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Abstract

Generalizing Atiyah extensions, we introduce and study differential abelian tensor categories
over differential rings. By a differential ring, we mean a commutative ring with an action of a Lie
ring by derivations. In particular, these derivations act on a differential category. A differential
Tannakian theory is developed. The main application is to the Galois theory of linear differential
equations with parameters. Namely, we show the existence of a parameterized Picard–Vessiot
extension and, therefore, the Galois correspondence for many differential fields with, possibly,
non-differentially closed fields of constants, that is, fields of functions of parameters. Other
applications include a substantially simplified test for a system of linear differential equations
with parameters to be isomonodromic, which will appear in a separate paper. This application is
based on differential categories developed in the present paper, and not just differential algebraic
groups and their representations.

Keywords: Differential algebra, Tannakian category, Parameterized differential Galois theory,
Atiyah extension
2010 MSC: primary 12H05, secondary 12H20, 13N10, 20G05, 20H20, 34M15

Contents

1 Introduction 2

2 Statement of the main results 6
2.1 Non-parameterized case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Main results: parameterized case . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Email addresses: gillet@uic.edu (Henri Gillet), gorchins@mi.ras.ru (Sergey Gorchinskiy),
aovchinnikov@qc.cuny.edu (Alexey Ovchinnikov)
Preprint submitted to Advances in Mathematics February 27, 2013



3 Differential rings and jet rings 9
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Differential rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Differential algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Differential modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Parameterized Picard–Vessiot extensions . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Jet rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Differential rings vs. Hopf algebroids . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Differential objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Examples of differential objects . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.10 Lie derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Differential categories 32
4.1 Extension of scalars for abelian tensor categories . . . . . . . . . . . . . . . . . 32
4.2 Differential abelian tensor categories . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Definitions in the explicit form . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Differential Tannakian categories . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Parameterized Atiyah extensions 51
5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Matrix description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 PPV extensions and differential functors . . . . . . . . . . . . . . . . . . . . . . 59

6 Definability of differential Hopf algebroids 61
6.1 Reduction to faithful flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Proof of Proposition 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Proofs of the main results 72
7.1 Proof of Theorem 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 Proof of Theorem 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 PPV extensions with non-closed constants 77
8.1 Galois correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 Extension of constants in parameterized differential fields . . . . . . . . . . . . . 79

Acknowledgments 82

Appendix 82
A.1 Hopf algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2 Tannakian categories . . . . . . . . . . . . . . . . . . . . . . . . . 84

1. Introduction

Classical differential Galois theory studies symmetry groups of solutions of linear differen-
tial equations, or equivalently the groups of automorphisms of the corresponding extensions of
differential fields; the groups that arise are linear algebraic groups over the field of constants.
This theory, started in the 19th century by Picard and Vessiot, was put on a firm modern footing
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by Kolchin [43]. In [46], Landesman initiated a generalized differential Galois theory that uses
Kolchin’s axiomatic approach [44] and realizes differential algebraic groups as Galois groups.
The parameterized Picard–Vessiot Galois theory considered by Cassidy and Singer in [10] is
a special case of the Landesman generalized differential Galois theory and studies symmetry
groups of the solutions of linear differential equations whose coefficients contain parameters.
This is done by constructing a differential field containing the solutions and their derivatives with
respect to the parameters, called a parameterized Picard–Vessiot (PPV) extension, and studying
its group of differential symmetries, called a parameterized differential Galois group. The Galois
groups that arise are linear differential algebraic groups, which are defined by polynomial differ-
ential equations in the parameters. Another approach to the Galois theory of systems of linear
differential equations with parameters is given in [7], where the authors study Galois groups for
generic values of the parameters.

The tradition in classical differential Galois theory has been to assume that the field of con-
stants of the coefficient field is algebraically closed [43, 67, 49]. Cassidy and Singer follow
the spirit of this tradition. For example, as in [10, Section 3], consider the differential equation
∂x f = t

x f . The solutions of this equation will be functions of x, which also depend on the pa-
rameter t. If x and t are complex variables, these solutions are of the form a · xt, a ∈ C(t), and
the field generated by the solutions together with their derivatives with respect to both x and t is
C
(
x, t, xt, log(x)

)
. The automorphisms of this field over C(x, t) are given by non-zero elements

a in C(t) that satisfy the differential equation ∂t

(
∂t(a)

a

)
= 0. However, as explained in [10], this

group does not have enough elements to give a Galois correspondence between subgroups of the
group of automorphisms and intermediate differential fields. This leads Cassidy and Singer to
require that the field of ∂x-constants is a ∂t-closed differential field (or, more generally, that the
field of functions of the parameters is differentially closed).

Recall that a differential field is differentially closed if it contains solutions of consistent
systems of polynomial differential equations with coefficients in the field. However, this require-
ment is an obstacle to the practical applicability of the methods of the parameterized theory. A
similar phenomenon occurs in the classical differential Galois theory: if the field of constants
is not algebraically closed, a Picard–Vessiot extension might not exist at all (see the famous
counterexample of Seidenberg [69]); therefore, there are no differential Galois group and Galois
correspondence if this happens. Since the beginning of the theory [43], it has been a major open
problem in Picard–Vessiot theory to determine to what extent one can avoid taking the algebraic
closure of the field of constants. In the present paper, we are able to remove the assumption that
the field of constants has to be differentially closed in order to have a Galois correspondence in
the parameterized case.

With this aim, following [13], we use the Tannakian approach to linear differential equa-
tions. In particular, in the usual non-parameterized case [67], we show in Theorem 2.2 that,
under a relatively existentially closed assumption on the field of constants (which includes the
case of formally real fields with real closed fields of constants, as well as fields that are purely
transcendental extensions of the fields of constants), one can always construct a Picard–Vessiot
extension for a system of linear differential equations. To treat the parameterized case, which is
our main interest, we develop a theory of differential categories over differential rings and the
corresponding theory of differential Tannakian categories. Here, by a differential ring, we mean
a commutative ring together with a Lie ring acting on it by derivations (this is also often called
a Lie algebroid). The theory of differential Tannakian categories allows us to show that a PPV
extensions exists under a much milder assumption (relatively differentially closed) on the field
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of constants than being differentially closed, Theorem 2.5. This assumption is satisfied by many
differential fields used in practice, Theorem 2.8.

The importance of the existence of a PPV extension is that it leads to a Galois correspon-
dence, Section 8.1. The Galois group is a differential algebraic group [8, 9, 44, 62, 11, 55, 56, 71]
defined over the field of constants, which, after passing to the differential closure, coincides with
the parameterized differential Galois group from [10], Corollary 8.10. The Galois correspon-
dence, as usual, can be used to analyze how one may build the extension, step-by-step, by ad-
joining solutions of differential equations of lower order, corresponding to taking intermediate
extensions of the base field. For example, consider the special function known as the incomplete
Gamma function γ, which is the solution of a second-order parameterized differential equation
[10, Example 7.2] over Q(x, t). Knowing the relevant Galois correspondence, one could show
how to build the differential field extension of Q(x, t) containing γ without taking the (unneces-
sary and unnatural) differential closure of Q(t).

The general nature of our approach will allow in the future to adapt it to the Galois theory of
linear difference equations, which has numerous applications. Differential algebraic dependen-
cies among solutions of difference equations were studied in [31, 32, 33, 18, 20, 19, 21, 17, 16,
26]. Among many applications of the Galois theory, one has an algebraic proof of the differential
algebraic independence of the Gamma function over C(x), [33] (the Gamma function satisfies
the difference equation Γ(x + 1) = x · Γ(x)). Moreover, such a method leads to algorithms, given
in the above papers, that test differential algebraic dependency with applications to solutions of
even higher order difference equations (hypergeometric functions, etc.). General results on the
subject can be found in [1, 52, 65, 77, 78, 76].

It turns out that the results of the present paper, including the new theory of differential
categories not restricted to the case of just one derivation, lead (see [25]) to a new understanding
of isomonodromic systems of parameterized linear differential equations [59, 58, 10, 51, 50, 70]
allowing one to substantially simplify the test for isomonodromicity generalizing the classical
results [37, 38]. This, in turn, has become a part of a new algorithm [57] in the PPV theory.

Let us compare the present paper with some previously known results. The existence of a
PV extension with a non-algebraically closed field of constants was considered by a number of
authors. In particular, the case when the Galois group is GLn, the base field is formally real,
and the constants are real closed was solved positively in [72], while the case of the field R(z)
has been also studied in [22]. In the case of one derivation, differential Tannakian categories
were defined and studied in [64, 63, 41]. In the present paper, we define differential Tannakian
categories over fields that may have many derivations. A similar approach in the case of one
derivation was independently developed in [40]. Also, we do not choose a basis of the space of
derivations, allowing us to give a functorial description of the constructions involved. One reason
that this generalization is needed was explained in [5], in the context of Coleman integration. The
paper [55] considers the case of several derivations but chooses a basis in the space of derivations
and uses a fiber functor to give the axioms of a differential Tannakian category. On the contrary,
the axioms in the present paper need to be and are given independently of the fiber functor.

It turns out that [81], in the case of one derivation, one can relax the differentially closed
assumption, and just ask that the field of constants be algebraically closed in order to guarantee
the existence of a PPV extension, by using the more straightforward method of differential ker-
nels [47]. This approach was initiated by M. Wibmer who first applied difference kernels [12, 48]
to study differential equations with difference parameters [80]. While not including all the cases
from [81], the method presented in our paper gives the existence of PPV extensions in many other
new situations important for applications. For instance, in the case of the incomplete Gamma
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function, if one used the differential kernels approach, one would have to take the algebraic
closure Q(t) instead of just Q(t).

Now we give more details about our method. To apply the Tannakian approach in the case
of parameterized linear differential equations, one needs to develop a theory of differential Tan-
nakian categories over differential fields. For this, one needs first to describe what a differential
abelian tensor category is, Definition 4.6. In other words, one needs to define what it means for
a Lie ring of derivations of a field k to act on an abelian k-linear category. The main subtlety
here is that one cannot “subtract” functors in order to give a straightforward definition. There are
two ingredients needed to overcome this difficulty. First, one uses the equivalence established by
Illusie [35] between complete formal Hopf algebroids and differential rings, Section 3.7. Then,
one uses the formalism of the extension of scalars for categories, Section 4.1 and [24], [74], in
order to define the action of a complete formal Hopf algebroid over k on an abelian k-linear cate-
gory. This leads to the notion of a differential category. For example, the category of all modules
over a differential ring is a differential category. In this case, the differential structure is given by
the Atiyah extension [2].

The approach to differential categories via the action of Hopf algebroids on categories can
be generalized to many other situations, including the difference case, when the corresponding
Hopf algebroid is given by the difference ring itself. For the purposes of this paper, it is in fact
enough to consider only the degree two quotient of the formal Hopf algebroid. Having introduced
differential categories, one defines differential Tannakian categories, Definition 4.22, and proves
a differential version of the Tannaka duality between differential Hopf algebroids and differential
Tannakian categories, Proposition 4.25 and Theorem 4.27.

The main non-trivial example of a differential category in this paper is the category formed
by parameterized systems of linear differential equations, Section 5. In this case, the differen-
tial structure is given by what could be called a parameterized Atiyah extension. Based on this
construction, one shows that the category of PPV extensions is equivalent to the category of
differential fiber functors, Theorem 5.5. Thus, the problem of constructing a PPV extension is
equivalent to the problem of constructing a differential fiber functor. For the latter, we use a ge-
ometric approach. The main technical difficulty here is to obtain flatness of a certain differential
algebra over a differential ring after localizing this ring by a non-zero element. In general, this
seems to be unknown, however we prove this result in the special case of a Hopf algebroid, The-
orem 6.1, which is enough for our purpose. As an auxiliary result, we prove that a differentially
finitely generated differential Hopf algebra is a quotient of the ring of differential polynomials by
a differentially finitely generated ideal (one does not need to take a radical), Lemma 6.3. Besides,
Theorem 6.1 implies the existence of a differential fiber functor for a differential Tannakian cate-
gory over a differentially closed field. Finally, using simple algebro-geometric considerations, we
construct a differential fiber functor, thus, providing a PPV extension in the case of Theorem 2.8.

The paper is organized as follows. We start by describing our main results in the non-
parameterized case, Section 2.1, and the main parameterized case, Section 2.2. The proofs for the
parameterized case are postponed until Section 7. In the intermediate sections, we develop our
main technique as follows. In Section 3, we fix most notation used in the paper (Section 3.1) and
introduce differential rings, algebras, modules, PPV extensions, and jet-rings using the invariant
language convenient for the proofs of the main results. We then recall facts about extensions of
scalars for categories and introduce differential abelian tensor categories and differential functors
in Section 4. We use this to define parameterized Atiyah extensions in Section 5 and prove in
Theorem 5.5 that the categories of PPV extensions and differential functors are equivalent. Sec-
tion 6 contains the main technical ingredient, Theorem 6.1, needed for the proofs of the main
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results shown in Section 7. Finally, in Section 8, we discuss the parameterized differential Galois
correspondence for arbitrary fields of constants and the behavior of the Galois group under the
extensions of constants (see also [58]). For the convenience of the reader, we finish by giving the
necessary background on Hopf algebroids and the usual Tannakian categories in the appendix,
Section 8.2.

