
SECTIONS OF A DIFFERENTIAL SPECTRUM

ALEXEY OVCHINNIKOV

Abstract. We construct sections of a structure presheaf of rational functions

on a differential spectrum using only localization and projective limits. For

this purpose we introduce a special form of a multiplicative system generated
by one differential polynomial and call it D-localization. This technique allows

us to obtain sections of a differential spectrum of a differential ring R with-

out computation of diffspecR. We compare our construction with Kovacic’s
structure sheaf and with the results obtained by Keigher in [8] and discuss

computational aspects. We prove that if R is a factorial differential ring then

our construction gives the same answer as Kovacic’s one. Moreover, if R is an
RAAD ring then applying sheafification to our preasheaf one gets Kovacic’s

structure sheaf.

1. Introduction

In [13] Jerald Kovacic presented his approach to construction of differential
schemes. He generalized Hartshorne’s point of view on commutative schemes (see
[3]). We propose another way (which was started in [15]) to define differential
(affine) schemes using Shafarevich’s approach to commutative schemes described in
[17].

It is a natural problem to investigate when these approaches give the same an-
swer. In [8] William Keigher solved this problem for very nice differential rings. We
do this for a different class of differential rings. It is actually a different result that
is shown in Example 1. Theorem 1 together with Theorem 2 from Section 4 tell us
that Kovacic’s approach is equivalent to ours for a certain class of differential rings.
Namely, this is true for factorial differential rings also called unique factorization
differential domains.

Our goal is to represent sections on principal open subsets, in particular global
sections, as clear as it is possible. In commutative algebra these sections are lo-
calizations of a given ring over certain multiplicative systems. In Section 3 we
generalize these multiplicative systems in order to represent sections in the sim-
plest way. In Section 6 a method for computing these multiplicative systems is
presented. Example 4 shows how easy one can compute global sections using our
presentation of them.

Although the presheaf constructed in this paper not always a sheaf (it is demon-
strated in Example 2 from Section 5), one can apply sheafification to obtain Ko-
vacic’s structure sheaf. This works fine for a big class of differential rings, namely,
RAAD rings introduced in [12] that is a generalization of reduced rings. Section 7 is
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devoted to a study of this problem. The result about RAAD rings and sheafification
is contained in Theorem 3.

2. Basic notions

We consider differential rings and fields. A differential ring is a commutative
one with the unity and a basic set of differentiations ∆ = {δ1, . . . , δn} on the ring.
Differential ideals in differential rings are the ideals stable under the action of ∆.

We refer to [9, 10, 16, 18] for the basic definitions concerning differential algebra.
Recent tutorials on constructive differential ideal theory that are very useful in our
computations are presented in [5, 6, 18]. We denote elements of a differential ring
by f, g, h, . . . and use the notation p, q, a, b for ideals. Let R be a differential ring
and F ⊂ R. For the differential and radical differential ideal generated by F in R,
we use the notation [F ] and {F}, respectively.

Definition 1. Let R be a differential ring. Then diffspecR = X is the set of prime
differential ideals of R with the Kolchin topology: closed subsets are

V(E) = {p ∈ diffspecR : E ⊂ p}

for E ⊂ R. For any f ∈ R denote D(f) = diffspecR \ V(f).

We use notions of projective (inverse) and injective (direct) limits (see, e.g., [3,
Chapter II, Exercises 1.10, 1.11]). They are denoted by lim←− and lim−→, respectively.
We deal with presheaves, sheaves, and their stalks (see [3, pages 61, 62]).

3. Structure sheaf and presheaves on diffspecR

3.1. D-localization. Let R be a differential ring and f ∈ R \ {0}. Let D be the
set of linear differential operators with coefficients in R. Construct a differential
ring RS∞(f) as follows. Let

Sf = {s ∈ R | s ∈ D−1
1 ((D−1

2 ((. . . (D−1
k (fnk))nk−1 . . .)n2))n1),

Di ∈ D, ni ∈ N ∪ {0}, 1 6 i 6 k},

where D−1
i (X) means the preimage of set X w.r.t the operator Di. Let S∞(f) be

the multiplicative set generated by Sf .
This is a very natural way to define denominators. It comes from the problem of

defining of differential ring homomorphisms between rings of sections on principal
open subsets. Proposition 3 will show that our multiplicative systems S∞(f) coin-
cide with the multiplicative systems SKeigher(f) introduced by William F. Keigher
(see [8, Section 2]).

