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Abstract

We show new upper and lower bounds for the effective differential Nullstellensatz for differential
fields of characteristic zero with several commuting derivations. Seidenberg was the first to
address this problem in 1956, without giving a complete solution. In the case of one derivation,
the first bound is due to Grigoriev in 1989. The first bounds in the general case appeared in
2009 in a paper by Golubitsky, Kondratieva, Szanto, and Ovchinnikov, with the upper bound
expressed in terms of the Ackermann function. D’Alfonso, Jeronimo, and Solernó, using novel
ideas, obtained in 2014 a new bound if restricted to the case of one derivation and constant
coefficients. To obtain the bound in the present paper without this restriction, we extend this
approach and use the new methods of Freitag and León Sánchez and of Pierce, which represent
a model-theoretic approach to differential algebraic geometry.

Key words: effective differential Nullstellensatz, differential equations, uniform bounding
2010 MSC: primary 12H05, secondary 12H20, 14Q20

IThis work was partially supported by the NSF grants CCF-0952591 and DMS-1413859
Email addresses: rgustavson@gradcenter.cuny.edu (Richard Gustavson), kondratieva@sumail.ru

(Marina Kondratieva), aovchinnikov@qc.cuny.edu (Alexey Ovchinnikov)

Preprint submitted to Advances in Mathematics January 5, 2016



1. Introduction

It is a fundamental problem to determine whether a system F = 0, F = f1, . . . , fr, of
polynomial PDEs with coefficients in a differential field K is consistent, that is, it has a solution
in a differential field containingK. Differential elimination [1, 13] is an effective method that can
answer this question, and its implementations (including Maple packages) can handle examples
of moderate size if a sufficiently powerful computer is used. The differential Nullstellensatz
states that the above consistency is equivalent to showing that the equation 1 = 0 is not a
differential-algebraic consequence of the system F = 0. Algebraically, the latter says that 1
does not belong to the differential ideal generated by F in the ring of differential polynomials.

The complexity of the effective differential Nullstellensatz is not just a central problem
in the algebraic theory of partial differential equations but is also a key to understanding
the complexity of differential elimination. It is often the case that this leads to substantial
improvements in algorithms. Let F = 0 be a system of polynomial PDEs in n differential
indeterminates (dependent variables) and m commuting derivation operators ∂1, . . . , ∂m (that
is, with m independent variables), of total order h and degree d, with coefficients in a differential
field K of characteristic zero. For every non-negative integer b, let F (b) = 0 be the set of
differential equations obtained from the system F = 0 by differentiating each equation in
it b times with respect to any combination of ∂1, . . . , ∂m. An upper bound for the effective
differential Nullstellensatz is a numerical function b(m,n, h, d) such that, for all such F , the
system F = 0 is inconsistent if and only if the system of polynomial equations in F (b(m,n,h,d))

is inconsistent. By the usual Hilbert’s Nullstellensatz, the latter is equivalent to

1 ∈
(
F (b(m,n,h,d))

)
.

For example, in the system of polynomial PDEs
ux + vy = 0
uy − vx = 0
(uxx + uyy)2 + (vxx + vyy)2 = 1

(1.1)

∂1 = ∂/∂x, ∂2 = ∂/∂y, and so m = 2, the differential indeterminates are u and v, and so n = 2,
the maximal total order of derivatives is h = 2, and the maximal total degree is d = 2. The
corresponding system of polynomial equations is

z1 + z2 = 0
z3 − z4 = 0
(z5 + z6)2 + (z7 + z8)2 = 1

which is consistent (e.g., take z1 = . . . = z7 = 0 and z8 = 1). On the other hand, system (1.1)
is inconsistent. Indeed, applying ∂1 and ∂2 to the first and second equations in (1.1), consider
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the extended system 

ux + vy = 0
uy − vx = 0
uxx + vxy = 0
uyy − vxy = 0
uxy + vyy = 0
uxy − vxx = 0
(uxx + uyy)2 + (vxx + vyy)2 = 1

(1.2)

It now remains to substitute the sum of the third and fourth equations and the difference of
the fifth and sixth equations into the last equation to obtain 0 = 1. The equivalent polynomial
system is 

z1 + z2 = 0
z3 − z4 = 0
z5 + z9 = 0
z6 − z9 = 0
z10 + z8 = 0
z10 − z7 = 0
(z5 + z6)2 + (z7 + z8)2 = 1

which is inconsistent by the above reasoning. In this particular example, it is enough to differ-
entiate the first two equations of (1.1) only once to discover that the corresponding polynomial
system is inconsistent.

Our main result, Theorem 3.4, provides a uniform upper bound on the number of differentia-
tions needed for all systems of polynomial PDEs with the number of derivations, indeterminates,
total order, and total degree bounded by m, n, h, and d, respectively. This bound substantially
outperforms the previously known general upper bound [8]. Our result reduces the problem
to the polynomial effective Nullstellensatz, which has been very well studied, with many sharp
results available (see, for example, [3, 6, 14, 17, 18] and the references given there). On the
other hand, note that our problem is substantially more difficult than this problem, because the
polynomial effective Nullstellensatz corresponds (see Theorem 4.3) to the effective differential
Nullstellensatz restricted to systems of linear (d = 1) PDEs in one indeterminate (n = 1) with
constant coefficients, and we do not make these restrictions.

The effective differential Nullstellensatz was first addressed in [24], without providing a
complete solution. In the ordinary case (m = 1), the first bound, which was triple-exponential
in n and polynomial in d appeared in [9]. The first general formula for the upper bound
and first series of examples for the lower bound in the case of m derivations appeared in [8].
That formula is expressed in terms of the Ackermann function and is primitive recursive but
not elementary recursive in n, h, d for each fixed m and is not primitive recursive in m. A
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model-theoretic treatment was given in [11]. In the case of constant coefficients and m = 1, an
important breakthrough was made in [5], where a double-exponential bound in n was given.