2. Statement of the main results

2.1. Non-parameterized case

Following P. Deligne [13], let us recall how Tannakian categories can be used to construct
(non-parameterized) Picard–Vessiot extensions for systems of linear differential equations. For
simplicity, we consider differential fields with only one derivation and we use a more common
notation (K, ∂) instead of (K,K · ∂) as in Definition 3.1. So, let (K, ∂) be a differential field with
a derivation ∂ and the field of constants k := K∂ of characteristic zero.

A system of linear ∂-differential equations over K is the same as a finite-dimensional differen-
tial module M over the differential field (K, ∂). A Picard–Vessiot extension for M is a differential
field extension (K, ∂) ⊂ (L, ∂) without new ∂-constants such that there is a basis of horizontal
vectors in L⊗K M over L and L is generated by their coordinates in a basis of M over K (see also
Definition 3.25).

Definition 2.1. A field k is existentially closed in a field F over k if, for any finitely generated
subalgebra R in F over k, there exists a morphism of k-algebras R → k (see [23, Proposition
3.1.1] for the equivalence with a more standard definition).

Note that, if F = k(X) for an irreducible variety X over k, then k is existentially closed in F if
and only if the set of k-rational points is Zariski dense in X. In particular, k is existentially closed
in F in the following cases:

• the field k is algebraically closed and F is any field over k;

• the field k is pseudo algebraically closed and is algebraically closed in F;

• the field F is a subfield in a purely transcendental extension of k;

• the field F is real with k being real closed (in this case, one applies the Artin–Lang homo-
morphism theorem, [6, Theorem 4.1.2]).

Also, there is a range of non-trivial examples coming from various special geometrical consider-
ations. In the case when K is real, k is real closed and the differential Galois group is GLn, the
following result is also proved in [72] by explicit methods.

Theorem 2.2. Suppose that k is existentially closed in K. Then, for any finite-dimensional
differential module (M,∇M) over (K, ∂), there exists a Picard–Vessiot extension.

The construction of a Picard–Vessiot extension is based on the theory of Tannakian categories
(Section A.2) and uses the following two results from [13].

Proposition 2.3. [13, Proof of Corollaire 6.20] Let C be a Tannakian category over a field k
such that C is tensor generated by one object and there is a fiber functor C → Vect(K) for a
field extension K ⊃ k. Then there exists a finitely generated subalgebra R in K over k and a fiber
functor C →Mod(R).
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According to the notation of Section A.2, 〈M〉⊗ is a full subcategory in the category of all
differential modules over (K, ∂) generated by subquotients of objects of type M⊗m ⊗ (M∨)⊗n. The
following statement uses that char k = 0, which implies that any algebraic group scheme over k
is smooth.

Proposition 2.4. [13, 9.5, 9.6] If there exists a fiber functor ω0 : 〈M〉⊗ → Vect(k), then there
exists a Picard–Vessiot extension for (M,∇M).

Proof of Theorem 2.2. We put C := 〈M〉⊗. By definition, the category C is tensor generated
by the object (M,∇M). Consider the fiber functor C → Vect(K) that forgets the differential
structure on a differential module over (K, ∂). By Proposition 2.3, there exist a finitely generated
subalgebra R in K over k and a fiber functor ω : C → Mod(R). Since k is existentially closed
in K, there exists a homomorphism of k-algebras R→ k. As shown in [13, 1.9], for any object X
in C, the R-module ω(X) is finitely generated and projective. Hence,

ω0 : C → Vect(k), X 7→ k ⊗R ω(X)

is a fiber functor on C. We conclude the proof by Proposition 2.4.

The main goal of the present paper is to make a parameterized analogue of the above reason-
ing. As an application, we obtain a construction of a parameterized Picard–Vessiot extension in
a range of cases when the constants are not differentially closed.

2.2. Main results: parameterized case

The following is a parameterized analogue of Theorem 2.2. We use notions and notation
from Section 3.

Theorem 2.5. Let (K,DK) be a parameterized differential field (Definition 3.14) over a differ-
ential field (k,Dk) (Definition 3.1) with char k = 0. Suppose that there is a splitting D̃k (Defini-
tion 3.15) of (K,DK) over (k,Dk) such that (k,Dk) is relatively differentially closed in

(
K,K⊗k D̃k

)
(Definition 3.11, Remark 3.16).

Then, for any finite-dimensional differential module (Definition 3.19) over (K,DK/k) (Defini-
tion 3.14), there exists a parameterized Picard–Vessiot extension (Definition 3.27).

Remark 2.6. The existence of a PPV extension implies the existence of a parameterized dif-
ferential Galois group, which is a linear differential algebraic group, together with the Galois
correspondence (Section 8.1).

Remark 2.7. According to our definition of a parameterized differential field, derivations from
Dk do not act on the field K. Having the splitting D̃k from Theorem 2.5, we can replace the
differential field (k,Dk) with the differential field

(
k, D̃k

)
so that derivations from D̃k act on K

(Remark 3.16). This allows us to consider D̃k-Hopf algebroids of type (K,H) over k and produce
an analogue of the proof of Theorem 2.2.

Theorem 2.5 is proved in Section 7.1. The following result describes two rather broad cases
when the hypotheses of Theorem 2.5 are satisfied.

Theorem 2.8. Let (K,DK) be a parameterized differential field over a differential field (k,Dk)
with char k = 0. Suppose that one of the following conditions is satisfied:

1. There exists a splitting D̃k of (K,DK) over (k,Dk) such that
7



• the structure map DK → K ⊗k Dk induces an isomorphism between D̃k and 1 ⊗ Dk,

• The field K is generated as a field by K0 := KD̃k and k,

• the field k0 := kDk is existentially closed in K0 (Definition 2.1).

2. The field k is existentially closed in K and the map DK/k → Derk(K,K) is an isomorphism.

Then the parameterized differential field (K,DK) over (k,Dk) satisfies the hypotheses of Theo-
rem 2.5. Thus, for any finite-dimensional differential module over (K,DK/k), there exists a PPV
extension.

Theorem 2.8 is proved in Section 7.2.

Remark 2.9.

1. In general, fields generated by two subfields may have a complicated structure. However,
condition 1 in Theorem 2.8 implies that K0 ⊗k0 k is a domain and K = Frac(K0 ⊗k0 k).
Indeed, by Lemma 8.7, the differential algebra K0 ⊗k0 k over (k,Dk) is Dk-simple, that is,
contains no Dk-ideals, whence the morphism K0 ⊗k0 k → K is injective, which yields the
required statement.

2. Condition 2 in Theorem 2.8 is equivalent to requiring that k be existentially closed in K,
dimK(DK/k) = tr. deg(K/k), and map the DK/k → Der(K,K) be injective.

Here is a series of examples that satisfy the hypotheses of Theorem 2.8.

Example 2.10. Let the bar over a field denote the algebraic closure. All fields K below are sub-
fields in the algebraic closure of the field C(x1, . . . , xm, t1, . . . , tn); all fields k below are subfields
in the algebraic closure of the field C(t1, . . . , tn), and, except for Examples 2 and 3, we put

DK := K · ∂x1 + . . . + K · ∂xm + K · ∂t1 + . . . + K · ∂tn , Dk := k · ∂t1 + . . . + k · ∂tn .

We obtain DK/k = K · ∂x1 + . . . + K · ∂xm . In Examples 1, 2, 5, 3, and 4, we put

D̃k := k · ∂t1 + . . . + k · ∂tn ⊂ DK .

The following parameterized differential fields (K,DK) over (k,Dk) satisfy the hypotheses of
Theorem 2.8:

1. If K = Frac
(
K0 ⊗Q k

)
, where K0 is a finite extension of Q(x1, . . . , xm) and k is an al-

gebraic extension of Q(t1, . . . , tn), then (K,DK) satisfies condition 1 with k0 = Q being
algebraically closed.

2. If K = Frac
(
K0 ⊗Q k

)
, where K0 is a finite extension of Q(x1, x2) and k is an algebraic

extension of Q(t1, . . . , tn), then (K,DK) satisfies condition 1 with

DK := K · (∂x1 + x2∂x2 ) + K · ∂t1 + . . . + K · ∂tn , DK/k = K · (∂x1 + x2∂x2 ),

and with k0 = Q being algebraically closed.
3. If K = k(x1, . . . , xm), where k is an algebraic extension of Q(t1, . . . , tn) such that Q is

algebraically closed in k, then (K,DK) satisfies condition 1 with K0 = Q(x1, . . . , xm), k0 =

Q.
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4. If K = Frac (K0 ⊗R k), where K0 is a finite extension of R(x1, . . . , xm) such that K0 a real
field, and k is an algebraic extension of R(t1, . . . , tn) such that R is algebraically closed in
k, then (K,DK) satisfies condition 1 with k0 = R.

5. If K = Frac (K0 ⊗R k), where K0 is a finite extension of R(x1, . . . , xm) such that K0 a real
field, and k is an algebraic extension of R(t1, t2, t3) such that R is algebraically closed in k,
then (K,DK) satisfies condition 1 with

DK := K · ∂x1 + . . . + K · ∂xm + K ·
(
t1∂t1 +

√
2t2∂t2 +

√
3t3∂t3

)
,

Dk := k ·
(
t1∂t1 +

√
2t2∂t2 +

√
3t3∂t3

)
,

and with k0 = R, [68, Remark 4.9].
6. If k is an algebraic closure of Q(t1, . . . , tn) and K is a finite extension of k(x1, . . . , xm),

then (K,DK) satisfies condition 2.
7. If k is a real closure of Q(t1, . . . , tn) with respect to some ordering and K is a real finite

extension of k(x1, . . . , xm), then (K,DK) satisfies condition 2.

3. Differential rings and jet rings

We do not claim any originality of most of the definitions and constructions in this section, for
example, see [35, Section 1.1], [3, §1], [13, 9.9], [34] for Section 3.2, see any standard reference
about modules with connections for Section 3.4, see [10] for Section 3.5, [35, Section 1.2,1.3],
[4, §2], [30, §16], [60, 61, 66] for Section 3.6 and Section 3.9, [35] for Section 3.7, and see
any standard reference about the Lie derivative for Section 3.10. The definition of a differential
object (Definition 3.35) generalizes the well-known notion of a stratification on a sheaf, [4].

Only the definition of a parameterized differential algebra (Definition 3.14) seems to be new.
However, we have decided to fix the notation and notions concerning differential rings, differen-
tial modules over them, PPV extensions, and jet rings. Note that the more commonly used name
for the notion from Definition 3.1 is a Lie algebroid, but we use the term differential ring, which
seems to be more standard in differential algebra. There is a direct generalization of differential
rings as defined below from rings to schemes replacing modules by quasi-coherent sheaves.

3.1. Notation

First let us fix the notation that we use in the paper.

• Given data D, we say that an object O associated with D is canonical if its construction
does not depend on the choice of any additional structure on D (for example, the choice of
a basis in a vector space). Usually, this implies that O is functorial in D in the reasonable
sense.

• All rings are assumed to be commutative and having a unit element.

• Denote the category of sets by Sets.

• Given a non-zero element f in a ring R, denote the localization of R over the multiplicative
set formed by all natural powers of f by R f .

• Given two rings R and S , denote their tensor product over Z by R ⊗ S .
9



• Given a ring R and two R-bimodules M and N, their tensor product is denoted by M ⊗R N,
where M and N are considered with the right and left R-module structures, respectively.

• For rings R and S , denote the set of all derivations from R to S , that is, additive homomor-
phisms that satisfy the Leibniz rule, by Der(R, S ). If R and S are algebras over a ring κ,
denote the set of all κ-linear derivations from R to S by Derκ(R, S ). Note that Der(R, S )
and Derκ(R, S ) have canonical S -module structures. Also, Der(R,R) and Derκ(R,R) are
Lie rings.

• Given a ring homomorphism R → S and an R-module M, denote the extension of scalars
S ⊗R M also by MS . If only one R-module structure on S is considered, we put the new
scalars on the left in the tensor product, that is, we use the notation S ⊗R M. If two R-
module structures on S are considered, then we usually refer to them as right and left
structures and use the notations S ⊗R M and M ⊗R S for the corresponding extensions of
scalars.

• Given a ring homomorphism R→ S and a morphism f : M → N of R-modules, we denote
the extension of scalars for f from R to S by idS ⊗ f , S ⊗R f , or fS , that is, we have

S ⊗R f : S ⊗R M → S ⊗R N or fS : MS → NS .

• For a field K, denote the category of vector spaces over K by Vect(K). Denote the full
subcategory of finite-dimensional K-vector spaces by Vectfg(K).

• For a ring R, denote the category of R-modules by Mod(R). Denote the full subcategory
of finitely generated R-modules by Modfg(R).

• For a ring R, denote the category of R-algebras by Alg(R).

• For a Hopf algebra A over a ring R, denote the category of comodules over A by Comod(A).
Denote the full subcategory of comodules over A that are finitely generated as R-modules
by Comodfg(A).

• For an affine group scheme G over a field k, denote the category of algebraic representa-
tions of G over k by Rep(G) (they correspond to comodules over a Hopf algebra). Denote
the full subcategory of finite-dimensional representations of G over k by Repfg(G).

• Given a category C and objects X, Y in C, denote the set of morphisms from X to Y by
HomC(X,Y). Put EndC(X) := HomC(X, X).