Let D(f) ⊂ D(g), that is f ∈ {g}. If we are in characteristic zero then fm = Dg
for some differential operator D ∈ D and m ∈ N. More generally, if R is a Keigher
ring (in such a ring {F} =

√
[F ] for any set F ⊂ R, see [13, Definition 2.3]) this is

true. Hence, in this case the formula for Sf simplifies and needs just one differential
operator for each s ∈ R. This will become clear in the proof of Proposition 1.

Consider an arbitrary characteristic and f, g ∈ R. Construct a differential ring
homomorphism ϕg,f : RS∞(g) → RS∞(f). Let a

s ∈ RS∞(g). Hence, s = s1 · . . . · st

and
sj ∈ D−1

1,j ((D−1
2,j ((. . . ((D−1

kj ,j(gnk,j))nk−1,j) . . .)n2,j))n1,j)

for all 1 6 j 6 t.
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One can define ϕg,f (a
s ) = a

s′1·...·s′t
, where

s′j ∈ D−1
1,j ((. . . ((D−1

kj ,j((D−1(fm))nk,j))nk−1,j) . . .)n1,j)

for all 1 6 j 6 t. This definition is logical from the functional point of view, but it is
not clear why ϕg,f is correctly defined. In Defintion 2, we use a “more differential
algebraic” approach better and clearer than the definition given by the previous
formula.

Lemma 1. [7, Lemma 1.6] Let S, T ⊂ R. Then {S}{T} ⊂ {ST}.

The proof of the following proposition is due to Jerald Kovacic in the case of an
arbitrary characteristic.

Proposition 1. Let R be a differential ring. For any elements f, g ∈ R we have
g ∈ S∞(f) iff f ∈ {g}.

Proof. Rewrite the definition of Sf in the following way:

S0
f = f,

Sr
f = {g ∈ R |Dg = he for some D ∈ D, e ∈ N ∪ {0} and h ∈ Sr−1

f },

Sf =
⋃
r>0

Sr
f .

Consider the construction of a smallest radical differential ideal containing a set
Σ as in [9, page 122]:

{Σ}0 = Σ,

{Σ}1 =
√

[Σ],

{Σ}r =
√

[{Σ}r−1],

{Σ} =
⋃
r>0

{Σ}r.

Hence, by induction, we have {
√

[g]}r−1 = {g}r for all r > 1. Moreover,

g ∈ Sr
f ⇐⇒ f ∈ {g}r,

g ∈ Sf ⇐⇒ f ∈ {g}.

Let us prove this by induction on r. For r = 0 we have nothing to prove.
Let r > 0 and g ∈ Sr

f . Then Dg = he for some D ∈ D, e ∈ N ∪ {0}, and
h ∈ Sr−1

f . Hence, h ∈
√

[g]. By induction, we have

f ∈ {h}r−1 ⊂ {
√

[g]}r−1 = {g}r.

Suppose now that f ∈ {g}r. Then, there exists e ∈ N such that fe ∈ [{g}r−1],
that is, there exist D ∈ D and h ∈ {g}r−1 with fe = Dh. Then, exactly by the
definition of Sn

f and Sn
h , we have

Sn
f ⊃ Sn−1

h

for all n > 1. By the induction hypothesis, g ∈ Sr−1
h ⊂ Sr

f .
Now let us prove that Sf = S∞(f). This is sufficient to finish the proof. We

have Sf ⊂ S∞(f). Let g ∈ S∞(f), that is, there exist g1, . . . , gs ∈ Sf such that
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g = g1 · . . . · gs. We have just proved that f ∈ {gi} for all i, 1 6 i 6 s. Then, by
Lemma 1,

fs ∈ {g1} · . . . · {gs} ⊂ {g1 · . . . · gs} = {g}.
Thus, f ∈ {g} and g ∈ Sf . �

Corollary 1. One can use Proposition 1 to define the multiplicative system S∞(f)
associated with an element f of a differential ring R.

Corollary 2. A differential unit a ∈ R is such an element that 1 ∈ {a}. Hence,
a ∈ R is a differential unit iff a ∈ S∞(1). Moreover, for any f ∈ R we have
a ∈ S∞(f).

Proof. The first assertion follows from Proposition 1 directly. For the second one
since 1 ∈ {a}, we have f ∈ {a} and then a ∈ S∞(f) again by Proposition 1. �

Proposition 2 shows that S “inverts” the inclusions of principal open subsets.