In the present paper, we go much beyond the final result of [5] and use the new methods
discovered by logicians for fields with several commuting derivations [7, 22] to obtain a new
upper bound for the most general case: the coefficients do not have to be constant and we allow
any number m. For any m, our bound is polynomial in d. For m = 1, 2, a more concrete analysis
of the bound is given in Section 3.3, which shows that our bound is elementary recursive in
these cases. In particular, for m = 1, it is double-exponential in n and h and is polynomial
in d, as in [5], but does not require constant coefficients. For m = 2 and n = 1, it is triple-
exponential in h. Our Examples 4.2 and 4.6 show lower bounds that are polynomial in h and
d and exponential in mn.

The paper is organized as follows. We begin in Section 2 with introducing the concepts and
notation that we further use in the paper. Section 3 contains the main result of the paper,
Theorem 3.4, as well as a discussion of the bound for small numbers of derivations in Section 3.3.
The lower bound is given in Section 4.

2. Basic definitions

A detailed introduction to the subject can be found in [4, 15, 16, 20]. We will introduce
only what is used in the paper. A differential ring (K,∆) is a commutative ring K with a finite
set ∆ = {∂1, . . . , ∂m} of pairwise commuting derivations on K. We let

Θ =
{
∂i11 · . . . · ∂imm

∣∣ ij > 0, 1 6 j 6 m
}
.

For θ = ∂i11 · . . . · ∂imm , we let
ord θ = i1 + . . .+ im.

Let also

R = K{yi | 1 6 i 6 n} := K[θyi | θ ∈ Θ, 1 6 i 6 n] and

Rh = K
[
θyi
∣∣ 1 6 i 6 n, ord θ 6 h

]
, h > 0.

The ring R defined above is called the ring of differential polynomials in differential indetermi-
nates y1, . . . , yn and with coefficients in K. The ring R is naturally a differential ring. We will
use, what we will call, an orderly ranking > on Θ. This is a total order on Θ such that, for all
θ1, θ2 ∈ Θ, if ord θ1 > ord θ2, then θ1 > θ2. An example of such a ranking is given by ordering
the n-tuples of exponents in Θ degree-lexicographically, that is,

θ1 = ∂i11 · . . . · ∂imm < θ2 = ∂j11 · . . . · ∂jmm ⇐⇒ (ord θ1, i1, . . . , im) <lex (ord θ2, j1, . . . , jm) .
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For a subset F of a ring R, (F ) denotes the ideal generated by F and
√

(F ) denotes the radical
ideal generated by F . For a subset F of a differential ring R, [F ] denotes the differential ideal
generated by F in R and {F} denotes the radical differential ideal generated by F in R. Note
that, if Q ⊂ R, then {F} =

√
[F ].

A field L is called differentially closed if, for every F ⊂ L{y1, . . . , yn}, the existence of a
differential field M ⊃ L and (a1, . . . , an) ∈ Mn such that, for all f ∈ F , f(a1, . . . , an) = 0
implies the existence of (b1, . . . , bn) ∈ Ln with, for all f ∈ F , f(b1, . . . , bn) = 0. In other words,
L is differentially closed if and only if the inconsistency of a system of polynomial differential
equations with coefficients in L is preserved under differential field extensions of L.

Let K be a differential field of characteristic zero. The weak form of the differential Null-
stellensatz states that, for all F ⊂ K{y1, . . . , yn}, 1 /∈ [F ] if and only if, for all differentially
closed fields L ⊃ K, there exists (a1, . . . , an) ∈ Ln such that, for all f ∈ F , f(a1, . . . , an) = 0.
The strong form of the differential Nullstellensatz states that for all F ⊂ K{y1, . . . , yn} and
g ∈ K{y1, . . . , yn}, g ∈

√
[F ] if and only if, for all differentially closed fields L ⊃ K and all

(a1, . . . , an) ∈ Ln such that, for all f ∈ F , f(a1, . . . , an) = 0, we have g(a1, . . . , an) = 0.

3. Main result

We will start by showing several auxiliary results in Section 3.1. The main result, Theo-
rem 3.4, is contained in Section 3.2. This is continued with an analysis of our estimate for
particular numbers of derivations in Section 3.3.

3.1. Preparation

Let l > 0 and J ⊂ Rl be an ideal. For each k ∈ N, let J (k) be the ideal of the ring Rl+k
generated by the derivatives of the elements of J up to order k (cf. [21]), that is,

J (k) =
(
θg | g ∈ J, ord θ 6 k

)
.

For D ∈ Θ, let J (D) be the ideal of Rl+ordD generated by the derivatives of the elements of J
not exceeding D in an orderly ranking, that is,

J (D) =
(
θg | g ∈ J, θ 6 D

)
.

For every ideal J of the ring Rl, we let

J ′ =
√

(θJ | ord θ 6 1) ∩Rl.

We also let
αl =

(
l +m

m

)
.

Note that
dimK Rl = nαl.
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Lemma 3.1. Let J ⊂ Rl be an ideal, p > 0, and
(
J ′
)p ⊆ J (1). Then, for all k > 0,√

J ′(k) ⊆
√
J (kp+1).