• Given exact sequences

0 −−−−−−→ X
α

−−−−−−→ Y
β

−−−−−−→ Z −−−−−−→ 0

0 −−−−−−→ X
α′

−−−−−−→ Y ′
β′

−−−−−−→ Z −−−−−−→ 0

in an abelian category, denote their Baer sum by Y +B Y ′, that is, we have

Y +B Y ′ = Ker
(
β − β′ : Y ⊕ Y ′ → Z

)/
Im

(
α ⊕ −α′ : X → Y ⊕ Y ′

)
.
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3.2. Differential rings

Definition 3.1. A differential ring is a triple (R,DR, θR), where R is a ring, DR is a finitely
generated projective R-module together with a Lie bracket [ · , · ] : DR × DR → DR, and θR :
DR → Der(R,R) is a morphism of both R-modules and Lie rings such that, for all a ∈ R and
∂1, ∂2 ∈ DR, we have

[∂1, a∂2] − a[∂1, ∂2] = θR(∂1)(a) ∂2.

For short, we usually omit θR in the notation. Thus, a differential ring is denoted just by
(R,DR), and

∂(a) := θR(∂)(a) a ∈ R, ∂ ∈ DR.

Let RDR denote the subring of DR-constants, that is, the set of all a ∈ R such that, for any ∂ ∈ DR,
we have ∂(a) = 0.
Remark 3.2. In most of the situations that we have here, it is enough to consider differential rings
(R,DR) with DR being a finitely generated free R-module.

Recall that, for an R-module M, its second wedge power ∧2
RM is the quotient of M⊗R M over

the submodule generated by all elements m ⊗ m, where m ∈ M. Given m, n ∈ M, the image of
m ⊗ n under the natural map

M ⊗R M → ∧2
RM

is denoted by m ∧ n. There is a canonical morphism of R-modules

∧2
R

(
M∨

)
→

(
∧2

RM
)∨
, p ∧ q 7→ {m ∧ n 7→ p(m)q(n) − p(n)q(m)} ,

where M∨ := HomR(M,R). If M is finitely generated and projective, then ∧2
RM is also finitely

generated and projective and the above morphism ∧2
R
(
M∨

)
→

(
∧2

RM
)∨

is an isomorphism.

Definition 3.3. For a differential ring (R,DR), we put ΩR := D∨R and define additive maps

d : R→ ΩR, a 7→ {∂ 7→ ∂(a)}

d : ΩR → ∧
2
RΩR, ω 7→ {∂1 ∧ ∂2 7→ ∂1(ω(∂2)) − ∂2(ω(∂1)) − ω([∂1, ∂2])} (1)

for all a ∈ R, ω ∈ ΩR and ∂1, ∂2 ∈ DR.

In the notation of Definition 3.3, for all a, b ∈ R and ω ∈ ΩR, we have

d(ab) = a db + b da, d(aω) = a dω + da ∧ ω, and d(d(a)) = 0.

Remark 3.4. The map d is well-defined for all wedge powers of ΩR,

d : ∧i
RΩR → ∧

i+1
R ΩR,

and this defines a dg-ring structure on ∧•RΩR. Actually, to define a differential ring structure
on R with DR being a finitely generated projective R-module is the same as to define a dg-ring
structure on ∧•RΩR with the natural product structure and grading, where, as above, ΩR = D∨R ,
[35, Remarques 1.1.9 b)]. Namely, given d, we put

∂(a) := (da)(∂),

and define the Lie bracket [∂1, ∂2] such that it satisfies the condition

ω([∂1, ∂2]) = ∂1(ω(∂2)) − ∂2(ω(∂1)) − (dω)(∂1 ∧ ∂2)

for all a ∈ R, ∂, ∂1, ∂2 ∈ DR, and ω ∈ ΩR.
11



Example 3.5.

1. Let R be the coordinate ring of a smooth affine variety X over a field k and put DR :=
Derk(R,R). Then the pair (R,DR) is a differential ring with ΩR, ∧2

RΩR, and d being the
modules of differential 1-, 2-forms on X, and the de Rham differential, respectively.

2. Let ∂1, . . . , ∂n be formal symbols that denote commuting derivations from a ring R to itself
(possibly, some of the ∂i’s correspond to the zero derivation). Then the pair

(R,R · ∂1 ⊕ . . . ⊕ R · ∂n)

defines a differential ring.
3. The data

(K,K · (z∂x + ∂y) + K · ∂z)

with K := C(x, y, z) and natural θK do not define a differential ring because of the lack of a
Lie bracket.

4. Let g be a finite-dimensional Lie algebra over a field K. Then (K, g) is a differential field
with the zero θK .

5. Let R ↪→ S be an embedding of rings and DR be a finitely generated projective R-sub-
module and a Lie subring in the R-module of all derivations ∂ : S → S with ∂(R) ⊂ R.
Let

θR : DR → Der(R,R)

be defined by the restriction to R of derivations from S to itself. Then (R,DR, θR) is a
differential ring with, possibly, non-trivial kernel and image of θR.

6. Let (R, A) be a Hopf algebroid (Section A.1). Put

I := Ker(e : A→ R) and ΩR := I/I2.

Then the cosimplicial ring structure on the tensor powers of A as an R-bimodule defines a
dg-ring structure on ∧•RΩR. Explicitly, for any a ∈ R, the element da ∈ ΩR = I/I2 is the
class of

r(a) − l(a) ∈ I.

For any ω ∈ ΩR, the element
dω ∈ ∧2

RΩR

is defined as follows. Let ω̃ ∈ I be such that its class in ΩR equals ω. One takes the class
of the element

ω̃ ⊗ 1 − ∆(ω̃) + 1 ⊗ ω̃ ∈ I ⊗R I

in the quotient ΩR ⊗R ΩR and then one applies the canonical map

ΩR ⊗R ΩR → ∧
2
RΩR

to obtain dω. By Remark 3.4, the dg-ring structure on Ω•R defines a differential ring (R,DR)
with DR = Ω∨R . See more details about this example in [35, Proposition 1.2.8].

Note that, for any differential field (K,DK) with char K = 0 and injective θK : DK → Der(K,K),
there exists a commuting basis for DK as shown in [44, p. 12, Proposition 6] and Proposition 3.18.
However, we prefer not to choose such a basis and to give coordinate-free definitions and con-
structions. In particular, here is a definition of a morphism between differential rings.
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Definition 3.6. A morphism between differential rings (R,DR)→ (S ,DS ) is a pair (ϕ, ϕ∗), where
ϕ : R→ S is a ring homomorphism and ϕ∗ : ΩR → ΩS is an R-linear map such that ϕ∗ commutes
with d, that is, for all a ∈ R, ω ∈ ΩR, we have

d(ϕ(a)) = ϕ∗(da) ∈ ΩS and d(ϕ∗(ω)) = ϕ∗(dω) ∈ ∧2
S ΩS ,

where we denote the R-linear map
∧2

RΩR → ∧
2
S ΩS

induced by ϕ∗ for short also by ϕ∗. The second condition,

d(ϕ∗(ω)) = ϕ∗(dω),

is called the integrability condition. For short, we sometimes omit ϕ∗ in the notation. A mor-
phism (ϕ, ϕ∗) is strict if the S -linear morphism

S ⊗R ΩR → ΩS

induced by ϕ∗ is an isomorphism.

Taking the dual modules, one obtains an explicit definition of a morphism between differ-
ential rings in terms of derivations. The pair (ϕ, ϕ∗) from Definition 3.6 corresponds to a pair
(ϕ,Dϕ), where ϕ : R→ S is a ring homomorphism and

Dϕ : DS → S ⊗R DR

is a morphism of S -modules. Sometimes we refer to Dϕ as a structure map associated with a
morphism between differential rings. The first condition,

d(ϕ(a)) = ϕ∗(da),

is equivalent to the equality
∂(ϕ(a)) =

∑
i

bi · ϕ(∂i(a)) (2)

for all a ∈ R and ∂ ∈ DS , where

Dϕ(∂) =
∑

i

bi ⊗ ∂i, bi ∈ S , ∂i ∈ DR.

The integrability condition is equivalent to the equality

Dϕ([∂, δ]) =
∑

j

∂(c j) ⊗ δ j −
∑

i

δ(bi) ⊗ ∂i +
∑
i, j

bic j ⊗
[
∂i, δ j

]
(3)

for all ∂, δ ∈ DS , where
Dϕ(δ) =

∑
j

c j ⊗ δ j, c j ∈ S , δ j ∈ DR.

The morphism (ϕ, ϕ∗) is strict if and only if Dϕ is an isomorphism.

Remark 3.7.
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1. In the notation of Definition 3.6, assume the injectivity of the canonical map

S ⊗R DR → Der(R, S )

induced by the ring homomorphism ϕ : R→ S . Then it follows from (2) that the morphism
Dϕ, as well as ϕ∗, is unique if it exists. In particular, the above injectivity assumption holds
if R is a field and θR is injective.

2. In the notation of Definition 3.6, it follows from (3) that the S -submodule DS/R := Ker(Dϕ)
in DS is closed under the Lie bracket, that is, if Dϕ(∂) = Dϕ(δ) = 0, then

Dϕ([∂, δ]) = 0.

Therefore, we obtain a differential ring (S ,DS/R) with the map DS/R → Der(S , S ) induced
by θS .

3. If (R, ∂R) and (S , ∂S ) are two rings with derivations, then a morphism of differential rings

(R,R · ∂R)→ (S , S · ∂S )

is given by a ring homomorphism ϕ : R → S and an element b ∈ S such that, for any
a ∈ R, we have

∂S (ϕ(a)) = b · ϕ(∂R(a)).

Thus, up to a rescaling, this is the usual definition of a morphism between differential rings
with one derivation.

Example 3.8. For a field k, consider the rings R := k[x, y, z], S := k[x, y], the modules

DR := R · ∂x + R · ∂y + R · z∂z, DS := S · ∂x + S · ∂y,

and the ring homomorphism ϕ : R→ S being the quotient by the ideal (z) ⊂ R. Then we have

ΩR = R · dx + R · dy + R · (1/z) dz, ΩS = S · dx + S · dy.

Given polynomials f , g ∈ S , consider the morphism of R-modules

ϕ∗ : ΩR → ΩS , dx 7→ dx, dy 7→ dy, (1/z) dz 7→ f dx + gdy.

Then (ϕ, ϕ∗) satisfies
ϕ∗(d(a)) = d(ϕ∗(a))

for all a ∈ R. Further, (ϕ, ϕ∗) satisfies the integrability condition if and only if ∂y f = ∂xg, because

d((1/z)dz) = 0, d(ϕ∗((1/z)dz)) =
(
−∂y f + ∂xg

)
· dx ∧ dy.

3.3. Differential algebras

In the present paper, we consider several types of algebras over differential rings. The first
type is the most general one.

Definition 3.9.
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• Given a morphism of differential rings (R,DR) → (S ,DS ), we say that (S ,DS ) is a differ-
ential algebra over (R,DR).

• A morphism between differential algebras over (R,DR) is a morphism between differential
rings that commutes with the given morphisms from (R,DR).

Definition 3.10. Given a differential ring (S ,DS ) and a morphism of rings R → S , we say that
(S ,DS ) is differentially finitely generated over R if there are finite subsets Σ ⊂ S and ∆ ⊂ DS

such that any element in S can be represented as a polynomial with coefficients from Im(R→ S )
in elements of the form

(∂1 · . . . · ∂n) a, ∂i ∈ ∆, a ∈ Σ,

and the product stands for the composition of derivations.

The following is a differential version of Definition 2.1.

Definition 3.11. Let (k,Dk) → (K,DK) be a morphism between differential fields. We say that
(k,Dk) is relatively differentially closed in (K,DK) if, for any differential subalgebra (R,DR) in
(K,DK) over (k,Dk) such that (R,DR) is differentially finitely generated over k and the morphism
(R,DR) → (K,DK) is strict, there is a morphism (R,DR) → (k,Dk) of differential algebras
over (k,Dk).

The following type of algebras corresponds to the usual notion of a differential algebra.

Definition 3.12.

• Given a strict morphism of differential rings (R,DR) → (S ,DS ), we say that (S ,DS ) is a
DR-algebra over (R,DR) (or simply over R).

• Denote the category of DR-algebras over (R,DR) by DAlg(R,DR).

• If a DR-algebra (S ,DS ) over a differential ring (R,DR) is differentially finitely generated
over R, then we say that S is DR-finitely generated over R.

• Denote the DR-algebra freely DR-generated over R by the finite set T1, . . . ,Tn, that is, the
ring of DR-polynomials in the differential indeterminates T1, . . . ,Tn, by R{T1, . . . ,Tn}.

For short, we usually omit DS in the notation of a DR-algebra over R, because it is recon-
structed by the isomorphism

Dϕ : DS
∼
−→ S ⊗R DR.

Given ∂ ∈ DR and b ∈ S , we put

∂(b) := θS

(
D−1
ϕ (1 ⊗ ∂)

)
(b).

We have that S is DR-finitely generated if and only if there is a finite subset Σ ⊂ S such that any
element in S can be represented as a polynomial with coefficients from Im(R → S ) in elements
of the form

(∂1 . . . ∂n) a, ∂i ∈ DR, a ∈ Σ.

Equivalently, there is no smaller DR-subalgebra over R in S containing Σ.
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Definition 3.13. A DR-algebra S over a differential ring (R,DR) is of DR-finite presentation over
R if there is an isomorphism of DR-algebras over R

S � R{T1, . . . ,Tn}/I,

where I is a DR-finitely generated ideal.