Proposition 2. Let R be a differential ring, f, g ∈ R \ {0}, and D(g) ⊃ D(f).
Then S∞(g) ⊂ S∞(f).

Proof. Let h ∈ S∞(g). By Proposition 1 we obtain that g ∈ {h}. Since D(g) ⊃ D(f)
we have f ∈ {g}. Hence, f ∈ {h} and Proposition 1 implies that h ∈ S∞(f). �

Hence, we can construct well-defined morphisms.

Definition 2. Let f, g ∈ R \ {0} and D(g) ⊃ D(f). Then ϕg,f (a
s ) = a

s for any
a
s ∈ RS∞(g).

We are going to construct a structure presheaf on diffspecR. For this purpose,
we define sections O(D(f)) on D(f) for all f ∈ R as follows: O(D(f)) = RS∞(f).
Then, we use the following formula for all open subsets U of diffspecR:

O(U) = lim←−
D(f)⊂U

O(D(f)),

where the projective system {O(D(f))} is supplied with the set of morphisms

{ϕg,f : O(D(g))→ O(D(f)) if D(g) ⊃ D(f)}.

Remark 1. Note that this construction is correctly defined on principal open sub-
sets:

RS∞(f) = lim←−
D(g)⊂D(f)

O(D(g)).

Indeed, as we have already emphasized, there exist homomorphisms ϕf,g : RS∞(f) →
RS∞(g) if D(g) ⊂ D(f). The universal property of RS∞(f) is a consequence of the
fact that O(D(f)) is an element of the projective system of rings of this projective
limit.

The following proposition is due to Jerald Kovacic. In [8, page 164] the following
multiplicative systems were introduced:

SKeigher(f) =
⋂
{R \ p | p ∈ D(f)}.

Proposition 3. If f ∈ R then SKeigher(f) = S∞(f).
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Proof. Let g ∈ S∞(f). Then f ∈ {g} by Proposition 1. Suppose that p ∈ D(f),
that is, f /∈ p. If g ∈ p we would get f ∈ {g} ⊂ p that cannot happen. Hence,
g ∈ R \ p and g ∈ SKeigher(f).

Suppose now that g ∈ SKeigher(f). If f /∈ {g} then by [13, Proposition 2.6] there
exists a prime differential ideal p with {g} ⊂ p and f /∈ p, that is, p ∈ D(f). Since
g ∈ SKeigher(f), we have g ∈ R \ p, which is a contradiction. �

3.2. Properties of the structure presheaf. Consider the restriction of our con-
struction to the case of commutative rings.

Let S be a multiplicative set. Then the saturation of S is the smallest multi-
plicative set S̃ ⊃ S such that whenever xy ∈ S̃ we have both x and y belong to the
set S̃.

Proposition 4. If R is a differential ring with δg = 0 for all g ∈ R and δ ∈ ∆ (this
is also called a ring of constants) then S∞(f) is the saturation of the multiplicative
system generated by the powers of f for any 0 6= f ∈ R.

Proof. The condition δf = 0 for all f ∈ R and g ∈ S∞(f) implies that f ∈ {g} =√
(g) and fn = bg for some n ∈ N and b ∈ R. In this case g is the preimage of f

w.r.t. the differential operator of multiplication by b.
If there are no derivations then inverse differential operators factorize f ∈ R.

Thus, S∞(f) is of the form agr1
1 · . . . · g

rk

k for some ri ∈ N, a ∈ R invertible, and gi

are factors of f with 1 6 i 6 k. �

Proposition 5. If R is a differential ring of constants then RS∞(f)
∼= Rf for any

0 6= f ∈ R.

Proof. If f = ab then Rf = Rab
∼= Rab,a,b. The last localization is the localization

of the ring R w.r.t. the multiplicative system generated by ab, a, and b. This is
Exercise 1 in Chapter II, Section 2 of Bourbaki, Commutative Algebra. So, the
result follows from Proposition 4. �

Consider Kovacic’s approach to differential schemes.

Definition 3. [12, Definition 3.2] Kovacic’s structure sheaf is constructed as fol-
lows. For each open set U of X, let OX(U) be the set of functions

s : U →
∐
p∈U

Rp

satisfying the following conditions:
(1) s(p) ∈ Rp;
(2) there is an open cover Ui of U , and ai, bi ∈ R such that for each q ∈ Ui,

bi /∈ q and s(q) = ai/bi ∈ Rq.

So, it is natural to compare the definition of sections introduced in this paper
with Definition 3.