Proof. Fix an orderly ranking on the ring of ∆-polynomials K{y}. Let D ∈ Θ, p ∈ N. Then
there exist βl ∈ K{y} and an element c ∈ Q such that

Dp
(
yp
)

= c(D(y))p +
∑

θ(l)y<Dy

βlθ(l)y. (3.1)

Indeed, let D = ∂i11 . . . ∂imm ∈ Θ(r). By the Leibniz rule, for every weight- and degree-
homogeneous differential polynomial z, the differential polynomial ∂z is homogeneous of degree
equal to deg z and of weight with respect to ∂ equal to that of z plus one. Hence,

Dp
(
yp
)

=
∑

Pp
k=1 l

k
1=pi1,...,

Pp
k=1 l

k
m=pim

c?∂
l11
1 . . . ∂

l1m
m y · . . . · ∂l

p
1

1 . . . ∂
lpm
m y, (3.2)

where c? are some elements of K. Consider a monomial in the right-hand side of (3.2). Suppose
that it is of order greater than r in every differential indeterminate that appears in it. Then,
for each k, 1 6 k 6 p, we have

lk1 + . . .+ lkm > r.

Adding p inequalities, we obtain

pr = p(i1 + . . .+ im) =
p∑
k=1

m∑
t=1

lkt > pr,

which is a contradiction. Therefore, for each monomial in the right-hand side of (3.2), one of
the factors has order 6 r, and we have:

Dp
(
yp
)

=
∑

Pp
k=1 l

k
1=pi1,...,

Pp
k=1 l

k
m=pimPm

k=1 l
1
k

>r,...,
Pm
k=1 l

p
k

>r

c?∂
l11
1 . . . ∂

l1m
m y · . . . · ∂l

p
1

1 . . . ∂
lpm
m y +

∑
l<r

βlθ(l)y, (3.3)

If, in a monomial from the first sum in (3.3), at least one of the factors had order greater than
r, then, as in the above, by adding p inequalities, we would arrive at a contradiction. Thus, we
obtain:

Dp
(
yp
)

=
∑

Pp
k=1 l

k
1=pi1,...,

Pp
k=1 l

k
m=pimPm

k=1 l
1
k
=r,...,

Pm
k=1 l

p
k
=r

c?∂
l11
1 . . . ∂

l1m
m y · . . . · ∂l

p
1

1 . . . ∂
lpm
m y +

∑
l<r

βlθ(l)y, (3.4)

Let the ranking be such that ∂1 > . . . > ∂m and, in the first sum in (3.4), for one of the factors,
we have lk1 > i1 for all k, 1 6 k 6 p. Adding these p inequalities, we obtain

pi1 =
p∑
k=1

lk1 > pi1,
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which gives a contradiction. Thus,

Dp
(
yp
)

=
∑

Pp
k=1 l

k
1=pi1,...,

Pp
k=1 l

k
m=pimPm

k=1 l
1
k
=r,...,

Pm
k=1 l

p
k
=r

l11=i1,...,l
p
1=i1

c?∂
l11
1 . . . ∂

l1m
m y · . . . · ∂l

p
1

1 . . . ∂
lpm
m y +

∑
θ(l)y<Dy

βlθ(l)y,

As before, note that, for each monomial from the first sum, one cannot have lk2 > i2 for all k,
1 6 k 6 p. Therefore, in this sum, we are left with just the monomials of order 6 r of the form

∂i11 ∂
i2
2 ∂

l13
3 . . . ∂

l1m
m y · ∂i11 ∂

i2
2 ∂

lp3
3 . . . ∂

lpm
m y,

moving the rest of the monomials to the other sum. We now see that, distributing all monomials
between these two sums accordingly, we obtain that the first sum contains only one summand
and, therefore, obtain (3.1).

We will prove the statement of the lemma now. By induction on k, we will show that, for
all D ∈ Θ of order k, √

J ′(D) ⊆
√
J (kp+1).

By the definition of J ′, there exists p > 1 such that, for every j′ ∈ J ′,

j′p =
∑
i

θiji, ji ∈ J, ord θi 6 1. (3.5)

Let k = 0, D ∈ Θ(0). By the definition of J ′,

√
J ′ = J ′ ⊆

√
J (1),

and the statement holds. Now let k := ordD > 0 and suppose that, for all D′ < D, we have√
J ′(D′) ⊆

√
J (kp+1).

By (3.1) for y = j′, (3.5) implies

c
(
D
(
j′
))p +

∑
D′<D

βD′D
′j′ = Dp

(∑
i

θiji

)
. (3.6)

Since

Dp

(∑
i

θiji

)
∈ J (kp+1)

and, by the inductive hypothesis, for all D′ < D, D′j′ ∈
√
J (kp+1) in (3.6), we have√

J ′(D) ⊆
√
J (kp+1).
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Lemma 3.2. Let s > 0,

I0 = (F0) ⊆ I1 = (F1) ⊆ ... ⊆ Is = (Fs) ⊆ Rl

be ideals of Rl, pj > 0, 0 6 j 6 s, and, for all i, 1 6 i 6 s,

Ii =
(
Ii−1

)′ and Ipii ⊂ I
(1)
i−1.

Then, for all q ∈ N, there exists k such that

I(q)
s ⊆

√
(F0)(k) and k 6 1 + p1 + p1 · p2 + . . .+ q · p1 · . . . · ps.

Proof. Let g ∈ I(q)
s . Then g ∈ I ′(q)s−1. Set J = Is−1. Then

J (1) =
(
Fs−1, ∂Fs−1

∣∣ ∂ ∈ ∆
)
, J ′ =

√
J (1) ∩Rl.

Applying Lemma 3.1 with k = q, we obtain

g ∈
√
I
(qps+1)
s−1 .

Again, by Lemma 3.1 with k = qps + 1 and J = Is−1, we have

g ∈
√
I
(ps−1(qps+1)+1)
s−2 .

Arguing similarly, we obtain

g ∈
√
I
(1+...(1+(1+psq)ps−1)...p1)
0 ⊆

√
(F0)(1+...(1+(1+qps)ps−1)...p1).

