study difference and

differential algebraic properties of functions. We start by showing a general σ-independence

criterion in Theorem 3.1 (see also [5, Theorem 4.1]). In Section 3.1, we show a σ-independence

criterion over the field of meromorphic function with Nevanlinna growth order less than one

(Theorem 3.5). For this, we need some preparatory work, Lemmas 3.2 and 3.4, which are

interesting on their own as they generalize a natural modification of a classical result in complex

analysis [6]. We then show how to apply our results in practice in Theorem 3.6, which is followed

by illustrative examples in Section 3.4.

3.1 General result

Theorem 3.1. Let F be a φσ-field containing the field C(z) with

φ(z) = a1z +a2, σ(z) = b1z +b2, a1, a2,b1,b2 ∈C, a1b1 6= 0, φσ=σφ, φn 6= id, n ∈N,

(3.1)

and k := Fφ. Let 0 6= f ∈ F and 0 6= a ∈C(z) be such that f is a solution of

φ(y) = ay. (3.2)

Then f is σ-algebraically dependent over the field k(z) if and only if

ϕ(a) =φ(b)/b (3.3)

for some 0 6= b ∈C(z) and ϕ(x) ∈Q{x,1/x}σ, 1 6=ϕ(x) = xn0σ(x)n1 · . . . ·σt−1(x)
nt−1 .
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Proof. If (3.3) holds, then

φ(ϕ( f )/b) =ϕ(φ( f ))/φ(b) =ϕ(a f )/φ(b) =ϕ(a)ϕ( f )/φ(b) =ϕ( f )/b.

Therefore,ϕ( f )/b = c ∈ Fφ = k. Thus,ϕ( f ) = c ·b ∈ k(z), which gives aσ-algebraic dependence for

f over k(z).

Assume now that f is σ-algebraically dependent over k(z). Let L be the smallestφσ-subfield

in F containing k(z) and f . Since k ⊂ Lφ ⊂ Fφ = k, the φσ-field L is a σ-PV extension over k(z)

for equation (3.2). It follows from Lemma 2.53 that f is σ-algebraically dependent over k(z) if and

only if the σ-Galois group G of L|K is a proper σ-algebraic subgroup of Gm.

Then, by Proposition 2.48, there exists a multiplicativeϕ ∈ k{x,1/x}σ such that the ideal of G

contains the equation ϕ(x) = 1. Therefore, for every k-σ-algebra B and g ∈G(B), we have

g (ϕ( f )) =ϕ(g ( f )) =ϕ(cg · f ) =ϕ(cg ) ·ϕ( f ) = 1 ·ϕ( f ) =ϕ( f ).

Hence, by Theorem 2.52, we have b := ϕ( f ) ∈ k(z). Since f 6= 0 and ϕ is multiplicative, ϕ( f ) 6= 0.

Therefore,

ϕ(a) =ϕ(φ( f )/ f ) =φ(ϕ( f ))/ϕ( f ) =φ(b)/b. (3.4)

We will show now that b can be chosen from C(z) satisfying (3.3). For this, first note that z is

transcendental over k. Indeed, for all n ∈N and a0, . . . , an ∈ k,

an zn + . . .+a1z +a0 = 0

implies that, for all q ∈N,

an(φq (z))n + . . .+a1(φq (z))+a0 = 0.

This implies that there exists r ∈N such that z =φr (z), which contradicts (3.1). Now, we have the

equalities a = ā/c and b = b̄/d , where ā,c ∈C[z] and b̄,d ∈ k[z]. Consider the coefficients of b̄ and

d with respect to z as new indeterminates. Equation (3.4) is equivalent to

ϕ(ā/c) =φ(
b̄/d

)/(
b̄/d

)
.
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So, we have

ϕ(ā) ·φ(d) · b̄ −ϕ(c) ·φ(b̄) ·d = 0. (3.5)

The left-hand side of equation (3.5) is a polynomial in z. Hence, equation (3.4) can be considered

as a system of polynomial equations given by the equalities for all coefficients. Since the field C is

algebraically closed, existence of b̄ and d with coefficients in k implies existence of b̄ and d with

coefficients in C.

3.2 Meromorphic functions and Nevanlinna property

Let M be the φσ-field of meromorphic functions on the plane with

φ( f )(z) := f (z +1), σ( f )(z) := f (z +aσ), f ∈ M , z, aσ ∈C.