Corollary 3. If R is a differential ring with δf = 0 for all f ∈ R then the structure
presheaf O defined above is a sheaf of commutative rings and, as a result, coincides
with Kovacic’s structure sheaf.

Let us investigate the properties of diffspecR under localization that will be
useful for studying the properties of the structure presheaf O.
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Proposition 6. Let R be a differential ring and S ⊂ R \ {0} be a multiplicative
system. Then

diffspecRS = {p ∈ diffspecR | p ∩ S = ∅}.

Proof. If p ∈ diffspecR and p ∩ S = ∅ then pRS is a prime differential ideal of
RS . Let p ∈ diffspecRS and a/s ∈ p. Consider a basic differential operator δ ∈ ∆.
We have δ(a/s) = (sδ(a) − aδ(s))/s2. Since aδ(s))/s2 = δ(s)/s · a/s ∈ p, we have
δ(a)/s = sδ(a)/s2 ∈ p. Thus, the set of numerators of p is a prime differential ideal
of R. �

3.3. Stalks. It turns out that O and OX have the same stalks:

Proposition 7. Let R be a differential ring. Then the stalk Op of the structure
presheaf O on diffspecR = X at a point p ∈ X is equal to Rp.

Proof. By definition, Op = lim−→
U3p

O(U). We have O(U) = lim←−
D(f)⊂U

O(D(f)). If there

are morphisms mapping all O(D(f)) 3 p to some ring B then one can extend them
to morphisms from O(U) 3 p to B. Hence, it is sufficient to take the injective limit
using only principal open subsets:

Op = lim−→
D(f)3p

O(D(f)).

We have O(D(f)) = RS∞(f) and there exist differential ring homomorphisms
ϕf : RS∞(f) ↪→ Rp. Indeed, according to Proposition 1 if g ∈ S∞(f) then f ∈ {g}.
Since p ∈ D(f), we have f /∈ p. Therefore, g /∈ p and S∞(f) ⊂ R \ p. Thus, if
p ∈ D(f) ⊂ D(g) then the following diagram is commutative:

(1)

RS∞(g)
ϕg,f−−−−→ RS∞(f)

ϕg

y ϕf

y
Rp Rp

Let B be a differential ring. Suppose that, for any D(f) 3 p, there exist dif-
ferential ring homomorphisms ϕB,f : O(D(f)) → B. Moreover, suppose that the
following diagram is commutative for any f, g ∈ R such that p ∈ D(f) ⊂ D(g):

(2)

RS∞(g)
ϕg,f−−−−→ RS∞(f)

ϕB,g

y ϕB,f

y
B B

If h = a/b ∈ Rp then b /∈ p and p ∈ D(b). By the construction, there exists a
homomorphism ϕB,b : RS∞(b) → B. Let us use it in order to map the element h. It
is possible, because there is an embedding RS∞(b) ↪→ Rp. Therefore, there exists
a differential ring homomorphism ϕB : Rp → B such that diagrams (1) and (2) are
commutative. �

4. Essential results

4.1. When the presheaf O is a sheaf. In Theorem 1 we show that the structure
presheaf O is a sheaf in the case of R is a factorial differential ring. Throughout
this section we work in an arbitrary characteristic.
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In Section 4 of [8] William Keigher introduced nice and very nice differential
rings. A differential ring R is said to be nice if the two following things are true
about R:

(1) for any differential ideal I ⊂ R and multiplicative set S ⊂ R such that
I ∩ S = ∅ there exists p ∈ diffspecR such that I ⊂ p and p ∩ S = ∅

(2) for any a ∈ R and any multiplicative set S ⊂ R such that ann(a) ∩ S = ∅
there exists a differential ideal I ⊂ R with I ∩ S = ∅ and ann(a) ⊂ I.

A differential ring R is called very nice if R is nice and for any finitely generated
ideal I ⊂ R and any 0 6= f ∈ R such that I ∩S∞(f) = ∅ there exists a differential
ideal J such that I ⊂ J and J∩S∞(f) = ∅. [8, Proposition 4.1] gives an important
result that for very nice differential rings Kovacic’s approach coincides with the one
using localization.

We do this for factorial differential rings and this is a different thing. Let us
restrict to Keigher rings (when {F} =

√
[F ] for any F ) for a moment to understand

what nice rings are. Consider a factorial Keigher differential ring R. It is reduced
and, hence, by [12, Proposition 6.2] must be nice.

Let us give an example of a not very nice factorial differential ring (which must
be nice).