A field extension of K of the form L = K
(
aθi

∣∣∣ 1 6 i 6 n, ord θ 6 h
)

, where having θ in
the superscript is just a way to label the generators in a convenient way, is said to satisfy the
differential condition (cf. [22, page 10]) if, for each k, 1 6 k 6 m, there exits a derivation

Dk : K
(
aθi

∣∣∣ 1 6 i 6 n, ord θ 6 h− 1
)
→ L

extending ∂k such that
Dka

θ
i = a∂k·θi

whenever ord θ ≤ h− 1.
We let Tm,nh be the smallest integer > h such that if K

(
aθi

∣∣∣ 1 6 i 6 n, ord θ 6 Tm,nh

)
satisfies the differential condition, then there is a differential field extension (M,∂′1, . . . , ∂

′
m) of

(K,∆) containing K
(
aθi

∣∣∣ 1 6 i 6 n, ord θ 6 h
)

such that for all k, 1 6 k 6 m,

∂′ka
θ
i = a∂k·θi
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whenever ord θ ≤ h − 1. The number Tm,nh exists by [22, Theorem 4.10]. A recursive upper
bound for Tm,nh was first given in [7], and has been improved upon in [19, 10] (see also Section 3.3
for a summary of concrete estimates of Tm,nh ).

For all F ⊂ Rh, we let

I =
√

(F ), T = Tm,nh , m > 1, T = h+ 1, m = 1, I0 =
√
I(T ) ∩RT−1 (3.7)

and
Ik =

√(
g, ∂g | g ∈ Ik−1, ∂ ∈ ∆

)
∩RT−1 =

√
I
(1)
k−1 ∩RT−1. (3.8)

Lemma 3.3 (cf. [7, Proposition 4.1]). If 1 ∈ [F ], then, for all k > 1 such that Ik 6= RT−1,

dim Ik−1 > dim Ik.

Proof. Suppose that
dim Ik = dim Ik−1 (3.9)

for some k > 1. Fix such k. Since Ik−1 ⊂ Ik, by (3.9), there exists a minimal prime component
of Ik that is a minimal prime component of Ik−1. Pick such a component and denote it by Q.

Let P be a prime component of
√
I
(1)
k−1 ⊂ RT such that

Q = P ∩RT−1, (3.10)

which exists by [2, Proposition 16, Section 2, Chapter II]. Let

RT
/
P = K

[
aθi

∣∣∣ 1 6 i 6 n, ord θ 6 T
]
.

Then, by (3.10),

RT−1

/
Q = K[b], b :=

(
aθi

∣∣∣ 1 6 i 6 n, ord θ < T
)
.

We will show that the field

L = K
(
aθi

∣∣∣ 1 6 i 6 n, ord θ 6 T
)

satisfies the differential condition. For this, it is sufficient to show that, if

f ∈ K
[
xθi

∣∣∣ 1 6 i 6 n, ord θ 6 T − 1
]

and f(b) = 0,

then ∑
16i6n

ord θ6T−1

∂f

∂xθi
(b)a∂k·θi + f∂k(b) = 0 (3.11)
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(here f∂k is the polynomial obtained from f by applying ∂k to its coefficients.) Note that
Q(1) ⊂ P . Indeed, let J be the intersection of all minimal prime components of Ik−1 not equal
to Q, h ∈ Q, ∂ ∈ ∆, and g ∈ J \Q be such that hg ∈ Ik−1. By [15, Lemma 1.3, Chapter I],

g · ∂h ∈
√
I
(1)
k−1 ⊂ P.

Since g /∈ Q and g ∈ RT−1, g /∈ P . Hence, ∂h ∈ P .
Finally, since f(b) = 0, f ∈ Q. Hence, ∂f ∈ Q(1) ⊂ P , which implies (3.11). By the

choice of T and [22, Theorem 4.10], if L satisfies the differential condition, Quot(R/{Q}) is a
non-trivial extension of the differential field (K,∆), which contradicts 1 ∈ [F ] ⊂

[
Ik
]
.

3.2. Main result

Theorem 3.4. Let h,D > 0, F ⊂ Rh, degF 6 D. Then 1 ∈ [F ] if and only if there exists
k > 0 such that

k 6 (nαT−1D)2
O(n3α3

T )
and 1 ∈ (F )(k),

where αT =
(
T+m
m

)
and T is any function of m, n, and h for which the statement of Lemma 3.3

holds, for instance, T = Tm,nh , defined as above (see Section 3.3 for concrete estimates of this
T ).

Remark 3.5. If the statement of Lemma 3.3 is improved by finding a function that grows
slower than Tm,nh such that the conclusion of the lemma still holds, one will not have to reprove
Theorem 3.4 to have the correspondingly improved bound.

Proof. If 1 ∈ (F )(k), then 1 ∈ [F ] by definition. We will now show the reverse implication. Let
s = dimZ(F ) and also

a := nαT−1, b := nαT , c := O
(
n2α2

T−1

)
, (3.12)

where the assignment of c in the above is simply a way of shortening formulas below and
is to be treated as just a replacement of the O-expression by the symbol c. Then, by [12,
Proposition 2.3],

degZ(F ) = degZ(I) 6 Dnαh .

Hence, by [5, Proposition 4], the ideal I (as well as the ideal I(T ), see (3.8)) can be generated
by polynomials of degree at most

(nαhDnαh)2
O(snαh)

6 (nαh)2
O(n2α2

h)
Dnαh·2

O(n2α2
h)

= (nαhD)2
O(n2α2

h)
=: dF .

Then

degZ(I0) 6 dnαTF = (nαhD)b2
O(n2α2

h)
=: D0
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and the ideal I0 can be generated by polynomials of degrees at most

(aD0)2
c

= (a)2
c

(nαhD)b2
O(n2α2

h)+c

=: d0.

Moreover, by [14, Theorem 1.3],√
I(T )

p0
⊂ I(T ), p0 := dbF .

Hence,
Ip00 ⊂ I(T ) ∩RT−1.