Also, let k := Mφ, which is the field of 1-periodic meromorphic functions. For f ∈ M , the standard

Nevanlinna characteristics m(r, f ), N (r, f ), and T (r, f ) were introduced in [46, pp. 6, 12] (see also

[29, 6, 14]). Let

M<1 := {
g ∈ M |T (r, g ) = o(r ), r →+∞}

, (3.6)

which is a φσ-field as well [6, 8. Proposition]. Note that

C(z) ( M<1. (3.7)

The proof of the following result, which we need to prove Theorem 3.5, was suggested by

D. Drasin and S. Merenkov, to whom the authors are highly grateful, as a modification of [6,

7. Lemma (c)].

Lemma 3.2. Let f ∈ M and there exist R ∈C(z) such that, for all z ∈C,

f (z +1) = R(z) · f (z). (3.8)

If f ∈ M<1, then f ∈C(z).

Proof. Let L > 0 be a real number such that all finite poles and zeroes of R lie in

D(L) := {c ∈C | |c| < L}.
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Similarly to the proof of [6, 7. Lemma (c)], one shows that (3.8) and (3.6) imply that all finite poles

and zeroes of f lie in D(L). This implies that there exists a rational function h such that g := h f is

an entire function with no zeroes. Since M<1 is a field and h ∈ M<1, we have g = h f ∈ M<1. Hence,

it follows from [29, Lemma I.6.2] that g is constant. Therefore, f = g /h is rational.

Corollary 3.3. We have

k∩M<1 =C.

We will need one more complex-analytic result (which has an algebraic proof) to prove

Theorem 3.5 as well.

Lemma 3.4. Let a ∈C(z)à {0}. Assume that there exists a non-zero b ∈ k M<1 such that φ(b) = ab.

Then

(i) there also exists a non-zero b′ ∈ M<1 with φ(b′) = ab′,

(ii) b ∈ k(z).

Proof. We know from Corollary 3.3 that Mφ
<1 = C, and it follows from Lemma 2.10 that M<1 is

linearly disjoint from k over C. Hence,

k M<1 = Quot
(
M<1 ⊗C k

)
. (3.9)

Moreover, M<1 ⊗C k is φ-simple by Lemma 2.9. We will first show that b must lie in M<1 ⊗C k. Set

a= {
f ∈ M<1 ⊗C k | f ·b ∈ M<1 ⊗C k

}
.

It follows from (3.9) that a is a non-zero ideal of M<1 ⊗C k. For all f ∈ a, we have φ( f b) ∈ M<1 ⊗C k

and, therefore,

φ( f b) =φ( f ) ·ab ∈ M<1 ⊗C k.

Since a ∈C(z) ⊂ M<1, this implies

φ( f ) ·b ∈ M<1 ⊗C k,

that is, φ( f ) ∈ a. So, a is a φ-ideal. Since M<1 ⊗C k is φ-simple, we must have 1 ∈ a. So,

b ∈ M<1 ⊗C k.
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Choose a C-basis (ci ) of k and write b =∑
i bi ⊗ ci with bi ∈ M<1. Then

∑
i
φ(bi )⊗ ci =φ(b) = ab =∑

i
abi ⊗ ci .

Hence, for all i , we have φ(bi ) = abi . By Lemma 3.2, we conclude that, for all i , bi ∈ C(z),

which implies that b ∈ k(z), showing (2). Moreover, since b 6= 0, there exists i such that bi 6= 0,

showing (1).

Theorem 3.5. Let f ∈ M and 0 6= a ∈C(z) be such that f is a non-zero solution of

φ(y) = ay. (3.10)

Then f is σ-algebraically dependent over M<1 if and only if

ϕ(a) =φ(b)/b (3.11)

for some 0 6= b ∈C(z) and 1 6=ϕ(x) = xn0σ(x)n1 · . . . ·σt−1(x)
nt−1 .

Proof. The converse follows as in Theorem 3.1, noting (3.7) and Corollary 3.3. Let now f be σ-

algebraically dependent over M<1. As in the proof of Theorem 3.1, we will show that there exists

b ∈ M<1 and multiplicative ϕ such that

ϕ(a) =φ(b)/b.

Lemma 3.2 implies that b ∈ C(z). To do the above, let L be the smallest φσ-subfield in M

containing k, M<1, and f . Since k ⊂ Lφ ⊂ Mφ = k, the φσ-field L is a σ-PV extension over k M<1

for equation (3.2). It follows from Lemma 2.53 and Proposition 2.48 that f is σ-algebraically

dependent over k M<1 if and only the σ-Galois group G of equation (3.2) is a proper σ-algebraic

subgroup of Gm.