Example 1. Consider R = k{y, z}/[y′ − y] with (k)′ = 0 and char k = 0. Take the
multicative set S∞(1) and the ideal I = (y + z, z′ − 1) ⊂ R. We have y′ + 1 =
(y+ z)′− (z′−1) ∈ {I} = J . Then, y+ 1 ∈ J . Hence, z−1 ∈ J . Eventually, 1 ∈ J .
But I ∩ S∞(1) = ∅ (see Example 4). Thus, by [12, Proposition 11.7] the ring R is
not very nice. Nevertheless, it is factorial because the polynomial y′ − y is linear.

We can formulate and prove an essential result concerning the structure presheaf
O now. We do not need a differential ring to be a Keigher one.

Theorem 1. Let R be a factorial (unique factorization domain, UFD) differential
ring. Then the structure presheaf O defined above is a sheaf of differential rings on
diffspecR.

Proof. We check the axioms of a sheaf for principal open subsets since O(U) =
lim←−D(f)⊂U

O(D(f)). The prolongation of this technique to any open subset has been
considered in [17, Sheaves, Theorem 1]. It is completely valid for our proof.

According to Proposition 6 and since diffspecR is a quasi-compact topological
space (see [13, Proposition, page 4]), we only need to check the properties of a sheaf

for the case of U = diffspecR and Ui = D(fi) with U =
n⋃

i=1

Ui. Indeed, if U = D(f)

and Ui = D(fi) then the axioms of a sheaf are satisfied if they are satisfied for
diffspecRS∞(f) and Ui = D(fi) where fi is the image of fi w.r.t. the canonical
homomorphism R → RS∞(f) for all 1 6 i 6 n. Then we have 1 ∈ {f1, . . . , fn}.

First, let u ∈ RS∞(1) and u = 0 in each O(D(fi)) = RS∞(fi). Then there exist
s1, . . . , sn, where si ∈ S∞(fi), such that siu = 0 in R. Note that 1 ∈ {s1, . . . , sn}.
According to Lemma 1 we have the following:

{u} = {s1, . . . , sn}{u} ⊂ {s1u, . . . , snu} = {0}.

Since the ring R is reduced, we have {0} = (0). Thus, u = 0 in R.
Second, since R is an integral domain, we have the embedding to its field of

fractions: R ⊂ QuotR = k. Let k 3 a/b = ui/si, si ∈ S∞(fi) and 1 ∈ {s1, . . . , sn}.
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We can claim that a/b is an irreducible representation, that is, a and b are relatively
prime. But asi = bui for each i, 1 6 i 6 n. This means that each asi is divisible
by b. Hence, we have si = bci for some ci ∈ R and every i, 1 6 i 6 n. Then all
si ∈ (b) and as a consequence 1 ∈ {b}. Thus, b ∈ S∞(1) by Proposition 1 and
a/b ∈ RS∞(1). �

An essential difference between differential and commutative algebra will be
discussed in Section 5. More precisely, the structure presheaf constructed in this
paper appears not to be a sheaf of differential rings in some cases. Additional
restrictions should be stated in order to avoid this problem. Moreover, each axiom
of a sheaf requires a particular additional condition.

Remark 2. To prove the first part of Theorem 1 we only need that R is a reduced
ring. Moreover, one can show this first property of a sheaf in the case of R is an
RAAD ring (when

√
ann(a) is a differential ideal for any a ∈ R and ann(a) = {r ∈

R | ra = 0}). Nevertheless, this condition is not sufficient for the second axiom of
a sheaf (see Example 2).

4.2. Comparison with Kovacic’s structure sheaf.

Theorem 2. Let R be a factorial differential ring. Then structure sheaf O on
diffspecR is isomorphic to Kovacic’s structure sheaf OX on X = diffspecR.

Proof. According to Theorem 1 the structure presheaf O is a sheaf of differential
rings. By Proposition 7 the sheaves O and OX have the same stalks. There exists
a morphism φ : O → OX defined on the sections on principal open subsets.

Prove that this morphism induces an isomorphism of stalks. According to [13,
Proposition 10.1] the homomorphism, mapping O(D(f))→ OX(D(f)), is injective
for all f ∈ R. Here, we use the fact that R is a domain. Hence, we have an
embedding of stalks. We only need to show the surjectivity.