The following type of algebras is needed to work with parameterized differential equations.

Definition 3.14. A differential algebra (R,DR) over a differential field (k,Dk) is called parame-
terized if the structure map DR → R ⊗k Dk is surjective and we have k = RDR/k , where DR/k is the
kernel of the structure map.

Given a parameterized differential algebra (R,DR) over (k,Dk), one has the differential ring (R,DR/k)
(Remark 3.7(2)).

Definition 3.15. A splitting of a parameterized differential algebra (R,DR) over a differential
field (k,Dk) is a finite-dimensional k-subspace D̃k in DR closed under the Lie bracket on DR such
that the structure map DR → R ⊗k Dk induces a surjection

D̃k → Dk � 1 ⊗ Dk.

Remark 3.16. In the notation of Definition 3.15, put D̃R := R ⊗k D̃k and consider the differential
field

(
k, D̃k

)
, where D̃k → Der(k, k) is defined as the composition

D̃k → Dk → Der(k, k).

We obtain a commutative diagram of differential rings with the bottom horizontal morphism
being strict:

(k,Dk) −−−−−−→ (R,DR)y y(
k, D̃k

)
−−−−−−→

(
R, D̃R

)
.

Example 3.17.

1. Let {
∂x,1, . . . ∂x,m, ∂̃t,1, . . . , ∂̃t,n

}
be formal symbols that denote commuting derivations from a field K to itself and let k
be the field of

{
∂x,1, . . . , ∂x,m

}
-constants. Denote the restriction of ∂̃t,i from K to k by ∂t,i,

1 6 i 6 n. Then (K,DK) is a parameterized differential field over (k,Dk) with

DK := K · ∂x,1 ⊕ . . . ⊕ K · ∂x,m ⊕ K · ∂̃t,1 ⊕ . . . ⊕ K · ∂̃t,n,

Dk := k · ∂t,1 ⊕ . . . ⊕ k · ∂t,n, DK/k = K · ∂x,1 ⊕ . . . ⊕ K · ∂x,n.

2. Let
(
k, D̃k

)
be a differential field and Dk be the image of the map

θk : D̃k → Der(k, k).

Then
(
k, D̃k

)
is a parameterized differential field over (k,Dk).
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Actually, Example 3.17(1) is quite general as the following statement shows.

Proposition 3.18. Let (K,DK) be a parameterized differential field over a differential field (k,Dk)
with char k = 0 and injective θK and θk. Then we are in the case of Example 3.17(1), that is, there
exists a commuting basis {

∂x,1, . . . ∂x,m, ∂̃t,1, . . . , ∂̃t,n
}

of DK over K such that

Dk = k · ∂t,1 + . . . + k · ∂t,n, DK/k = K · ∂x,1 + . . . + K · ∂x,n where ∂t,i := ∂̃t,i|k.

Proof. We follow the idea of the proof of [44, p. 12, Proposition 6]. First, there are sets of
formal variables {xα} and {tβ} such that K is an algebraic extension of the field k({xα}) and k
is an algebraic extension of the field Q({tβ}). Since char k = 0, these algebraic extensions are
separable, whence there are uniquely defined commuting derivations

{
∂xα

}
and

{
∂tβ

}
from K to

itself. Note that we have

Derk(K,K) =
∏
α

K · ∂xα , Der(K,K) =
∏
α

K · ∂xα ⊕
∏
β

K · ∂tβ .

In what follows, by a coordinate subspace in Der(K,K), we mean a product of some of (possibly,
infinitely many)

(
K · ∂xα

)
’s and

(
K · ∂tβ

)
’s.

Since θK is injective, we can consider DK/k and DK as K-subspaces in Derk(K,K) and
Der(K,K), respectively. Let U ⊂ Derk(K,K) be a maximal coordinate subspace such that

U ∩ DK/k = 0.

Explicitly, U is spanned by some of ∂xα ’s in the sense of infinite products. Since DK/k is a
finite-dimensional K-vector space, the composition

DK/k → Derk(K,K)→ Derk(K,K)/U

is an isomorphism of K-vector spaces (finite-dimensionality of DK/k is important here, because
we allow U to be only a coordinate subspace in Derk(K,K), not an arbitrary one).

Further, let V ⊂ Der(K,K) be a maximal coordinate subspace such that V ∩ DK = 0 and
V ⊃ U. Explicitly, the basis of V in the sense of infinite products, as above, is obtained by
adding some ∂tβ ’s to the basis of U. Since θk is injective, we have

DK/k = Derk(K,K) ∩ DK ⊂ Der(K,K).

Together with the finite-dimensionality of DK over K, this implies that the composition

DK → Der(K,K)→ Der(K,K)/V

is an isomorphism of K-vector spaces. Denote this isomorphism by α.
Let π be the composition

Der(K,K)→ Der(K,K)/V
α−1

−−−−−−→ DK .
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Since V ∩ Derk(K,K) = U, we have the following commutative diagram with injective vertical
maps

DK/k −−−−−−→ Derk(K,K) −−−−−−→ Derk(K,K)/Uy y y
DK −−−−−−→ Der(K,K) −−−−−−→ Der(K,K)/V.

Therefore,
π(Derk(K,K)) ⊂ DK/k.

Finally, consider the finite sets of all indices {αi} and {β j} such that the corresponding deriva-
tions ∂xαi

and ∂tβ j
do not belong to V . Then the elements

∂x,i := π
(
∂αi

)
, ∂̃t, j := π

(
∂β j

)
form a basis in DK . Since the subspaces U and V are coordinate, this is a commuting basis, as
required.

3.4. Differential modules

We define differential modules as follows.

Definition 3.19.

• A DR-module over a differential ring (R,DR) (or simply over R) is a pair (M,∇M), where
M is an R-module and

∇M : M → ΩR ⊗R M

is an additive map such that, for all a ∈ R and m ∈ M, we have

∇M(am) = da ⊗ m + a · ∇M(m)

and the composition

M
∇M

−−−−−−→ ΩR ⊗R M
∇M

−−−−−−→ ∧2
RΩR ⊗R M

is zero, where ∇M : ΩR ⊗R M → ∧2
RΩR ⊗R M is defined by

∇M(ω ⊗ m) := dω ⊗ m − ω ∧ ∇M(m)

for all m ∈ M and ω ∈ ΩR.

• The condition ∇M ◦ ∇M = 0 is called the integrability condition.

• We put MDR := Ker∇M .

• A morphism between DR-modules Ψ : (M,∇M)→ (N,∇N) is a morphism of R-modules
Ψ : M → N that commutes with ∇. For short, we sometimes omit ∇M in the notation.
Denote the category of DR-modules over R by DMod(R,DR). Denote the full subcategory
of DR-modules over R that are finitely generated as R-modules by DModfg(R,DR).
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Equivalently, a DR-module over a differential ring (R,DR) is a pair (M, ρM), where M is an
R-module and ρM : DR → EndZ(M) is an R-linear morphism of Lie rings such that for all ∂ ∈ DR,
a ∈ R, and m ∈ M, we have

ρM(∂)(am) = a · ρM(∂)(m) + ∂(a) · m.

Further, an R-linear map Ψ : M → N is a morphism of differential modules if and only if, for all
m ∈ M and ∂ ∈ DR, we have

Ψ (ρM(∂)(m)) = ρN(∂) (Ψ(m)) .

We sometimes omit ρM and use just ∂(m) to denote ρM(∂)(m).

Remark 3.20. If M and DR are finitely generated free R-modules, then a choice of bases in
DR and M over R gives an equivalent definition of the DR-module structure on M in terms of
connection matrices.

Definition 3.21. Given DR-modules (M,∇M) and (N,∇N) over R, the DR-module structures on
the tensor product M ⊗R N and on the internal Hom module HomR(M,N) are defined by

∇M⊗N(m ⊗ n) := m ⊗ ∇N(n) + ∇M(m) ⊗ n ∈ ΩR ⊗R M ⊗R N,

∇Hom(M,N)(Ψ)(m) := ∇N(Ψ(m)) − Ψ(∇M(m)) ∈ ΩR ⊗R N

for all m ∈ M, n ∈ N, and Ψ ∈ HomR(M,N) (we use the canonical isomorphism ΩR⊗R M⊗R N �
M ⊗R ΩR ⊗R N and write Ψ instead of idΩR ⊗RΨ to be short).

Note that
(M ⊗R N,∇M⊗N) and (HomR(M,N),∇Hom(M,N))

are well-defined as DR-modules over R, namely, the integrability condition holds for them. The
tensor product on DR-modules defines a tensor category structure on DMod(R,DR) with the
internal Hom object being defined as above (Section A.2).

Remark 3.22. A DR-algebra S over R is the same as an R-algebra S with a DR-module struc-
ture ∇S on S over R such that the unit and multiplication maps are morphisms of DR-modules
over R. Given DR-algebras S and T , we obtain a DR-algebra structure on S ⊗R T following
Definition 3.21.

The extension of scalars for differential modules is defined as follows.

Definition 3.23. Let ϕ : (R,DR) → (S ,DS ) be a morphism of differential rings and (M,∇M) be
a DR-module over R. Then the extension of scalars of (M,∇M) from (R,DR) to (S ,DS ) is the
DS -module (

MS := S ⊗R M,∇MS

)
,

where, for all m ∈ M and a ∈ S , we have:

∇MS (a ⊗ m) := a · (ϕ∗ ⊗ idM)(∇M(m)) + da ⊗ m ∈ ΩS ⊗R M = ΩS ⊗S MS .

Equivalently, for all ∂ ∈ DS , m ∈ M, and a ∈ S , we have

ρMS (∂)(a ⊗ m) :=
∑

i

(abi) ⊗ ρM(∂i)(m) + ∂(a) ⊗ m ∈ MS ,
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where
Dϕ(∂) =

∑
i

bi ⊗ ∂i, bi ∈ S , ∂i ∈ DR.

Note that (MS ,∇MS ) is well-defined as a DS -module over S , namely, the integrability condition
holds for it.

Example 3.24. In the notation of Example 3.8, consider the rank one R-module M = R · e with
the DR-module structure over R defined by

∇M(e) := (1/z) dz ⊗ e.

Then the pair (MS ,∇MS ), with

∇MS (e) = dx ⊗ f e + dy ⊗ ge,

satisfies the integrability condition if and only if ∂y f = ∂xg, that is, if and only if ϕ∗ satisfies the
integrability condition.

3.5. Parameterized Picard–Vessiot extensions

First, let us give the definition of a non-parameterized Picard–Vessiot extension in terms of
differential fields as defined above.

Definition 3.25. Let (K,DK) be a differential field and M be a finite-dimensional DK-module
over K. A Picard–Vessiot extension for M, or, shortly, a PV extension for M, is a DK-field
(L,DL) over K (in particular, we have a field extension K ⊂ L and DL � L ⊗K DK) such that the
following conditions are satisfied:

1. We have KDK = LDL .
2. There is a basis {m1, . . . ,mn} of ML over L such that all the mi’s belong to (ML)DL .
3. There is no smaller DK-subfield over K in L containing the coordinates of the mi’s in a

basis of M over K.

In particular, the canonical morphism

L ⊗k MDL
L → ML

is an isomorphism, where k := KDK = LDL .

Example 3.26. Consider the differential field (K, g) with zero θK , where g is a finite-dimensional
Lie algebra over K. Let V be a finite-dimensional g-module over K, that is, V is a finite-
dimensional representation of g over K. Let G be the smallest algebraic subgroup in GL(V)
such that its Lie algebra contains the image of the representation map ρV : g → gl(V). The field
L of rational functions on G is a g-field over K: g acts on L by translation invariant vector fields
on G through ρV . The g-field L is a Picard–Vessiot extension for V .

Let (K,DK) be a parameterized differential field over a differential field (k,Dk) and let (L,DL)
be a DK-field over K. Then we obtain a morphism of differential fields

(k,Dk)→ (L,DL)
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as the composition of the morphisms (k,Dk) → (K,DK) and (K,DK) → (L,DL). The isomor-
phism DL � L ⊗K DK induces an isomorphism

DL/k � L ⊗K DK/k,

where, as in Definition 3.14,
DL/k := Ker(DL → L ⊗k Dk).

Thus, (L,DL/k) is a DK/k-field over K.
The following definition of a parameterized Picard–Vessiot extension essentially repeats the

corresponding definition from [10].

Definition 3.27. Let (K,DK) be a parameterized differential field over a differential field (k,Dk)
and M be a finite-dimensional DK/k-module over K.

• A parameterized Picard–Vessiot extension for M, or, shortly, a PPV extension for M, is a
DK-field (L,DL) over K such that the following conditions are satisfied:

1. We have KDK/k = LDL/k .
2. There is a basis {m1, . . . ,mn} of ML over L such that all the mi’s belong to (ML)DL/k ,

where ML is a DL/k-module over the DL/k-field L (see the discussion preceding the
definition).

3. There is no smaller DK-subfield over K in L containing the coordinates of the mi’s in
a basis of M over K.

• A morphism between PPV extensions is an isomorphism between the corresponding DK-
fields over K. Let PPV(M) denote the category of all PPV extensions for M.