Then, by Proposition 2.48, there exists a multiplicativeϕ ∈ k{x,1/x}σ such that the ideal of G

contains the equation ϕ(x) = 1. Therefore, for every k-σ-algebra B and g ∈G(B), we have

g (ϕ( f )) =ϕ(g ( f )) =ϕ(cg · f ) =ϕ(cg ) ·ϕ( f ) = 1 ·ϕ( f ) =ϕ( f ).
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Hence, by Theorem 2.52, we have b :=ϕ( f ) ∈ k M<1. Since f 6= 0 and ϕ is multiplicative, ϕ( f ) 6= 0.

Therefore,

ϕ(a) =ϕ(φ( f )/ f ) =φ(ϕ( f ))/ϕ( f ) =φ(b)/b.

By Lemma 3.4, there exists b′ ∈ M<1 such that ϕ(a) =φ(b′)/b′, which finishes the proof.

3.3 How to use the above results in practice

Let a ∈C(z)× and w0, z0 ∈C× and φ and σ act on C(z) as follows:

φ( f )(z) = f (z +w0) and σ( f )(z) = f (z + z0), f ∈C(z).

Then, for some N ≥ 0, a can be represented as follows

a =λ ·
t−1∏
k=0

N∏
d=−N−1

R∏
i=1

(z −k · z0 −d ·w0 − ri )sk,d ,i ,

where λ,ri ∈C and the ri ’s are distinct in C
/

w0 ·Z+z0 ·Z. For all i and k, 1 ≤ i ≤ R, 0 ≤ k ≤ t −1, let

ai ,k =
N∑

d=−N−1
sk,d ,i . (3.12)

The following result combined with Theorems 3.1 and 3.5 provides a complete characterization

of all equations (3.2) whose solutions are σ-algebraically independent.

Theorem 3.6. Let a ∈C(z) be as above and z0/w0 ∉Q. Then

(i) If λ is a root of unity, then there exist b ∈C(z) and a multiplicative function

ϕ(x) = xn0 · (σ(x))n1 · . . . · (σA(x)
)nA 6= 1

such that ϕ(a) =φ(b)/b if and only if, for all i , 1 ≤ i ≤ R,

ai ,0 = . . . = ai ,t−1 = 0.

(ii) If λ is not a root of unity, then there exist b ∈C(z) and a multiplicative function

ϕ(x) = xn0 · (σ(x))n1 · . . . · (σA(x)
)nA 6= 1
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such that ϕ(a) =φ(b)/b if and only if, for all i , 1 ≤ i ≤ R,

ai ,0 = . . . = ai ,t−1 = 0 and t ≥ 2.

Proof. We will write ϕ and b with undetermined coefficients and exponents. Suppose that

b =µ ·
B∏

k=−B

N∏
d=−N

R∏
i=1

(z −k · z0 −d ·w0 − ri )lk,d ,i and ϕ(x) = xn0 · (σ(x))n1 · . . . · (σA(x)
)nA

are such that ϕ(a) = φ(b)/b and A,B ≥ 0. Let us calculate the right and left-hand sides of this

equality. We see that

φ(b) =µ ·
B∏

k=−B

N∏
d=−N

R∏
i=1

(z −k · z0 − (d −1) ·w0 − ri )lk,d ,i .

Hence,

φ(b)

b
=

B∏
k=−B

N−1∏
d=−N−1

R∏
i=1

(z −k · z0 −d ·w0 − ri )lk,d+1,i ·
B∏

k=−B

N∏
d=−N

R∏
i=1

(z −k · z0 −d ·w0 − ri )−lk,d ,i =

=
B∏

k=−B

R∏
i=1

[
(z −k · z0 + (N +1) ·w0 − ri )lk,−N ,i

N−1∏
d=−N

(z −k · z0 −d ·w0 − ri )lk,d+1,i−lk,d ,i (z −k · z0 −N ·w0 − ri )−lk,N ,i
]

.

Now, we calculate the left-hand side. We see that, for all r ≥ 0,

σr (a)nr =λnr ·
t−1∏
k=0

N∏
d=−N−1

R∏
i=1

(z − (k − r ) · z0 −d ·w0 − ri )nr sk,d ,i =

=λnr ·
t−1−r∏
k=−r

N∏
d=−N−1

R∏
i=1

(z −k · z0 −d ·w0 − ri )nr sr+k,d ,i .