Continuing this way, we obtain that

degZ(Ii+1) 6 dnαTi =: Di+1

and the ideal Ii+1 can be generated by polynomials of degrees at most

di+1 := a2c(di)b2
c

= a2c
(
a2cdb2

c

i−1

)b2c
= a2c+b22c

db
222c

i−1

= a2c+b22c
(
a2cdb2

c

i−2

)b222c

= a2c+b22c+b223c
db

323c

i−2 .

Therefore,

di+1 = a
2c

qP
j=0

(b2c)j

d
(b2c)q+1

i−q = a
2c

iP
j=0

(b2c)j

d
(b2c)i+1

0

= a2c
(b2c)i+1−1
b2c−1 d

(b2c)i+1

0 6
(
a2cd0

)(b2c)i+1

and

Di+1 6
(
a2cd0

)b(b2c)i
.

Again, by [14, Theorem 1.3],√
I
(1)
i

pi+1

⊂ I(1)
i , pi+1 :=

(
a2cd0

)b(b2c)i
> dbi , i > 0.

Hence,
I
pi+1
i+1 ⊂ I

(1)
i ∩RT−1.

By Lemma 3.3, since dimRT−1 = a, 1 ∈ Ia. By Lemma 3.2 applied to (3.8),

1 ∈ I(1+p1+p1·p2+...+p1·...·pa)
0 .

Again by Lemma 3.2, for all q > 0,

I
(q)
0 ⊂

√
I(T+1+qp0).
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Hence,
1 ∈ I(T+1+p0(1+p1+p1·p2+...+p1·...·pa)).

By Lemma 3.1 applied to (3.7), we obtain

1 ∈(F )(1+p0(T+1+p0(1+p1+p1·p2+...+p1·...·pa)))

= (F )(1+p0(T+1+...(1+(1+pa)pa−1)...p0)) = (F )(p0(T+p0·...·pa)), (3.13)

with the latter equality following from the definition of c via the O-symbol. Note that

p2
0p1 · . . . · pa = d2b

F

(
a2cd0

)b a−1P
j=0

(b2c)j

= d2b
F

(
a2cd0

)b„ (b2c)a−1
b2c−1 −1

«

6 d2b
F

(
a2cd0

)b(b2c)a
= d2b

F

(
a2dbF

)(b2c)a+1

6 (adF )b((b2
c)a+1+2) = (adF )2

cb

= a2cb (nαhD)2
O(n2α2

h)+cb

= a2cb (nαhD)2
cb

= (aD)2
cb

,

(again, the equalities hold because of the O-definition of c and also because αT−1 > 1 if h > 1
and k = a = 0 if h = 0) and the result now follows by substituting (3.12) in the above and
using (3.13).

Corollary 3.6. (cf. [5, Corollary 21]) Let h,D > 0, F ⊂ Rh, f ∈ Rh, and
max{deg f, degF} 6 D. Then f ∈

√
[F ] if and only if there exists k > 0 such that

k 6 (nαT ′−1D)2
O(n3α3

T ′)
and f ∈

√
(F )(k),

where T ′ := Tm,n+1
h .

Proof. If f ∈
√

(F )(k), then f ∈
√

[F ] by definition. Let f ∈
√

[F ]. Then 1 ∈ [1 − tf, F ] ⊂
K{y1 . . . , yn, t}. By Theorem 3.4,

1 ∈
(

(1− tf)(k) , F (k)
)
,

for which we used the properties of O to go down from D+ 1 (which appears because deg tf =
deg f + 1) to D and from n + 1 to n outside of T ′. As usual, by substituting 1/f into t and
clearing out the denominators, we obtain the result.

Remark 3.7. Note that, for m > 2, T 6= O(T ′) (see Section 3.3), and so we do not replace T ′

by T in the corollary. However, for m = 1, we simply have T ′ = T = h+ 1.

12



3.3. Concrete values of the number of derivations

Recall that, if m = 1, then T = h+ 1. Then the bound from Theorem 3.4 is

(n(h+ 1)D)2
O(n3(h+2)3)

and is better than the bound from [5, Corollary 19], because our result holds for non-constant
coefficients.

If m = 2, by [10], T = T (n, h) ≤ 2nh. Therefore, in this case, the bound from Theorem 3.4
is (

n2n−1h(2nh+ 1)D
)2O(n326nh6)

.

According to [10], when there is only one differential indeterminate (n = 1), then T =
T (m,h) ≤ A(m,h − 1) − 1. Hence, for a small number of derivations, the value of T is quite
manageable. For example, if m = 3 and n = 1, then T = T (h) ≤ 4 · 2h − 3. As a result, in this
case, the bound from Theorem 3.4 is triple-exponential in h.

For comparison, note that the bound from [8, Theorem 1], A(m + 8,max(n, h, d)), has a
substantially higher growth rate, as, for example, A(3, x) is exponential in x and A(4, x) is a
tower of exponentials of length x + 3, and the minimal possible value here, A(9, 1), is out of
reach for any existing computer even to output.

4. Lower bound

The examples in [8] show that the lower bound for the effective differential Nullstellensatz
is exponential in the number of variables and the number of derivations and polynomial in
the degree of the system. We expand on these results, first by observing how the order of the
system affects the lower bound.

Example 4.1. Consider the system F =
{
yd1 , y1 − yd2 , . . . , yn−1 − ydn, 1− y

(h)
n

}
⊂

K{y1, . . . , yn} =: R with one derivation. A particular and essential case of this, h = 1, was
considered in an unpublished manuscript by York Kitajima, and the argument in the present
example is based on Kitajima’s argument and extends it, with extra subtleties. Recall that for
s > 2 and m,m1, . . . ,ms ∈ N with m1 + . . .+ms = m, the multinomial coefficient is(

m

m1, . . . ,ms

)
=

m!
m1! · . . . ·ms!