Note that, in the notation of Definition 3.27, we have LDL/k = k, that is, (L,DL) is a param-
eterized differential field over (k,Dk). If char k = 0 and (k,Dk) is differentially closed, then all
PPV extensions for a given DK/k-module are isomorphic, [10, Theorem 3.5] (see examples of
PPV extensions therein).

In the case of Example 3.17(1), Definition 3.27 becomes equivalent to the definition of a
PPV extension as given in [10]. It makes sense to consider PPV extensions, because they lead
to a reasonable Galois theory for integrable systems of differential equations with parameters.
Namely, as shown in [10], a PPV extension defines a parameterized differential Galois group,
which is a differential algebraic group over (k,Dk).

In addition, there is a Galois correspondence between differential algebraic subgroups and
PPV subextensions, see Section 8.1 for the case when (k,Dk) is not necessarily differentially
closed. To investigate the parameterized differential Galois theory, one also needs the notion of
a PPV ring.

Definition 3.28. Let (K,DK) be a parameterized differential field over a differential field (k,Dk),
M be a finite-dimensional DK/k-module over K, and L be a PPV extension for M. Let mi ∈ ML be
as in Definition 3.27. A parameterized Picard–Vessiot ring associated with L is a DK-subalgebra
in L generated by the coordinates ai j of the mi’s in a basis of M over K and the inverse of the
determinant 1/ det(ai j).
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3.6. Jet rings

The proof of the main result, Theorem 2.5, requires an appropriate notion of a differential
Tannakian category over a differential field that goes along with the notion of a differential mod-
ule. Since it seems not possible to give a direct analogue of Definition 3.19 in a more general
setting, one needs another approach to differential modules. Actually, DR-modules over a differ-
ential ring (R,DR) turn out to be comodules over an object similar to a Hopf algebroid, namely,
the 2-jet ring P2

R (Definition 3.30). This approach has a natural version with R-modules replaced
by other objects over R, e.g., Hopf algebras over R or abelian R-linear tensor categories. The
latter leads to the notion of a differential object (Definition 3.35).

Let (R,DR) be a differential ring.

Definition 3.29. A 1-jet ring is the abelian group P1
R := R⊕ΩR with the following commutative

ring structure:

a · b = ab, a · ω = aω, and ω · η = 0, a ∈ R, ω, η ∈ ΩR

(recall that ΩR = D∨R ).

Consider two ring homomorphisms l, r : R→ P1
R given by

l(a) := a and r(a) := a + da, a ∈ R.

Thus, P1
R is an algebra over R ⊗ R. Explicitly, for all a, b ∈ R and ω ∈ ΩR, we have

l(a) · (b + ω) := ab + aω and (b + ω) · r(a) := ab + aω + b da.

It follows that ΩR is an (R⊗R)-ideal in P1
R. The homomorphism r : R→ P1

R provides a canonical
right R-linear splitting

P1
R � R ⊕ΩR,

which differs from the left R-linear splitting. It follows that P1
R is a finitely generated projective

R-module with respect to both R-module structures.

Definition 3.30. A 2-jet ring P2
R is the subset in P1

R ⊗R P1
R that consists of all elements

a ⊗ 1 + 1 ⊗ ω + ω ⊗ 1 − η,

where a ∈ R, ω ∈ ΩR, and η ∈ ΩR ⊗R ΩR are such that dω equals the image of η under the natural
map

ΩR ⊗R ΩR → ∧
2
RΩR.

Put IR to be the set of elements in P2
R with a = 0.

Remark 3.31. Note that, according to our notation, the tensor product P1
R ⊗R P1

R involves both
left and right R-module structures on P1

R.

Example 3.32. Let (R,DR) be as in Example 3.5 (1). Then

P1
R = (R ⊗k R)/J2,

where J is the kernel of the multiplication homomorphism R ⊗k R → R. If 2 is invertible in R,
then P2

R = (R ⊗k R)/J3, [4].
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Let us list some important properties of the 2-jet ring. One can show that P2
R is an (R ⊗ R)-

subalgebra in P1
R ⊗R P1

R with respect to the “external” R-modules structures. This defines two
ring homomorphisms from R to P2

R, which we denote also by l and r. Explicitly, we have

l(a) = a ⊗ 1 and r(a) = a ⊗ 1 + 1 ⊗ da + da ⊗ 1.

Denote the natural embedding by

∆ : P2
R → P1

R ⊗R P1
R, (4)

and put also
e : P1

R → R, a + ω 7→ a.

Note that ∆ and e are morphisms of algebras over R ⊗ R. Both compositions

P2
R P1

R ⊗R P1
R P1

R
∆ //

e·id //

id ·e
//

coincide with the surjective morphism of (R ⊗ R)-algebras

P2
R → P1

R, (a ⊗ 1 + 1 ⊗ ω + ω ⊗ 1 − η) 7→ a + ω. (5)

The kernel of this homomorphism equals the kernel of the natural map

ΩR ⊗R ΩR → ∧
2
RΩR,

which is, by definition, the second symmetric power Sym2
R ΩR of ΩR. Since Sym2

R ΩR is a finitely
generated projective R-module, P2

R is a finitely generated projective R-module with respect to
both R-module structures, being an extension of P1

R by Sym2
R ΩR. We also denote the map P2

R →

R defined as the composition
P2

R → P1
R

e
→ R

by e. Explicitly, we have
e(a ⊗ 1 + 1 ⊗ ω + ω ⊗ 1 − η) = a.

Thus, we have IR = Ker(e).
A morphism between differential rings ϕ : (R,DR) → (S ,DS ) defines a homomorphism of

(R ⊗ R)-algebras (
P1
ϕ := ϕ ⊕ ϕ∗

)
: P1

R → P1
S .

The integrability condition for ϕ is equivalent to the fact that the ring homomorphism

P1
ϕ ⊗ P1

ϕ : P1
R ⊗R P1

R → P1
S ⊗S P1

S

sends P2
R to P2

S . Indeed, for any element

1 ⊗ ω + ω ⊗ 1 − η ∈ P2
R,

the element (
P1
ϕ ⊗ P1

ϕ

)
(1 ⊗ ω + ω ⊗ 1 − η) = 1 ⊗ ϕ∗(ω) + ϕ∗(ω) ⊗ 1 − ϕ∗(η)
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belongs to P2
S if and only if d(ϕ∗(ω)) equals the image of ϕ∗(η) under the natural map

ΩS ⊗S ΩS → ∧
2
S ΩS ,

while the latter coincides with ϕ∗(dω). Thus, we obtain a morphism of (R ⊗ R)-algebras

P2
ϕ : P2

R → P2
S .

One can show that P2
ϕ commutes with the morphisms l, r,∆, and e.

Remark 3.33. Assume that 2 is invertible in R (in particular, char R , 2). Then there is a section

∧2
RΩR ↪→ ΩR ⊗R ΩR, ω1 ∧ ω2 7→

1
2

(ω1 ⊗ ω2 − ω2 ⊗ ω1) (6)

of the natural quotient map
ΩR ⊗R ΩR → ∧

2
RΩR,

and P2
R is generated as a subring and a left (or right) submodule in P1

R ⊗R P1
R by all elements of

type
〈ω〉 := 1 ⊗ ω + ω ⊗ 1 − dω, ω ∈ ΩR.

In addition, IR is generated by 〈ω〉 for all ω ∈ ΩR and Sym2
R ΩR = IR · IR.

3.7. Differential rings vs. Hopf algebroids

Let us cite some relations between differential rings and Hopf algebroids from [35]. The
content of this section is not needed for the rest of the text, but we have decided to include it for
the convenience of the reader.

Given a differential ring (R,DR), we have defined a 2-jet ring P2
R in Section 3.6. Actually, the

construction depends only on the 2-truncated de Rham complex

R
d

−−−−−−→ ΩR
d

−−−−−−→ ∧2
RΩR

associated with (R,DR) (Definition 3.3).
Conversely, let

(
R, A2) satisfy the similar properties as

(
R, P2

R
)

does. Namely, call a 2-
truncated Hopf algebroid with divided powers a pair of rings

(
R, A2) (A2 is just a notation for

a ring) together with the following data: two ring homomorphisms l, r : R→ A2, a morphism of
(R ⊗ R)-algebras e : A2 → R, a map of sets γ : I → A2, where I := Ker(e), and a morphism of
(R ⊗ R)-algebras

∆ : A2 → A1 ⊗R A1,

where
A1 := A2/I[2], I[2] := I · I + γ(I).

We require that, for all a ∈ R, x, y ∈ I, we have

γ(ax) = a2γ(x), γ(x + y) = γ(x) + xy + γ(y), I · I[2] = 0,

and the compositions

A2 A1 ⊗R A1 A1∆ //
e⊗id //

id⊗e
//
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are equal to the canonical surjection A2 → A1, where e also denotes the canonical morphism
A1 → R. In particular, for P2

R, we put

γ(1 ⊗ ω + ω ⊗ 1 − η) := ω ⊗ ω.

It follows that there is an antipode map A2 →
(
A2)s that satisfies the usual properties. An anal-

ogous construction to the one from Example 3.5(6) provides a 2-truncated de Rham complex
associated with

(
R, A2

)
. This implies that the category of 2-truncated Hopf algebroids with di-

vided powers is equivalent to the category of 2-truncated de Rham complexes.
Further, as shown in Remark 3.4, there is a way to construct a differential ring based on a

2-truncated de Rham complex with finitely generated projective ΩR. The Jacobi identity for the
Lie bracket is equivalent to the vanishing of the composition

d ◦ d : ΩR → ∧
3
RΩR.

This gives an auxiliary condition on the corresponding 2-truncated Hopf algebroids with divided
powers, which can be explicitly written in terms of a certain ring A3 (which is a 3-jet ring in
the case of P2

R), [35, 1.3.5]. This condition is similar to the associativity condition for a Hopf
algebroid (Section A.1).

It follows from [35, Proposition 1.2.8] that the category of 2-truncated Hopf algebroids with
divided powers, with I/I[2] being a flat R-module, and with the associativity condition is equiva-
lent to the category of 2-truncated de Rham complexes with ΩR being a flat R-module and with
vanishing

d ◦ d : ΩR → ∧
3
RΩR.

Also, the category of 2-truncated de Rham complexes with ΩR being a finitely generated projec-
tive R-module and with vanishing d◦d : ΩR → ∧

3
RΩR is equivalent to the category of differential

rings.
Recall that a formal Hopf algebroid is defined similarly to a Hopf algebroid with A being

a pro-object in the category of (R ⊗ R)-algebras. A formal Hopf algebroid
(
R, Â

)
with divided

powers on
I = Ker

(
e : Â→ R

)
is complete if the natural map

Â→ “lim
←−−

”A/I[i]

is an isomorphism. It follows from [35, Théorème 1.3.6] that the category of 2-truncated Hopf
algebroids with divided powers, with I/I[2] being a flat R-module, and with the associativity
condition is equivalent to the category of complete formal Hopf algebroids with divided powers
and with I/I[2] being a flat R-module.

In particular, the category of differential rings over Q is equivalent to the category of complete
formal Hopf algebroids

(
R, Â

)
with R being a Q-algebra and I/I2 being a finitely generated

projective R-module. For example, if DR = R ·∂ and R is a Q-algebra, then, for the corresponding
complete formal Hopf algebroid

(
R, Â

)
, the ring Â equals the ring of formal Taylor series R[[t]],

and we have

l(a) = a, r(a) =

∞∑
i=0

∂i(a)/i!, and ∆(t) = 1 ⊗ t + t ⊗ 1.

In other words, the formal Hopf algebroid
(
R, Â

)
is given by the action of the formal additive

group Ĝa on Spec(R).
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It seems that, in general, formal Hopf algebroids that are complete with respect to the usual
powers Ii correspond to iterative Hasse–Schmidt derivations on the differential side.

Assume that all DR-modules over R that are finitely generated over R are projective R-mo-
dules (for example, this holds if R is a field). Then the category DModfg(R,DR) is a Tannakian
category with the forgetful fiber functor

DModfg(R,DR)→Mod(R).

It seems to be a non-trivial problem to give an explicit description of the corresponding Hopf
algebroid (R, A) in terms of DR, whose formal completion is the complete formal Hopf algebroid
associated with (R,DR).

3.8. Differential objects

The pair
(
R, P2

R
)

resembles a Hopf algebroid (Section A.1). The main difference with a Hopf
algebroid is that ∆ does not send P2

R to the tensor square of itself. However, one can define a
comodule over

(
R, P2

R
)

in the same way as one defines a comodule over a Hopf algebroid. In the
present paper, we use a generalization of this notion.

LetM be a category cofibred over commutative rings, that is, for each commutative ring R,
there is a categoryM(R) and, given a ring homomorphism R→ S , there is a functor

S ⊗R − :M(R)→M(S ),

called an extension of scalars, compatible with taking composition of ring homomorphisms (for
more details, see [27]).

Example 3.34. M(R) can be the category of R-modules, R-algebras, Hopf algebras over R, Hopf
algebroids over R, etc.

We will now define differential objects, generalizing stratifications on sheaves from [4].

Definition 3.35.