Hence,

ϕ(a) =λ
∑A

r=0 nr ·
t−1∏

k=−A

N∏
d=−N−1

R∏
i=1

(z −k · z0 −d ·w0 − ri )
∑

0≤r≤A
0≤r+k≤t−1

nr sr+k,d ,i
.
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Now, the equation ϕ(a) =φ(b)/b gives A = B = t −1 and the following system of linear equations





∑
0≤r, r+k≤t−1

sr+k,−N−1,i ·nr = lk,−N ,i∑
0≤r, r+k≤t−1

sr+k,d ,i ·nr = lk,d+1,i − lk,d ,i , −N É d É N −1, 1 ≤ i ≤ R, 1− t ≤ k ≤ t −1

∑
0≤r, r+k≤t−1

sr+k,N ,i ·nr =−lk,N ,i

λ
∑t−1

r=0 nr = 1

The first subsystem, for all i and k, 1 ≤ i ≤ R, can be rewritten as follows:




s0,−N−1,i

s0,−N ,i

...

s0,N ,i


(
nt−1

)
=


lk,−N ,i

lk,−N+1,i − lk,−N ,i

...

−lk,N ,i

 , k = 1− t .


s0,−N−1,i s1,−N−1,i

s0,−N ,i s1,−N ,i

...
...

s0,N ,i s1,N ,i


nt−2

nt−1

=


lk,−N ,i

lk,−N+1,i − lk,−N ,i

...

−lk,N ,i

 , k = 2− t .

...
s0,−N−1,i s1,−N−1,i . . . st−1,−N−1,i

s0,−N ,i s1,−N ,i . . . st−1,−N ,i

...
...

. . .
...

s0,N ,i s1,N ,i . . . st−1,N ,i




n0

n1

...

nt−1

=


lk,−N ,i

lk,−N+1,i − lk,−N ,i

...

−lk,N ,i

 , k = 0.

...
st−1,−N−1,i

st−1,−N ,i

...

st−1,N ,i


(
n0

)
=


lk,−N ,i

lk,−N+1,i − lk,−N ,i

...

−lk,N ,i

 , k = t −1.

Each subsystem has a solution in lk,d ,i if and only if the sum of all equations is zero. Thus, we can

replace this system with the following:
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nt−1 ·
N∑

d=−N−1
s0,d ,i = 0

nt−2 ·
N∑

d=−N−1
s0,d ,i +nt−1 ·

N∑
d=−N−1

s1,d ,i = 0

...

n0 ·
N∑

d=−N−1
s0,d ,i +n1 ·

N∑
d=−N−1

s1,d ,i + . . .+nt−1 ·
N∑

d=−N−1
st−1,d ,i = 0

...

n0 ·
N∑

d=−N−1
st−1,d ,i = 0

Using (3.12), we obtain the following system:

0 0 . . . 0 ai ,0

0 0 . . . ai ,0 ai ,1

...
...

...
...

...

ai ,0 ai ,1 . . . ai ,t−2 ai ,t−1

...
...

...
...

...

ai ,t−2 ai ,t−1 . . . 0 0

ai ,t−1 0 . . . 0 0




n0

n1

...

nt−1

=


0
...

0

 . (3.13)

Thus, for some integers γk,d ,i , j , we have:



0 0 . . . 0 ai ,0

0 0 . . . ai ,0 ai ,1

...
...

...
...

...

ai ,0 ai ,1 . . . ai ,t−2 ai ,t−1

...
...

...
...

...

ai ,t−2 ai ,t−1 . . . 0 0

ai ,t−1 0 . . . 0 0




n0

n1

...

nt−1

=


0
...

0



λ
∑t−1

r=0 nr = 1

lk,d ,i =
t−1∑
r=0

γk,d ,i ,r ·nr
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Consider the first case: λ is a root of unity. Then, for some u ∈Z\ {0}, we have λu = 1. In this

situation, if nr , lk,d ,i is a solution of all equations except for the second one, then

u ·nr , u · lk,d ,i

is a solution of the whole system. Therefore, in this case, the existence of ϕ and b is equivalent

to (3.13) having a nontrivial common solution.

Consider the second case: λ is not a root of unity. Then the second equation gives
∑t−1

r=0 nr =
0. Thus, in this case, we need to show the existence of a nontrivial solution of the system



0 0 . . . 0 ai ,0

0 0 . . . ai ,0 ai ,1

...
...

...
...

...

ai ,0 ai ,1 . . . ai ,t−2 ai ,t−1

...
...

...
...

...

ai ,t−2 ai ,t−1 . . . 0 0

ai ,t−1 0 . . . 0 0

1 1 . . . 1 1




n0

n1

...

nt−1

=


0
...