.

For l > 1, denote by Ml the multinomial coefficient

Ml =
(

dlh

dl−1h, . . . , dl−1h

)
,

13



where this multinomial coefficient contains d terms. We claim that (F )(j) ⊂ Ij where

I0 =
(
y1, y2, . . . , yn−1, yn, 1− y(h)

n

)
Ij =

(
Ij−1, y

(j)
1 , y

(j)
2 , . . . , y

(j)
n−1, y

(j)
n , y(h+j)

n

)
1 6 j 6 h− 1

Ij =

(
Ij−1, y

(j)
1 , . . . , y

(j)
n−i −

i∏
l=1

Mdi−l

l , y
(j)
n−i+1, . . . , y

(j)
n−1, y

(h+j)
n

)
j = dih, 1 6 i 6 n− 1

Ij =
(
Ij−1, y

(j)
1 , . . . , y

(j)
n−1, y

(h+j)
n

)
otherwise, j 6 dnh− 1.

Indeed, we can show this by induction on j. The base case j = 0 is clear. Now assume
(F )(k) ⊂ Ik for all k < j. By induction, we only need to show the inclusion of unmixed
monomials, i.e. powers of a single derivative of a yi. The generalized Leibniz rule says that for
all s > 1, m > 0, and f1, . . . , fs ∈ R,(

s∏
r=1

fr

)(m)

=
∑

m1+...+ms=m

(
m

m1, . . . ,ms

) s∏
r=1

f (mr)
r .

In our system F , we have s = d. Unmixed monomials thus occur when m1 = . . . = md = m/d.
When j 6= dih, y(j/d)

i ∈ Ij for all i, 1 6 i 6 n, so there is nothing to prove. The case we must
consider is when j = dih, in which case each mα in the multinomial coefficient is di−1h and
y
(dih)
n−i /∈ Idih.

It remains to show that
(
yn−i − ydn−i+1

)(dih) ∈ Idih, since y(di−1h)
n−i+1 /∈ Idi−1h by construction.

Observe that (
yn−i − ydn−i+1

)(dih)
= y

(dih)
n−i −Mi

(
y
(di−1h)
n−i+1

)d
+ g,

where g ∈ K{y} contains no unmixed monomials, and so is in Idih. Thus, it suffices to show
that

y
(dih)
n−i −Mi

(
y
(di−1h)
n−i+1

)d
∈ Idih.

By construction,

y
(di−1h)
n−i+1 −

i−1∏
l=1

Mdi−l−1

l ∈ Idi−1h ⊂ Idih.

We can thus write

y
(dih)
n−i −Mi

(
y
(di−1h)
n−i+1

)d
=

(
y
(dih)
n−i −

i∏
l=1

Mdi−l

l

)

−Mi

d−1∑
α=0

[(
i−1∏
l=1

Mdi−l−1

l

)α (
y
(di−1h)
n−i+1

)d−1−α
](

y
(di−1h)
n−i+1 −

i−1∏
l=1

Mdi−l−1

l

)

in terms of elements of Idih, completing the induction step and proving that F (j) ⊂ Ij for all
j, 1 6 j 6 dnh− 1.

14



Since 1 /∈ Ij for all j, 0 6 j 6 dnh− 1, then 1 /∈ (F )(d
nh−1). Observe that(

yd
n

n

)(dnh)

=
((

yd
n

n

)(h)
)((dn−1)h)

=


 ∑
n1,1+...+n1,dn=h

(
h

n1,1, . . . , n1,dn

) dn∏
i=1

y(n1,i)
n

(h)


((dn−2)h)

=

 ∑
n1,1+...+n1,dn=h

∑
n2,1+...+n2,dn=h

(
h

n1,1, . . . , n1,dn

)(
h

n2,1, . . . , n2,dn

)

×
dn∏
i=1

y(n1,i+n2,i)
n

)(h)
((dn−3)h)

= . . . =
∑

n1,1+...+n1,dn=h

. . .
∑

ndn,1+...+ndn,dn=h

 dn∏
j=1

(
h

nj,1, . . . , nj,dn

) dn∏
i=1

y
(n1,i+...+ndn,i)
n

 .

Since y(h)
n ≡ 1 modulo the system F , then y

(l)
n ≡ 0 for all l > h, so the only non-zero terms in

this sum will be powers of y(h)
n . We thus have that, modulo F ,

(
yd

n

n

)(dnh) ≡ 1, so 1 ∈ (F )(d
nh)

and 1 /∈ (F )(d
nh−1).

Example 4.2. Consider the following collections of differential polynomials in K{y1, . . . , yn}
with derivatives ∆ = {∂1, . . . , ∂m}, with d, h > 1:

G1 =
{

(∂1y1)d, ∂1y1 − (∂2y1)d, . . . , ∂m−1y1 − (∂my1)d
}

Gi =
{
∂myi−1 − (∂1yi)d, ∂1yi − (∂2yi)d, . . . , ∂m−1yi − (∂myi)d

}
2 6 i 6 n− 1

Gn =
{
∂myn−1 − (∂1yn)d, ∂1yn − (∂2yn)d, . . . , ∂m−1yn − (∂myn)d, 1− ∂h+1

m yn
}
.

Similar to what is done in [8], if we replace F in the previous example by G =
⋃n
i=1Gi, then

the elements of G will need to be differentiated a minimum of dmnh times in order to reduce
the system to 1, so 1 ∈ (G)(d

mnh) and 1 /∈ (G)(d
mnh−1).

In these examples, we see that the lower bound for having f ∈ (G)(k) is exponential in
the number of derivations and number of variables and linear in the order of the system.
The systems of partial differential equations presented in these examples are non-linear. The
existence of a lower bound for linear systems that is double-exponential in the number of
derivations m is shown in [23]. It is currently unknown how to combine this result with the
non-linear examples presented here to produce a lower bound that more closely resembles the
current upper bound.