In order to do this, for each point p ∈ X consider the stalks of the sheaves O and
OX at this point. Let p ∈ U ⊂ X be an open subset and f ∈ OX(U). Then there
exists an open cover

⋃
Ui = U such that f is regular on each Ui. Hence, there are

f = ai/bi and bi /∈ q for all q ∈ Ui.
Since p ∈ U , there exists a number i such that p ∈ Ui. Hence, since f = ai/bi,

we have f ∈ O(Ui). Taking the injective limit we see that our homomorphism is
surjective. Thus, we have an isomorphism of stalks. Hence, the sheaves O and OX

are isomorphic. �

Remark 3. If 1 ∈ (f) in a commutative ring R then f is invertible in R. If
R is a differential ring and 1 ∈ [f ] then f belongs to no prime differential ideal
p ∈ diffspecR. Nevertheless, if p ∈ SpecR \ diffspecR and f ∈ p then f is not
invertible. For instance, let R = C[x], x′ = 1. Then diffspecR = {(0)}. Though
1 ∈ [x] the polynomial x is not invertible in R.

Let us study the properties of the presheaf O in the linear case.

Proposition 8. Let R = k{y1, . . . , yl}/p and p = {f1, . . . fm}, where fi is a linear
differential polynomial for each 1 6 i 6 m. Then R is a factorial differential ring.

Proof. We have R is a factor-ring of the ring of commutative polynomials in infin-
itely many variables over the prime ideal p′ generated by linear polynomials θfi for
all θ ∈ Θ and 1 6 i 6 m. This ring is isomorphic to a ring R′ of polynomials in
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infinitely many variables. In conclusion, the ring R′ is factorial, because each its
element depends only on finitely many variables. �

Corollary 4. Let R = k{y1, . . . , yl}/p and p = {f1, . . . fm}, where fi is a linear
differential polynomial for each 1 6 i 6 m. Then O is a sheaf and is isomorphic to
Kovacic’s structure sheaf.

Proof. This is a consequence of Theorem 2 and Proposition 8. �

The importance of this assertion comes from the Picard-Vessiot theory of differ-
ential field extensions, where a linear differential polynomial is one of the principal
objects to investigate. The connection between the theory of differential schemes
and the differential Galois theory is discussed in [11].

5. Counter-Examples

We show that Theorem 1 does not hold if we omit the condition that R is a
factorial ring. First, we give reasons for such an example and propose the way how
to obtain it logically.

Let R be a domain with F = QuotR with charF = 0. Suppose that a set vi/si,
1 6 i 6 n, of functions on D(si) with

⋃
D(si) = diffspecR is given. Then, 1 ∈

{s1, . . . , sn}. To prove Theorem 1, we have to find a/b ∈ k such that vi/si = a/b,
where a/b has a representation with a “good” denominator, i.e., the denominator
must belong to S∞(1).

Let p ∈ diffspecR. If b ∈ p then a ∈ p. Indeed, for all 1 6 i 6 n we have
vib = sia and if a /∈ p then si ∈ p that is a contradiction. Thus, we have obtained
that a ∈ {b}. Then am =

∑
ajθjb. To simplify our consideration we assume that

m = 1. If there exists such a representation without differential operators then
a/b ∈ R. So, we should consider the opposite case to obtain a counter-example.
Thus, the simplest form of the numerator of the counter-example is b′.

Another reason for consideration of Example 2 is the following. The simplest
case is the case of n = 2. We have 1 ∈ {s1, s2}. Let us simplify the situation
more. Suppose R = k{y} with char k = 0. We do not restrict to the ordinary
differential polynomials. The order of a differential polynomial f is the maximal
order of differential variables in f .

If both s1 and s2 are of order zero (that is, s1, s2 ∈ k[y]) than we can divide them
by their greatest common divisor in the ring k[y] and assume that s1 and s2 are
relatively prime. In this case 1 ∈ (s1, s2), i.e., 1 = as1 + bs2 for some polynomials
a, b ∈ k[y]. Since s1

u1

s1
= u1, s2

u1

s1
= u2 ∈ R, we have

u1

s1
= au1 + bu2 ∈ R ⊂

RS∞(1).

Remark 4. Note that the same idea works for any n ∈ N when 1 ∈ (s1, . . . , sn).
Indeed, let a1s1 + . . .+ ansn = 1. Then

u1

s1
= a1u1 + . . .+ anun ∈ R ⊂ RS∞(1).