0

 . (3.14)

Since all the coefficients in (3.13) and (3.14) are integers, there is a nontrivial solution with integral

coefficients if and only if there is a nontrivial solution with complex coefficients.

In the first case, the rank is less than t if and only if

ai ,0 = . . . = ai ,t−1 = 0.

In the second case, the rank is less than t if and only if

ai ,0 = . . . = ai ,t−1 = 0 and t ≥ 2.

3.4 Examples

We will now illustrate Theorems 3.1, 3.5, and 3.6.

Example 3.7. The gamma function Γ satisfying

Γ(z +1) = z ·Γ(z)
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does not satisfy any polynomial difference equation over M<1 (see (3.6)) for any shift by z0 ∉Q as,

in the notation of Theorem 3.6, N = 0, t = 1, R = 1, and 1 = s0,0,1 = a1,0 6= 0. A differential algebraic

independence statement over M<1 for Γ was shown in [6] using analytic techniques. Also, [14,

Theorem 1] gives difference algebraic independence of the Riemann zeta function ζ over M<1.

Note the following relation between ζ and Γ:

ζ(1− s) = 21−s ·π−s ·cos(π · s/2) ·Γ(s) ·ζ(s).

Example 3.8. For f ∈ K :=C(z,α), let

φ( f )(z,α) = f (z,α+1) and σ( f )(z,α) = f (z + z0,α).

Let F be a φσ-field over K that contains a non-zero solution of

φ(y) = z · y,

which we denote by zα. Let ϕ be as in the statement of Theorem 3.1. If zα were σ-algebraic

dependent over C(z,α), then, by the proof of Theorem 3.1, there would exist 0 6= b ∈ Fφ (note

that C(z) ⊂ Fφ in our case) such that

1 =φ(b)/b =ϕ(z).

Sinceσ is a shift,ϕ= 1, which is a contradition. This proves the difference algebraic independence

of zα over C(z,α) with respect to shifts of z (see [27, 7] for a related statement, in which α takes

values inQ).

Example 3.9. Let K be a field. Consider SeqK as a σ-ring with σ acting as the shift. Let L be a σ-

subfield of SeqK . Consider SeqLas aφσ-ring withφ acting as the shift andσ acting coordinatewise.

Let F be a φσ-subfield of SeqL and {S(m,α)} ∈ F satisfy a first-order φ-difference equation

S(m,α+1) = f (m,α) ·S(m,α), { f (m,α)} ∈ M ,

where M is aφσ-subfield of F, which contains L. Then it follows from the proof of Theorem 3.1, [23,

Lemma A.40], and [25, Proposition 1.1] that, if {S(m,α)} satisfies a linear σ-difference equation,
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then there exists {b(m,α)} ∈ M and n Ê 1 such that, for all m and α,

S(m +n,α) = b(m,α) ·S(m,α). (3.15)

In particular, we can take M to be the image of L(z) in SeqL , as in Section 2.5. Let

y(x,α) := ∑
mÊ0

S(m,α) · xm

By [54, Theorem 1.5], the function y(x,α) satisfies a linear differential equation in x if and only

if S(m,α) satisfies a homogeneous linear difference equation in m (see also [26, App. B.4] and

the reference given there). Suppose it is known that S(m,α) satisfies a first-order homogeneous

linear difference equation with respect to α, and one wants to know whether y(x,α) satisfies a

linear differential equation in x. The above method helps find difference equations in m if they

are hard to find otherwise, as such equations are all of the form (3.15). Just to illustrate the process

(but not the difficulty), consider the Bessel functions of the first kind, which are given by

Jα(x) = ∑
mÊ0

(−1)m

m! ·Γ(m +α+1)
(x/2)2m+α,

where α is an integer. It is a solution of the following differential equation:

x2 y ′′+x y ′+ (
x2 −α2) · y = 0, (3.16)

where ′ stands for d
dx . Let

S(m,α) = (−1)m

m! ·Γ(m +α+1)
and Iα(x) = ∑

mÊ0
S(m,α)xm .

Then Jα(x) = (x/2)α · Iα
(
x2/4

)
. We have:

(m +α+1) ·S(m,α+1) = S(m,α).

Moreover, we have:

(m +1)(m +α+1) ·S(m +1,α)+S(m,α) = 0.
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Therefore, by a calculation using the Gfun package in MAPLE [53], Iα(x) satisfies the second-order

linear differential equation

x y ′′+ y ′+ y = 0 (3.17)

(see also the proof of [54, Theorem 1.5]). One now obtains (3.16) by substituting the expression of

Iα in terms of Jα into (3.17).
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