We now present an alternative approach, using the lower bound on the effective polynomial
Nullstellensatz, to construct an example of a linear system G ⊂ K{y1, . . . , yn} with f ∈ (G)(k)
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but f /∈ (G)(k−1), where k is exponential in the number of derivations and the number of
variables and polynomial in the order of the system. We believe that this approach can be
extended to the case of non-linear systems to produce better lower bounds.

We use a system of polynomials to construct a system of differential polynomials. We
begin with polynomials in K[X1, . . . , Xm] and construct differential polynomials in K{y}
with derivations ∆ = {∂1, . . . , ∂m}, where K is constant with respect to each ∂i. Given
α = (α1, . . . , αm) ∈ Nm, denote Xα = Xα1

1 · . . . ·Xαm
m and ∂α = ∂α1

1 · . . . · ∂αmm .
Suppose we have f1, . . . , fr ∈ k[X1, . . . , Xm]. For each i, 1 6 i 6 r, there exist

αi,1, . . . , αi,Ni ∈ Nm and ci,1, . . . , ci,Ni ∈ K such that

fi =
Ni∑
j=1

ci,jX
αi,j .

We then define f̃i ∈ K{y} to be

f̃i =
Ni∑
j=1

ci,j∂
αi,jy.

Similarly, given f =
N∑
j=1

sjX
γj ∈ K[X1, . . . , Xm], we can define f̃ =

N∑
j=1

sj∂
γjy ∈ K{y}.

Consider the system G = {f̃1, . . . , f̃r}.

Theorem 4.3. Let f, f1, . . . , fr ∈ K[X1, . . . , Xm], f̃ , f̃1, . . . , f̃r ∈ K{y}, and G ⊂ K{y} be
defined as above. Suppose f ∈ (f1, . . . , fr) and let k be the lower bound for the degree of the
coefficients of the fi in any possible representation of f . Then f̃ ∈ (G)(k) but f̃ /∈ (G)(k−1).

Proof. Suppose f ∈ (f1, . . . , fr), so there exist g1, . . . , gr ∈ K[X1, . . . , Xm] such that f =
g1f1 + . . .+ grfr. As with the fis, there exist βi,j ∈ Nm and di,j ∈ K, j = 1, . . . ,Mi, such that
we can write each gi as

gi =
Mi∑
j=1

di,jX
βi,j .

It is then easy to see that

M1∑
j=1

d1,j∂
β1,j

(
f̃1

)
+ . . .+

Mr∑
j=1

dr,j∂
βr,j

(
f̃r

)
=

N∑
j=1

sj∂
γjy = f̃ . (4.1)

Since G = {f̃1, . . . , f̃r}, we thus have that f̃ ∈ [G], and since the maximum degree of the gis is
k, the maximum order of the ∂βi,j s is also k, so f̃ ∈ (G)(k).

It remains to show that f̃ /∈ (G)(k−1). Suppose for a contradiction we have f̃ ∈ (G)(l) for
some l < k, so we can write

f̃ =
K1∑
j=1

α1,j(y)∂σ1,j

(
f̃1

)
+ . . .+

Kr∑
j=1

αr,j(y)∂σr,j
(
f̃r

)
(4.2)
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where the αi,j ∈ K{y} and ord ∂σi,j 6 l < k.
To complete the proof, we need the following fact about systems of homogeneous degree

1 polynomials. Suppose p, p1, . . . , ps ∈ K[X1, . . . , Xn] are homogeneous degree 1 polynomials.
If there exist q1, . . . , qs ∈ K[X1, . . . , Xn] such that p = q1p1 + . . . + qsps, then we can in fact
assume that all of the qi are constant. Indeed, write p = a1X1 + . . .+ anXn. Assume without
loss of generality that an 6= 0. Since p = q1p1 + . . .+ qsps, then

Xn = q0 +
q1
an
p1 + . . .+

qs
an
ps, q0 := − a1

an
X1 − . . .−

an−1

an
Xn−1.

Thus, it suffices to prove the result when p = Xn.
For this, we order the variables so that X1 > . . . > Xn. Applying the Gauss-Jordan

elimination to the system {pi = 0}, we obtain a new system {p′i = 0} that is in reduced row
echelon form. Moreover, every p′i is a linear combination of p1, . . . , pr (with coefficients in K)
and vice versa. There are two cases to consider. If Xn is a leading variable in {p′i = 0}, then
because of the ordering on the Xi, we must have in fact that Xn is one of the p′i, and so the
proof is complete.

Therefore, suppose Xn is not a leading variable of {p′i = 0}. By assumption, Xn ∈
(p1, . . . , ps) = (p′1, . . . , p

′
s). This implies that for every solution (α1, . . . , αn) of the system

{pi = 0} (or equivalently {p′i = 0}), αn = 0. Thus, Xn cannot be a free variable of {p′i = 0},
since there is a solution of the system {p′i = 0} for every possible value of any free variable
(provided that a solution exists, which in this case is true, given by (0, . . . , 0)).

Now, since the ∂γjy and ∂σi,j (f̃i) in (4.2) are all homogeneous of degree 1, by the above
discussion, we can assume that the αi,j are all constants bi,j ∈ K, so we obtain

f̃ =
K1∑
j=1

b1,j∂
σ1,j

(
f̃1

)
+ . . .+

Kr∑
j=1

br,j∂
σr,j

(
f̃r

)
. (4.3)

Let

hi =
Ki∑
j=1

bi,jX
σi,j .

Based on our construction of (4.1) we can go backwards and deduce, using (4.3), that f =
h1f1 + . . . + hrfr. Since we know that ord ∂σi,j 6 l, this means that deg hi 6 l, 1 6 i 6 r,
contradicting the fact that the maximum degree must be at least k > l.