• A DR-object inM over (R,DR) (or simply over R) is a pair
(
X, ε2

X
)
, where X is an object

inM(R) and
ε2

X : X ⊗R P2
R → P2

R ⊗R X

is a morphism in the categoryM
(
P2

R
)

such that the following two conditions are satisfied.
First, we have

R ⊗P2
R
ε2

X = idX ,

where the P2
R-module structure on R is defined by the ring homomorphism e : P2

R → R.
Put (

ε1
X := P1

R ⊗P2
R
ε2

X

)
: X ⊗R P1

R → P1
R ⊗R X,

where the P2
R-module structure on P1

R is given by the canonical surjection P2
R → P1

R. The
second condition says that the composition of morphisms inM

(
P1

R ⊗R P1
R
)

X ⊗R P1
R ⊗R P1

R

ε1
X⊗P1

R
(P1

R⊗RP1
R)

−−−−−−−−−−−−→ P1
R ⊗R X ⊗R P1

R

(P1
R⊗RP1

R)⊗P1
R
ε1

X

−−−−−−−−−−−−→ P1
R ⊗R P1

R ⊗R X
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is equal to the extension of scalars (
P1

R ⊗R P1
R

)
⊗P2

R
ε2

X ,

where the P2
R-module structure on P1

R ⊗R P1
R is given by the ring homomorphism ∆.

• The morphism ε2
X is called a DR-structure on X.

• A morphism between DR-objects in M over (R,DR) is a morphism between objects in
M(R) that commutes with ε2.

Remark 3.36. Perhaps, a more conceptually proper way to define a differential object would
also involve the 3-jet ring to encode the associativity condition (Section 3.7), but the present
definition will be enough for our purposes. However, all examples that arise in the paper satisfy
the associativity condition.

Definition 3.37. We say that a cofibred categoryM over rings has restrictions of scalars if, for
any ring homomorphism R→ S , there is a functorM(S )→M(R), called a restriction of scalars,
that is right adjoint to the extension of scalars. We usually denote the value of the restriction of
scalars functor in the same way as its argument.

Thus, for all objects X inM(R) and Y inM(S ), there is a functorial isomorphism

HomM(R)(X,Y) � HomM(S )(S ⊗R X,Y).

Also, the restriction of scalars defines an object S ⊗R X inM(R), which is functorial in S and X:
given a homomorphism of R-algebras ϕ : S → T and a morphism f : X → Y inM(R), we have
the morphism inM(R)

ϕ ⊗ f : S ⊗R X → T ⊗R Y.

In particular, we have a canonical morphism X → S ⊗R X inM(R) given by the ring homomor-
phism R→ S .

Example 3.38. The cofibred categories of modules and algebras have restrictions of scalars,
while the cofibred categories of Hopf algebras and Hopf algebroids do not have restrictions of
scalars.

Given an object X inM(R), by R
(
P2

R⊗R X
)
, denote the object inM(R) defined as follows: first

one takes the extension of scalars P2
R ⊗R X with respect to the right morphism r : R → P2

R and
then applies the restriction of scalars with respect to the left morphism l : R → P2

R. The proof
of the following proposition is a direct application of the adjointness between the extension and
restriction of scalars.

Proposition 3.39. Suppose that a cofibred category M over rings has restrictions of scalars.
Then a DR-object inM over (R,DR) is the same as a pair

(
X, φ2

X
)
, where X is an object inM(R)

and
φ2

X : X → R

(
P2

R ⊗R X
)

is a morphism inM(R) such that
(e ⊗ idX) ◦ φ2

X = idX
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and the following diagram commutes inM(R):

X
φ2

X
−−−−−−→ R

(
P2

R ⊗R X
)

φ1
X

y ∆⊗ idX

y
R

(
P1

R ⊗R X
) idP ⊗φ

1
X

−−−−−−→ R

(
P1

R ⊗R P1
R ⊗R X

)
,

where φ1
X is the composition of φ2

X with the morphism

R

(
P2

R ⊗R X
)
→ R

(
P1

R ⊗R X
)
.

In Section 4.3, we use the following statement.

Proposition 3.40. Suppose that a cofibred category M over rings has restrictions of scalars.
Then, for any DR-object X inM over R, the morphism ε1

X inM
(
P1

R
)

is an isomorphism.

Proof. The proof is similar to that for a Hopf algebra or a Hopf algebroid. The idea is that(
R, P1

R
)

corepresents a groupoid in the category of R-algebras with a two-step filtration, where
the filtration on P1

R is given by P1
R ⊃ ΩR. More precisely, put

P1
R ⊗

1
R P1

R :=
(
P1

R ⊗R P1
R

)/
(ΩR ⊗R ΩR), ı : P1

R →
(
P1

R

)s
, a + ω 7→ a − ω,

where, as in Section A.1, the superscript s denotes the interchange of the left and right R-module
structures. The homomorphism

∆ : P2
R → P1

R ⊗R P1
R

induces a homomorphism
P1

R → P1
R ⊗

1
R P1

R,

also denoted by ∆.
Let us construct an inverse to ε1

X explicitly. Denote the composition inM(R)

X
φ1

X
−−−−−−→ R

(
P1

R ⊗R X
) ı⊗idX
−−−−−−→

(
X ⊗R P1

R

)
R

by ψ. We will prove that ε1
X ◦ ψ equals the morphism

X →
(
P1

R ⊗R X
)

R

given by the ring homomorphism r : R → P1
R. This would imply that ε1

X is inverse to the
morphism inM

(
P1

R
)

from P1
R ⊗R X to X ⊗R P1

R that corresponds by adjunction to ψ, thus, ε1
X is an

isomorphism.
By the adjunction relation between ε and φ, the composition

R

(
P1

R ⊗R X
) ı⊗idX
−−−−−−→

(
X ⊗R P1

R

)
R

ε1
X

−−−−−−→
(
P1

R ⊗R X
)

R

is equal to the composition

R

(
P1

R ⊗R X
) idP ⊗φ

1
X

−−−−−−→ R

(
P1

R ⊗
1
R P1

R ⊗R X
) ı·idP ⊗ idX
−−−−−−−→

(
P1

R ⊗R X
)

R
.
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Since X is a DR-object, we have

(∆ ⊗ idX) ◦ φ2
X =

(
idP ⊗φ

1
X

)
◦ φ1

X : X → R

(
P1

R ⊗R P1
R ⊗R X

)
.

Applying the ring homomorphism

P1
R ⊗R P1

R → P1
R ⊗

1
R P1

R,

we obtain that both compositions

X R

(
P1

R ⊗R X
)

R

(
P1

R ⊗
1
R P1

R ⊗R X
)φ1

X //
idP ⊗φ

1
X //

∆⊗idX

//

are the same. Further, as for Hopf algebroids, we have

(ı · idP) ◦ ∆ = r ◦ e : P1
R → P1

R,

where we consider
∆ : P1

R → P1
R ⊗

1
R P1

R.

Finally, the composition e ◦ φ1
X : X → X is the identity. All together, this implies the needed

statement about ε1
X ◦ ψ.

Remark 3.41. It is not clear whether the morphism φ2
X must be an isomorphism in the general

case.

3.9. Examples of differential objects

Definition 3.35 is motivated by the following statement.

Proposition 3.42. Given an R-module M, a DR-module structure on M over R is the same as a
DR-structure on M as an object in the cofibred category of modules.

Proof. The cofibred category of modules has restrictions of scalars. Hence, by Proposition 3.39,
a DR-structure on M as an object in the cofibred category of modules is given by an R-linear
morphism

φ2
M : M → R

(
P2

R ⊗R M
)

that satisfies the conditions therein. Assume that ∇M is a DR-module structure on M. Consider
the map

φ1
M : M → P1

R ⊗R M, m 7→ 1 ⊗ m − ∇M(m). (7)

The Leibniz rule for ∇M is equivalent to the left R-linearity of φ1
M . Also, we have

(e ⊗ idM) ◦ φ1
M = idM .

Note that the cokernel of the injective map

∆ : P2
R → P1

R ⊗R P1
R

29



is a projective R-module, being an extension of ΩR by ∧2
RΩR. Therefore, the map

∆ ⊗ idM : P2
R ⊗R M → P1

R ⊗R P1
R ⊗R M

is injective. The integrability condition for ∇M is equivalent to the fact that the image of the
composition

M
φ1

M
−−−−−−→ P1

R ⊗R M
id⊗φ1

M
−−−−−−→ P1

R ⊗R P1
R ⊗R M

is contained in P2
R ⊗R M. To see this, take any m ∈ M and set

∇M(m) =
∑

i

ωi ⊗ mi, ωi ∈ ΩR, mi ∈ M.

Then the element(
id⊗φ1

M

)(
φ1

M(m)
)

=
(
id⊗φ1

M

)1 ⊗ m −
∑

i

ωi ⊗ mi

 =

= 1 ⊗ 1 ⊗ m −
∑

i

1 ⊗ ωi ⊗ mi −
∑

i

ωi ⊗ 1 ⊗ mi +
∑

i

ωi ⊗ ∇M(mi)

belongs to P2
R ⊗R M if and only if∑

i

dωi ⊗ mi =
∑

i

ωi ∧ ∇M(mi) ∈ ∧2
RΩR ⊗R M.

Finally, put
φ2

M :=
(
id⊗φ1

M

)
◦ φ1

M

to be the obtained map from M to P2
R ⊗R M.

Conversely, assume that φ2
M is a DR-structure on M. Then the formula

∇M(m) := 1 ⊗ m − φ1
M(m)

defines a DR-module structure on M over R.

Example 3.43.

1. A DR-object over R in the cofibred category of algebras is the same as a DR-algebra over R.
2. A DR-Hopf algebra over R is a Hopf algebra A over R such that A is a DR-algebra over R

and the coproduct, the counit, and the antipode maps are morphisms of DR-algebras.
3. Given a differential ring (κ,Dκ), a Dκ-Hopf algebroid over κ is a Hopf algebroid (R, A)

over κ such that R and A are Dκ-algebras over κ and (l, r,∆, e, ı) are morphisms of Dκ-
algebras over κ.

Here is an application of this approach to differential structures.

Proposition 3.44. Let A be a DR-algebra over R such that A is also a Hopf algebra over R.
Suppose that the coproduct map is a morphism of DR-algebras over R. Then the counit and
antipode maps are also morphisms of DR-algebras over R, that is, A is a DR-Hopf algebra over
R.
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Proof. Since the coproduct map is differential, the morphism

ε2
A : P2

R ⊗R A→ A ⊗R P2
R

commutes with the coproduct maps in the corresponding Hopf algebras P2
R ⊗R A and A ⊗R P2

R
over PR. Therefore, it commutes with the counit and the antipode maps (for example, see [79,
Section 2.1]).

In Section 4.2 we use the following statement.

Lemma 3.45. Let (R, A) be a Dκ-Hopf algebroid over a differential ring (κ,Dκ). Then the com-
position of the isomorphisms of abelian groups

A ⊗R P2
R
∼
−→ P2

A
∼
−→ P2

R ⊗R A

is an isomorphism of R-bimodules.

Proof. Let ϕ : R → A denote the left homomorphism. The left R-module structure on A ⊗R P2
R

corresponds to the R-module structure on P2
A given by the composition

R
ϕ
−→ A

l
−→ P2

A.

The left R-module structure on P2
R ⊗R A corresponds to the R-module structure on P2

A given by
the composition

R
l

−−−−−−→ P2
R

P2
ϕ

−−−−−−→ P2
A.

Since ϕ is a morphism of differential rings, P2
ϕ is a morphism of R-bimodules. In particular, the

compositions above coincide. Therefore, the left R-modules structures on A ⊗R P2
R and P2

R ⊗R A
are the same. The proof for the right R-module structures in analogous.

3.10. Lie derivative

In Section 5, we use the Lie derivatives defined on jet rings. Let (R,DR) be a differential ring.

Definition 3.46. A weak DR-module is an R-module M together with a morphism of Lie rings

ρM : DR → EndZ(M)

that satisfies the Leibniz rule with respect to the multiplication by scalars from R (thus, a DR-
module is a weak DR-module such that ρM is R-linear). Morphisms between weak DR-modules
are defined similarly to morphisms between DR-modules. As with differential modules, we some-
times omit ρM and use just ∂(m) to denote ρM(∂)(m).

Remark 3.47. As in Definition 3.21, given two weak DR-modules, one can show that the Leibniz
rule defines a weak DR-structure on their tensor product.

Definition 3.48. Given ∂ ∈ DR and ω ∈ ΩR, define the Lie derivative as follows:

L∂(ω) := d(ω(∂)) + (dω)(∂ ∧ −) ∈ ΩR,

where (dω)(∂ ∧ −) denotes the element in ΩR = D∨R that sends any δ ∈ DR to (dω)(∂ ∧ δ).
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The notation L∂(ω) instead of ∂(ω) avoids confusing the Lie derivative with the result of the
pairing between DR and ΩR. It follows from the definition of dω that, for any ξ ∈ DR, we have

L∂(ω)(ξ) = ∂(ω(ξ)) − ω([∂, ξ]). (8)

Also, one can show that, for any a ∈ R, we have

La∂(ω) = aL∂(ω) + ω(∂)da. (9)

The Lie derivative defines a weak DR-structure on ΩR. By linearity, we obtain a weak DR-
structure on P1

R � R ⊕ΩR:

∂(a + ω) := ∂(a) + L∂(ω), a ∈ R, ω ∈ ΩR , ∂ ∈ DR.