Thus, if one denominator is y then the other should be of order 1 and, for
example, equals y′ + 1, because 1 is not allowed to have a representation involving
s1 and s2 without differentiations. The numerators of this example can be obtained
by differentiating the denominators:
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Example 2. Let R = k{y} and a = {yy′′ − y′(y′ + 1)}. Denote R/a = R′ and
X = diffspecR′. Then, R′ is a domain. Indeed,

{yy′′ − y′(y′ + 1)} = [yy′′ − y′(y′ + 1)] : (y)∞ ∩ {y}.
Moreover, [yy′′ − y′(y′ + 1)] : (y)∞ ⊂ {y}. Thus,

{yy′′ − y′(y′ + 1)} = [yy′′ − y′(y′ + 1)] : (y)∞.

Since the polynomial yy′′ − y′(y′ + 1) is irreducible, the radical differential ideal
[yy′′ − y′(y′ + 1)] : (y)∞ is prime.

Let f1 = y and f2 = y′ + 1. Consider U1 = D(f1) and U2 = D(f2). Since
1 ∈ {f1, f2}, we have U1 ∪ U2 = X. Take

u1/f1 = y′′/(y′ + 1) and u2/f2 = y′/y.

By the construction, u1/f1 = u2/f2 = a/b. Nevertheless, a/b /∈ R′S∞(1) = R′. This
is completely shown in [12, Section 10].

Remark 5. Example 2 is also interesting because of the minimality of orders of
differential polynomials in the case of a factor-ring of k{y} when char k = 0. This
follows from the discussions before Example 2.

6. Computation of Sections

Consider constructive aspects of our theory. The following example illustrates
the difference between commutative and differential schemes.

Example 3. Consider a prime differential ideal I = {y′−1} in the ring of differential
polynomials k{y}. Let R = k{y}/I. We have R ∼= k[x] with x′ = 1 and S∞(1) =
k[x] \ {0}. Thus, O(diffspecR) = RS∞(1) = k(x) � k[x].

Let R = k{y1, . . . , yl}. We show how to compute sections on diffspecR/a = R′
for a differential ideal a. To compute sections means to compute S∞(f) for every
f ∈ R′, i.e., to be able to test the membership to S∞(f).

Proposition 9. Let g ∈ R′ = R/a. Then g ∈ S∞(f) iff f ∈ {a, g} in R.

Proof. Due to Proposition 1 this is true since {g} = {a, g} in R′. �

Let char k = 0. In [1, 4], factorization free algorithms for testing the membership
of a differential polynomial to a radical differential ideal are presented. These algo-
rithms represent a radical differential ideal as an intersection of regular differential
ideals and one can test membership to each component of this decomposition using
partial pseudo-reduction and algebraic computations. These algorithms are also
discussed in detail in [18].

Corollary 5. One can test the membership to the multiplicative set S∞(f) in the
ring R′ using only factorization free computations.

Our computations become tractable if, in Corollary 5, we require that a is a
finitely generated or radical differential ideal. Thus, if one can describe the ring R′
algorithmically then one can do that for S∞(f) when f ∈ R′.

Example 4. Let R = k{y}/[y′ − y]. Assume char k = 0 and k consists of constants
so that f ′ = 0 for any f ∈ k. This ring is nothing else as the ring of polynomials in
one variable k[y] with derivation ′ defined on y by (y)′ = y. It is obviously factorial
and we can apply Theorem 2 constructing global sections OX(diffspecR).
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So, we proved that OX(diffspecR) = RS∞(1). Hence, we need to know what the
denominators are. Let us compute S∞(1). According to Proposition 9 we need to
describe all g ∈ k{y} such that 1 ∈ {y′− y, g} = I. Replacing derivatives y(t) by y,
for all possible t ∈ N, in g we may assume that g ∈ k[y]. Let g = any

n +an−1y
n−1 +

. . .+ a0 with ai ∈ k. We have g′ = (nany
n−1 + . . .+ a1)y′ because a′i = 0 for all i,

0 6 i 6 n. Reducing g′ w.r.t. y′ − y we get p = (nany
n−1 + . . .+ a1)y ∈ I.

Then, the only thing we need to do is to compute a gcd. Assume h ∈ k{y} \ k
divides both g and p. We may square-free the polynomial g. In this case such an h
exists if and only if a0 = 0, because if g is square-free it is relatively prime with its
separant Sg = nany

n−1 + . . .+ a1. Moreover, h must be equal to y.
Thus, if a0 6= 0 then 1 ∈ I and g ∈ S∞(1). If a0 = 0 then 1 cannot be in I

because 1 /∈ [y] ⊃ [y′ − y, g] in this case. Summarizing what we have done, S∞(1)
is the set of differential polynomials in k{y}/[y′− y] with a non-zero constant term
and

OX(diffspec(k{y}/[y′ − y])) = {f/g | f, g ∈ k{y} with g /∈ y · k{y} mod [y′ − y]}.