Remark 4.4. If f = 1 in Theorem 4.3, then f̃ = y. Thus, by considering the system G1 =
{G, 1− ty} ⊂ K{t, y}, we have 1 ∈ (G1)(k) and 1 /∈ (G1)(k−1).

Example 4.5. For m > 2, h > 1, consider the following system of polynomial equations in
K[X1, . . . , Xm]; cf. [3, page 578]:

f1 = Xh
1 , f2 = X1 −Xh

2 , . . . , fm−1 = Xm−2 −Xh
m−1, fm = 1−Xm−1X

h−1
m .
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It is shown that 1 ∈ (f1, . . . , fm) and if 1 = g1f1 + . . .+ gmfm, then

deg(g1) > hm − hm−1 = hm−1(h− 1).

Thus, if k is the maximum degree of the gi (that is smallest possible over the collection of all
gi so that 1 =

∑
gifi), we must have that k > hm−1(h− 1).

Let us use this polynomial system to create a system of differential polynomial in K{y}
with derivations ∆ = {∂1, . . . , ∂m}. Let G be the system in K{y} given by

f̃1 = ∂h1 y, f̃2 = ∂1y − ∂h2 y, . . . , f̃m−1 = ∂m−2y − ∂hm−1y, f̃m = y − ∂m−1∂
h−1
m y. (4.4)

By the above discussion, we have y ∈ (G)(k) where k > hm−1(h− 1) and y /∈ (G)(h
m−1(h−1)−1).

We have thus constructed a linear system G in which the number of derivations of the elements
of G needed is exponential in the number of derivatives and polynomial in the order of the
system.

We can construct an explicit linear combination of the f̃is and their derivatives equaling y
that requires exactly hm−1(h−1) derivations of f̃1. Explicit gis are constructed in [3] such that
1 = g1f1 + . . .+ gmfm and deg(g1) = hm−1(h− 1) by observing that, setting D = hm−1(h− 1),

XD
m

(
Xh

1

)
−
m−1∑
i=2

XD
m

(
Xhi−1

i−1 −
(
Xh
i

)hi−1
)

+
(

1−
(
Xm−1X

h−1
m

)hm−1
)

= 1. (4.5)

Thus, if we set

g1 = XD
m

gi = XD
m

hi−1−1∑
j=0

Xhi−1−1−j
i−1

(
Xh
i

)j 2 6 i 6 m− 1

gm =
hm−1−1∑
j=0

(
Xm−1X

h−1
m

)j
,

then using (4.5), we have 1 = g1f1 + . . .+ gmfm.
We can use these gis to find the desired linear combination of the f̃is and their derivatives.

Using the corresponding identities in K[X1, . . . , Xm], we obtain that

∂h
i−1

i−1 y − ∂h
i

i y =
hi−1−1∑
j=0

∂h
i−1−j−1
i−1 ∂hji (fi) 2 6 i 6 m− 1

y − ∂h
m−1

m−1 ∂
hm−1(h−1)
m y =

hm−1−1∑
j=0

∂jm−1∂
j(h−1)
m (fm) .
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Thus, setting D = hm−1(h− 1), we can directly adapt (4.5) to see that

∂Dm
(
∂h1 y

)
−
m−1∑
i=2

∂Dm

(
∂h

i−1

i−1 y − ∂h
i

i y
)

+
(
y − ∂h

m−1

m−1 ∂
hm−1(h−1)
m y

)
= y. (4.6)

This gives us a linear combination of the f̃is and their derivatives that requires exactly hm−1(h−
1) derivations of f̃1, which we know is minimal by the polynomial case.

Example 4.6. We can use (4.6) to generalize this result to the case of multiple variables. We
will define a system in K{y1, . . . , yn} with derivatives ∆ = {∂1, . . . , ∂m}. Let m > 2, h > 1.
For n = 1, we have (4.4). For n > 2, consider the collection of differential polynomials:

G1 =
{
∂h1 y1, ∂1y1 − ∂h2 y1, ∂2y1 − ∂h3 y1, . . . , ∂m−2y1 − ∂hm−1y1

}
Gi =

{
∂m−1yi−1 − ∂h1 yi, ∂1yi − ∂h2 yi, . . . , ∂m−2yi − ∂hm−1yi

}
2 6 i 6 n− 1

Gn =
{
∂m−1yn−1 − ∂h1 yn, ∂1yn − ∂h2 yn, . . . , ∂m−2yn − ∂hm−1yn, yn − ∂m−1∂

h−1
m yn

}
.

Then let G =
⋃n
i=1Gi. We claim that yn ∈ (G)(k) where k > hn(m−1)(h− 1) and

yn /∈ (G)(h
n(m−1)(h−1)−1). (4.7)

We can write a system similar to the one in (4.6) to produce yn in terms of the elements of G and
their derivatives needing exactly hn(m−1)(h− 1) derivations of ∂h1 y1. Let E = hn(m−1)(h− 1).
Then we have

∂Em
(
∂h1 y1

)
−

n∑
j=1

m−1∑
i=2

∂Em

(
∂h

(j−1)(m−1)+i−1

i−1 yj − ∂h
(j−1)(m−1)+i

i yj

)

−
n−1∑
j=1

∂Em

(
∂h

j(m−1)

m−1 yj − ∂h
j(m−1)+1

1 yj+1

)
+
(
yn − ∂h

n(m−1)

m−1 ∂h
n(m−1)(h−1)
m yn

)
= yn.

By the same argument that shows the minimality of hm−1(h− 1) in Example 4.5, we know
that we must differentiate ∂h1 y1 at least E times. This shows (4.7) and there is a k > E with
yn ∈ (G)(k).
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