It follows that r : R→ P1
R is a morphism of weak DR-modules. Since

d(∂(a)) = L∂(da) for all a ∈ R, ∂ ∈ DR,

we have that l : R → P1
R is a morphism of weak DR-modules. The Leibniz rule for L∂ on ΩR

implies that the multiplication morphism

P1
R ⊗R P1

R → P1
R

is also a morphism of weak DR-modules.
Remark 3.49. By the Leibniz rule, the Lie derivative extends to a weak DR-structure on ∧2ΩR,
which we also denote by L∂. One can show that L∂ commutes with the map d : ΩR → ∧

2
RΩR.

This implies that the subring
P2

R ⊂ P1
R ⊗R P1

R

is preserved under the action of DR via the weak DR-module structure on P1
R ⊗R P1

R.

4. Differential categories

4.1. Extension of scalars for abelian tensor categories

Our aim is to apply Definition 3.35 of a differential object with X being an abelian R-linear
tensor category. For this, we need to use extension of scalars for such categories associated with
homomorphisms of rings. Let us briefly describe this. One can find more details, for example, in
[15, p. 155], [54, p. 407], and more recent papers [24] and [74].

We use the terminology from Section A.2. We fix a commutative ring R, a commutative
R-algebra S , and an abelian R-linear tensor category C. According to our definitions, this means
that, in particular, the tensor product in C is right-exact and R-linear in both arguments.

Definition 4.1. The extension of scalars of C from R to S is an abelian S -linear tensor category
S ⊗R C together with a right-exact R-linear tensor functor

S ⊗R − : C → S ⊗R C

that is universal from the left among all such data, that is, for any abelian S -linear tensor category
D, taking the composition with S ⊗R − defines an equivalence of categories:

Funr,⊗
S (S ⊗R C,D)

∼
−→ Funr,⊗

R (C,D), F 7→ F ◦ (S ⊗R −),

where Funr,⊗
S denotes the category of right-exact S -linear tensor functors (similarly, for Funr,⊗

R ).
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We usually denote the extension of scalars just by S ⊗R C (keeping in mind that we also
fix the functor S ⊗R −). Let us describe some general properties of the extension of scalars for
categories. First, consider a homomorphism of R-algebras S → T and assume that the extensions
of scalars S ⊗R C and T ⊗S (S ⊗R C) exist. Then T ⊗S (S ⊗R C) is equivalent to the extension of
scalars T ⊗R C.

Further, the category S ⊗R C is functorial in S and C in the following way. Let ϕ : S → T be
a homomorphism of R-algebras, D be an abelian R-linear tensor category, and F : C → D be a
right-exact R-linear tensor functor. Assume that both S ⊗R C and T ⊗R D exist. Then we obtain
a right-exact S -linear tensor functor

ϕ ⊗ F : S ⊗R C → T ⊗R D

defined by the universal property of S ⊗R C applied to the right-exact R-linear tensor functor

C
F
−→ D

T⊗R−
−−−−−−→ T ⊗R D.

The assignment F 7→ ϕ ⊗ F is functorial in F. If ψ : T → U is a homomorphism of R-algebras,
E is an abelian R-linear tensor category, G : D → E is a right-exact R-linear tensor functor, and
U ⊗R E exists, then there is a canonical isomorphism between tensor functors:

(ψ ⊗G) ◦ (ϕ ⊗ F) � (ψ ◦ ϕ) ⊗ (G ◦ F).

Sometimes, we also denote idS ⊗F by S ⊗R F. Also, we have that ϕ ⊗ idC = S ⊗R − for
ϕ : R→ S . We hope that this coincidence will not make any confusion.

In Definition 4.9, we will need a slight generalization of the previous functor ϕ⊗ F. Namely,
let

R −−−−−−→ Sy yϕ
U −−−−−−→ T

be a commutative diagram of rings,D be an abelian U-linear tensor category, and F : C → D be
a right-exact R-linear tensor functor. Assume that both S ⊗R C and T ⊗UD exist. Then, similarly
to the above, we obtain a right-exact S -linear tensor functor

ϕ ⊗ F : S ⊗R C → T ⊗U D.

If (S ⊗R U) ⊗U D exists, then we have

(ϕ ⊗ F)(X) = T ⊗(S⊗RU) F(X). (10)

The following important result is proved in [74, Theorem 1.4.1] (see also [15, p. 155] and
[54, p. 407]).

Theorem 4.2. Let C be a Tannakian category over a field k and k ⊂ K be a field extension. Then
there exists the extension of scalars K ⊗k C.

Further, recall that an S -module in C is a pair (X, αX), where X is an object in C and

αX : S → EndC(X)
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is a homomorphism of R-algebras. Morphisms between S -modules in C are naturally defined.
Given an R-module M and an object X in C, define

M ⊗R X

to be an object in C such that there is a functorial isomorphism of R-modules

HomC(M ⊗R X,Y) � HomR(M,HomC(X,Y)). (11)

The object M ⊗R X is well-defined up to a unique isomorphism if it exists. If an R-module M is
of finite presentation, that is, there is a right-exact sequence of R-modules

R⊕m ϕ
−−−−−−→ R⊕n −−−−−−→ M −−−−−−→ 0,

then, M ⊗R X exists for any X. By (11), for an S -module (X, αX) in C, the homomorphism αX

defines a morphism
aX : S ⊗R X → X.

The following result is extensively used in what follows. Its proof can be found in [13, 5.11],
where an equivalent approach to the extension of scalars for categories is used (see also [74]
and [24]).

Proposition 4.3. Let C be an abelian R-linear tensor category. Suppose that S is of finite presen-
tation as an R-module. Then the abelian S -linear tensor category of S -modules in C is equivalent
to the extension of scalars S ⊗R C and the functor S ⊗R − sends X to S ⊗R X.

Example 4.4. If S is of finite presentation as an R-module, then the extension of scalars category
S ⊗R Mod(R) is equivalent to the category Mod(S ) and the functor S ⊗R − coincides with the
usual tensor product functor.

Example 4.5. Let M be an R-module of finite presentation. Put S := R⊕M, where an R-algebra
structure on S is uniquely defined by the condition M · M = 0. An S -module in C is the same as
an exact sequence

0→ X′ → X → X′′ → 0

together with a morphism
fX : M ⊗R X′′ → X′.

Namely, with an S -module (X, αX), we associate X′ := M · X and X′′ := X/(M · X), where M · X
is the image of the morphism

aX : M ⊗R X → X.

If S -modules (X, αX) and (Y, αY ) correspond to the data

0→ X′ → X → X′′ → 0, fX : M ⊗R X′′ → X′;
0→ Y ′ → Y → Y ′′ → 0, fY : M ⊗R Y ′′ → Y ′,

then their tensor product (X, αX) ⊗ (Y, αY ) in S ⊗R C is defined as the cokernel of the morphism

bX ⊗ idY − idX ⊗bY : M ⊗R (X ⊗ Y)→ X ⊗ Y,

34



where bX is defined as the composition

M ⊗R X −−−−−−→ M ⊗R X′′
fX

−−−−−−→ X′ −−−−−−→ X,

and similarly for bY . In particular, if the tensor product in C is exact in both arguments and the
morphisms fX , fY are isomorphisms, then (see also [41, 5.1.3]) the tensor product (X, αX)⊗(Y, αY )
corresponds to the Baer sum of the exact sequences

0→ M ⊗R (X′′ ⊗ Y ′′)→ X ⊗ Y ′′ → X′′ ⊗ Y ′′ → 0,
0→ X′′ ⊗ (M ⊗R Y ′′)→ X′′ ⊗ Y → X′′ ⊗ Y ′′ → 0.

4.2. Differential abelian tensor categories

Throughout this subsection, we fix a differential ring (R,DR). We use constructions from
Sections 3.8 and 4.1. Recall that the jet rings P1

R, P2
R, and P1

R ⊗R P1
R (Definition 3.30) are finitely

generated projective R-modules with respect to both left and right R-module structures. Hence,
they are of finite presentation as R-modules and there is an extension of scalars from R to P2

R for
abelian tensor categories (Definition 4.1 and Proposition 4.3).

Consequently, Definition 3.35 gives the notion of a DR-object over R in the cofibred 2-
category of abelian tensor categories, or a DR-category over R for short. Here “morphisms”
between tensor categories are tensor functors. The main difference with the case of a usual cofi-
bred category as in Definition 3.35 is that, instead of considering equalities between morphisms,
one should fix isomorphisms between tensor functors.

Further, there are also restrictions of scalars between P2
R and R for abelian tensor categories

(this follows from the definition of the extension of scalars for categories, Definition 4.1). Propo-
sition 3.39 remains valid in the case of a cofibred 2-category instead of a cofibred (1-)category.
Thus, one has an equivalent definition of a DR-category over R in terms of φ’s instead of ε’s. We
prefer to use the definition in terms of φ’s. Note that Definitions 4.6 and 4.9 below have a more
explicit equivalent form, see Section 4.3 (also, compare with [24, Example 12], where the case
of the coaction of a Hopf algebra on a category is considered).

Similarly to Section 3.8,
R

(
P2

R ⊗R C
)

denotes the abelian tensor category P2
R ⊗R C considered with the R-linear structure obtained by

the left ring homomorphism l : R→ P2
R.

Definition 4.6. A DR-category over (R,DR) (or simply over R) is a collection
(
C, φ2

C
,ΦC,ΨC

)
,

where C is an abelian R-linear tensor category,

φ2
C : C → R

(
P2

R ⊗R C
)

is a right-exact R-linear tensor functor,

ΦC : (e ⊗ idC) ◦ φ2
C

∼
−→ idC

is an isomorphism of tensor functors from C to itself (recall that e : P2
R → R is a ring homomor-

phism), and
ΨC : (∆ ⊗ idC) ◦ φ2

C

∼
−→

(
idP1

R
⊗φ1
C

)
◦ φ1
C
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is an isomorphism between tensor functors from C to P1
R⊗R P1

R⊗RC, where φ1
C

is the composition
of φ2

C
with the functor

P2
R ⊗R C → P1

R ⊗R C.

For short, we usually denote a DR-category
(
C, φ2

C
,ΦC,ΨC

)
just by C. We call the collec-

tion
(
φ2
C
,ΦC,ΨC

)
a DR-structure on C.

In other words, ΦC is an isomorphism between the composition

C
φ2
C

−−−−−−→ P2
R ⊗R C

e⊗idC
−−−−−−→ C

and the identity functor from C to itself, while the isomorphism ΨC makes the following diagram
of categories to commute:

C
φ2
C

−−−−−−→ P2
R ⊗R C

φ1
C

y ∆⊗ idC

y
P1

R ⊗R C
idP ⊗ φ

1
C

−−−−−−→ P1
R ⊗R P1

R ⊗R C.

Example 4.7. The category Mod(R) of R-modules has a canonical DR-structure given by the
composition of R-linear tensor functors (see also Example 4.4)

Mod(R)
−⊗RP2

R
−−−−−−→ R Mod

(
P2

R

)
� R

(
P2

R ⊗R Mod(R)
)
.

Explicitly, for an R-module M, we put

φ2
R(M) :=

((
M ⊗R P2

R

)
R
, α

)
in P2

R ⊗R Mod(R), where
α : P2

R → EndR

(
M ⊗R P2

R

)
is the natural homomorphism. In other words, φ2

R(M) is the Atiyah extension of M (see also
Proposition 4.15 and Remark 4.16 (1)).

Example 4.8. The κ-linear category Comod(R, A) of comodules over a Dκ-Hopf algebroid (R, A)
over a differential ring (κ,Dκ) (Example 3.43(3)) has a canonical Dκ-structure given by the com-
position of κ-linear tensor functors

Comod(R, A)
−⊗κP2

κ
−−−−−−→ κ Comod

(
R ⊗κ P2

κ , A ⊗κ P2
κ

)
� κ Comod

(
P2
κ ⊗κ R, P2

κ ⊗κ A
)

� κ

(
P2
κ ⊗κ Comod(R, A)

)
.

Explicitly, given a comodule M over A, we define an A-comodule structure on φ2
R(M) as the

composition

φ2
R(M)→ φ2

R(M ⊗R A) =
(
M ⊗R A ⊗R P2

R

)
R
�

(
M ⊗R P2

R ⊗R A
)

R
=

(
φ2

R(M) ⊗R A
)

R
,

where the non-trivial isomorphism in the middle is defined as in Lemma 3.45. Thus, the functor
φ2

R extends to a Dκ-structure on the category Comod(R, A). If one does an explicit calculation in
the case when (κ,Dκ) is a differential field with one derivation, R = κ, and A is a Dκ-Hopf algebra
over κ, then one recovers the formula from [62, Theorem 1].
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We will define differential functors now.

Definition 4.9.

• Let ϕ : (R,DR) → (S ,DS ) be a morphism of differential rings, C be a DR-category over
R, and D be a DS -category over S . A differential functor from C to D is a pair (F,ΠF),
where F : C → D is a right-exact R-linear tensor functor and

ΠF :
(
P2
ϕ ⊗ F

)
◦ φ2
C

∼
−→ φ2

D ◦ F

is a isomorphism between tensor functors from C to P2
S ⊗S D such that ΦC commutes with

ΦD via ΠF and ΨC commutes with ΨD via ΠF . For short, we usually denote a differential
functor (F,ΠF) just by F. We call ΠF a differential structure on F.

• A morphism between differential functors is a morphism between tensor functors Φ : F →
G that commutes with the Π’s.

Denote the category of differential functors from C toD by FunD
R (C,D).