7. Sheafification

Let us return to the case of an arbitrary characteristic. Example 2 shows that
D-localization does not give us a sheaf of differential rings in general. We can just
guarantee that O is a presheaf. So, we have a presheaf O. Construct the “closest”
to this presheaf sheaf O+ as follows.

A section of O+ on an open subset U ⊂ X is the family of elements σx ∈ Ox

satisfying the following property. For any point x ∈ U there exists an open subset
V , x ∈ V ⊂ U and a section s ∈ O(V ) such that σy coincides with the image of s
w.r.t. the homomorphism O(V )→ Oy for all y ∈ V .

The sheaf O+ is called the sheaf associated with the presheaf O. If O is a sheaf
then O+ coincides with O. Remember the following fact. A sequence of sheaves on
a space X and homomorphisms

. . .→ O1
f→ O2

g→ O3 → . . .

is exact in O2 iff for all x ∈ X the sequence of stalks in (O2)x is exact:

. . .→ (O1)x
f→ (O2)x

g→ (O3)x → . . . .

Recall the notion of an RAAD ring again.

Definition 4. [12, Definition 6.3] A differential ring R is called RAAD (radical
annihilators are differential) if for every m ∈ R the ideal

√
ann(m) is differential.

We need to prove the following assertion about localization stability of RAAD
rings that is very similar to [13, Proposition 9.4].

Proposition 10. Let R be an RAAD differential ring and 0 /∈ S ⊂ R be a multi-
plicative system. Then the localization RS is also RAAD.

Proof. Let a/s1 ∈
√

ann(m/s2) for a, b ∈ R and s1, s2 ∈ S. Hence, for some n1 ∈ N
and s ∈ S we have san1m = 0 in R. So, a ∈

√
ann(sm). Therefore, for any δ ∈ ∆

we get δa ∈
√

ann(sm), that is, (δa)n2sm = 0 in R for some n2 ∈ N. Thus, in RS

we have

(δ(a/s1))n1+n2
m

s2
=

((δa)s1 + a(δs1))n1+n2sm

ss
2(n1+n2)
1 s2

= 0.
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�

Proposition 11. If R is an RAAD differential ring then there exists a natural
differential ring homomorphism mapping injectively: O(D(f))→ OX(D(f)).

Proof. This follows from Proposition 10, [12, Proposition 6.2], and [13, Proposition
7.2]. �

Therefore, as in the proof of Theorem 2, there exists a homomorphism between
sections of O and Kovacic’s structure sheaf OX that is an isomorphism of stalks
if X is a differential spectrum of an RAAD ring. Thus, we have an immediate
corollary.

Theorem 3. Let X = diffspecR and R is an RAAD differential ring. Then the
sheaf O+, associated to our structure presheaf O on X, is isomorphic to Kovacic’s
structure sheaf OX .

Proof. If the following sequence of sheaves

0→ O1 → O2 → 0

is exact then the correspondent sequence of rings

0→ O1(U)→ O2(U)→ 0

is exact for all open U ⊂ X. So, the rings of sections are isomorphic. �

Proposition 12. [12, Proposition 6.4] If R is reduced then it is RAAD.

Corollary 6. Let X = diffspecR and R is a reduced differential ring. Then the
sheaf O+, associated to the presheaf O, is isomorphic to the sheaf OX .

Proof. Follows immediately from Proposition 12 and Theorem 3. �

8. Conclusions

Theorem 1 shows that our approach is equivalent to Kovacic’s one on a certain
class of differential rings useful, for instance, in the Picard-Vessiot theory of dif-
ferential fields. Nevertheless, Example 2 demonstrates that there are differential
domains where these approaches are not equivalent. A very natural problem is to
modify our D-localization in order to obtain a good form of presentation of sections
in the case of, for instance, RAAD or reduced differential rings.

It would be also interesting to understand what conditions really make the
presheaf O a sheaf. There are some classes of rings that are close to factorial
ones, e.g., normal, half-factorial (see [2] for the definition). Most probably, Theo-
rem 1 is not true for both normal and half-factorial differential rings and Example 2
should be a counter-example but this is just a conjecture.
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