In other words, the isomorphism ΠF makes the following diagram of categories commutative:

C
F

−−−−−−→ D

φ2
C

y φ2
D

y
P2

R ⊗R C
P2
ϕ⊗F

−−−−−−→ P2
S ⊗S D .

Example 4.10.

1. Given a morphism of differential rings (R,DR)→ (S ,DS ), the extension of scalars functor

S ⊗R − : Mod(R)→Mod(S )

is canonically a differential functor.
2. Given a Dκ-Hopf algebroid (R, A) over a differential ring (κ,Dκ), the forgetful functor

Comod(R, A)→Mod(R)

is canonically a differential functor, where we consider the DR-structure on Mod(R) with
DR := R ⊗κ Dκ.

3. Given a Dκ-Hopf algebroid (R, A) over a differential ring (κ,Dκ) and a morphism of Dκ-
algebras R→ S , the extension of scalars functor

S ⊗R − : Comod(R, A)→ Comod(S , S AS )

is canonically a differential functor.

The following statement is needed in the proof of Theorem 5.5.

Lemma 4.11. Let C, D, and E be DR-categories, F : C → D be a functor, and G : D → E be
a fully faithful differential functor. Then there is a bijection between differential structures on F
and G ◦ F.

37



Proof. If F is a differential functor, then G ◦ F is also a differential functor, being a composition
of differential functors. Conversely, suppose that G ◦ F is a differential functor. Consider the
diagram of categories:

C
F

−−−−−−→ D
G

−−−−−−→ E

φ2
C

y φ2
D

y φ2
E

y
P2

R ⊗R C
idP ⊗F
−−−−−−→ P2

R ⊗R D
idP ⊗G
−−−−−−→ P2

R ⊗R E.

Since G ◦ F is a differential functor, we obtain an isomorphism between tensor functors(
idP2

R
⊗G

)
◦
(

idP2
R
⊗F

)
◦ φ2
C

∼
−→ φ2

E ◦G ◦ F.

Further, since G is a differential functor, we obtain an isomorphism between tensor functors

φ2
E ◦G ◦ F

∼
−→

(
idP2

R
⊗G

)
◦ φ2
D ◦ F.

Taking the composition, we obtain an isomorphism between tensor functors(
idP2

R
⊗G

)
◦
(

idP2
R
⊗F

)
◦ φ2
C

∼
−→

(
idP2

R
⊗G

)
◦ φ2
D ◦ F.

Since G is fully faithful, the functor idP2
R
⊗G is also fully faithful. Therefore, we obtain an

isomorphism between tensor functors

ΠF :
(

idP2
R
⊗F

)
◦ φ2
C

∼
−→ φ2

D ◦ F.

It follows that this indeed defines a differential structure on F.

We also use extensions of scalars for differential categories in the proof of Theorem 5.5.

Proposition 4.12. Let ϕ : (R,DR) → (S ,DS ) be a morphism between differential rings, C be a
DR-category over R, and suppose that the extension of scalars category S ⊗R C exists (Defini-
tion 4.1).

1. There is a canonical DS -structure on S ⊗R C such that the functor

S ⊗R − : C → S ⊗R C

is canonically a differential functor.
2. Let D be a DS -category over S . Then taking the composition with S ⊗R − defines an

equivalence of categories:

FunD
S (S ⊗R C,D)

∼
−→ FunD

R (C,D), F 7→ F ◦ (S ⊗R −).

Proof. To prove statement 1, define the functor

φ2
S⊗RC

: S ⊗R C → P2
S ⊗S (S ⊗R C) � P2

S ⊗R C

by the universal property of S ⊗R C applied to the right-exact R-linear tensor functor

C
φ2
C

−→ P2
R ⊗R C

P2
ϕ⊗idC
−−−−−−→ P2

S ⊗R C .

This also defines a differential structure on the functor S ⊗R −. To prove statement 2, one applies
the universal property of S ⊗R C directly.
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Remark 4.13.

1. Applying Proposition 4.12 to C = Mod(R), we obtain that the canonical functor

S ⊗R Mod(R)→Mod(S )

is a differential functor between DS -categories (Example 4.7) provided that S ⊗R Mod(R)
exists.

2. Given DR-categories C andD over R and a differential functor F : C → D, the functor

S ⊗R F : S ⊗R C → S ⊗R D

is canonically a differential functor between DS -categories over S provided that S ⊗R C

and S ⊗R D exist.
3. Both Definition 3.23 and the construction from Proposition 4.12(1) are particular cases of

extensions of scalars for differential objects.

4.3. Definitions in the explicit form

The following technical result provides an explicit information about objects of type φ2
C

(X),
where X is an object in a DR-category C. Recall that we have a decreasing filtration by ideals in
P2

R (see Definition 3.30 for IR)
P2

R ⊃ IR ⊃ Sym2
R ΩR ⊃ 0

and canonical isomorphisms

P2
R/IR � R, IR/Sym2

R ΩR � ΩR.

Lemma 4.14. Let C be a DR-category over R. Then, for any object X in C, there are functorial
isomorphisms (see Section 4.1 for ΩR ⊗R X):

φ2
C(X)/IR ·φ

2
C(X) � X, IR ·φ

2
C(X)/Sym2

R ΩR ·φ
2
C(X) � ΩR⊗R X, Sym2

R ΩR ·φ
2
C(X) � Sym2

R ΩR⊗R X.

Proof. The isomorphism ΦC yields the first isomorphism, because

(e ⊗ idC)
(
φ2
C(X)

)
� φ2

C(X)
/
IR · φ

2
C(X).

Hence, the P2
R-module structure on φ2

C
(X) defines surjective morphisms

ΩR ⊗R X
α
−→ IR · φ

2
C(X)

/
Sym2

R ΩR · φ
2
C(X), Sym2

R ΩR ⊗R X
β
−→ Sym2

R ΩR · φ
2
C(X),

where we use that
IR · IR ⊂ Sym2

R ΩR and IR · Sym2
R ΩR = 0.

Let us prove that α is injective and, thus, is an isomorphism. By the definition of φ1
C

(Defini-
tion 4.6), we have

φ1
C(X) � φ2

C(X)
/

Sym2
R ΩR · φ

2
C(X).

Thus, we need to show that the corresponding morphism

ΩR ⊗R X
γ
−→ φ1

C(X)
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is injective (see also Example 4.5). By Proposition 4.3, the right-exact R-linear tensor functor

φ1
C : C → R

(
P1

R ⊗R C
)

defines a right-exact P1
R-linear tensor functor

ε1
C : C⊗RP1

R → P1
R ⊗R C

such that, for any object X in C, we have a functorial isomorphism

φ1
C(X) � ε1

C

(
X ⊗R P1

R

)
.

Further, the proof of Proposition 3.40 remains valid in the case of a cofibred 2-category instead
of a cofibred (1-)category. Thus, ε1

C
is an equivalence of categories and, in particular, is exact.

On the other hand, since ΦC is an isomorphism, we have an isomorphism of tensor functors

R ⊗P1
R
ε1
C � idC

from C to itself, where we consider the ring homomorphism e : P1
R → R. Explicitly, this means

that, for a P1
R-module Y in C such that ΩR acts trivially on Y , there is a functorial isomorphism

ε1
C

(Y) � Y (Proposition 4.3). Therefore, applying ε1
C

to the injective morphism in C⊗RP1
R

X ⊗R ΩR −→ X ⊗R P1
R

given by the split embedding ΩR ⊂ P1
R (and using that X ⊗R ΩR = ΩR ⊗R X), we show the

injectivity of γ. Now let us prove that β is injective and, thus, it is an isomorphism. Consider the
object

Z :=
(

idP1
R
⊗φ1
C

)(
φ1
C(X)

)
in P1

R ⊗R P1
R ⊗R C. We have a commutative diagram in C

Sym2
R ΩR ⊗R X

β
−−−−−−→ Sym2

R ΩR · φ
2
C

(X)

f
y g

y
Ω⊗2

R ⊗R X
h

−−−−−−→ Ω⊗2
R · Z,

where h is given by the action of P1
R ⊗R P1

R on Z (we use that X � Z/(IR · Z) and Ω⊗2
R · IR = 0),

the morphism f is defined by the embedding

Sym2
R ΩR → Ω⊗2

R ,

and the morphism g is induced by the isomorphism ΨC. Using the injectivity of γ for X and for
φ1
C

(X), we obtain that h is injective. Since

Ω⊗2
R

/
Sym2

R ΩR � ∧
2
RΩR

is a projective R-module, f is also injective, which implies the injectivity of β.
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Now let us give a more explicit (though, a longer) definition of a DR-category. First, consider
only the functor φ1

C
. In this case, the situation is similar to the previously known differential

Tannakian category over a field with one derivation [63, Definition 3], and [41, Definition 5.2.1].
For simplicity, we assume that the tensor product is exact in C.

Proposition 4.15. Let C be an abelian R-linear tensor category such that the tensor product is
exact. Then to define a right-exact R-linear tensor functor

φ1
C : C → R

(
P1

R ⊗R C
)

together with an isomorphism between tensor functors

ΦC : (e ⊗ idC) ◦ φ1
C

∼
−→ idC

is the same as to define the following data:

1. A functor At1C : C → C together with a functorial exact sequence

0 −−−−−−→ ΩR ⊗R X −−−−−−→ At1C(X) −−−−−−→ X −−−−−−→ 0 (12)

for any object X in C;
2. An isomorphism

At1C(1)
∼
−→ P1

R ⊗R 1,

where we consider the right R-module structure on P1
R, such that exact sequence (12)

coincides with the natural exact sequence for X = 1:

0 −−−−−−→ ΩR ⊗R 1 −−−−−−→ P1
R ⊗R 1 −−−−−−→ 1 −−−−−−→ 0,

and, for any a ∈ R→ EndC(1), we have

At1C(a) = l(a),

where we denote elements of R (respectively, in P1
R) and their images under the morphisms

to End(1C) (respectively, to End(P1
R ⊗R 1)) in the same way;

3. A functorial isomorphism with the Baer sum

At1C(X ⊗ Y)
∼
−→

(
At1C(X) ⊗ Y) +B (X ⊗ At1C(Y)

)
(13)

for all objects X and Y in C that respects commutativity and associativity constraints in C
and the splitting of

At1C(1) � P1
R ⊗R 1

given by the canonical right R-linear splitting P1
R � R ⊕ΩR.

Proof. Given φ1
C

, let At1C be the composition of φ1
C

with the forgetful functor P1
R ⊗R C → C

(Proposition 4.3). Then Example 4.5 and Lemma 4.14 (namely, its part that concerns the first
two adjoint quotients) imply the needed statement.

Remark 4.16.
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1. The notation At is explained by an analogy with the case C = Mod(R) (Example 4.7),
when the corresponding functor coincides with the Atiyah extension:

At1C(M) =
(
M ⊗R P1

R

)
R

for an R-module M. In particular, for a Dk-Hopf algebra A or a Dk-Hopf algebroid (R, A)
over k, we have that

At1C(M) =
(
M ⊗R P1

R

)
R
,

where C = Comod(A) or C = Comod(R, A) (Example 4.8) and M is an A-comodule.
2. To give the functor AtC is the same as to give an object of type (ΩR[1], α) in the category

of Kähler differentials for the derived category of C as defined in [53].
3. To be strict, we distinguish between a P1

R-module (Y, αY ) in C and the corresponding object
Y in C, which makes the difference between φ1

C
(X) and At1C(X).

To define a DR-category in these terms, let us first discuss several properties of the functor

At1C : C → C .

It is not tensor and is not R-linear. For any object X in C, At1C(X) is canonically a P1
R-module in

C with respect to the right R-module structure on P1
R (Example 4.5). For any a ∈ R, we have

At1C(a) = a − da,

where a acts on objects in C, being a scalar from R, and

da ∈ ΩR ⊂ P1
R

acts on At1C(X) as the composition

At1C(X)→ X
da⊗idX
−−−−−−→ ΩR ⊗R X → At1C(X).

Further, for any X in C, the object At1C
(

At1C(X)
)

is a
(
P1

R ⊗R P1
R
)
-module in C. Consider the

filtration by ideals:

P1
R ⊗R P1

R ⊃
(
ΩR ⊗R P1

R + P1
R ⊗R ΩR

)
⊃ ΩR ⊗R ΩR ⊃ 0. (14)

This defines a decreasing filtration on At1C
(

At1C(X)
)
. By exact sequence (12), the corresponding

adjoint quotients are as follows:

X, (ΩR ⊗R X) ⊕ (ΩR ⊗R X) , ΩR ⊗R ΩR ⊗R X.

In addition, the Baer sum isomorphism (13) (or, equivalently, the tensor property of φ1
C

) implies
that there is a product map

m : At1C
(
At1C(X)

)
⊗ At1C

(
At1C(Y)

)
→ At1C

(
At1C(X ⊗ Y)

)
.

We will use the following technical result. By a filtered ring, we mean a ring A together with
a decreasing filtration

A = F0A ⊃ F1A ⊃ . . . such that F iA · F jA ⊂ F i+ jA.
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Lemma 4.17. Let A be a finitely filtered ring, f : M → N be a morphism between A-modules
(possibly, between A-modules in an appropriate abelian tensor category). Suppose that

gr0 f : gr0M → gr0N

is an isomorphism and, for any i, the canonical morphism

griA ⊗gr0A gr0N → griN

is an isomorphism. Then f is an isomorphism.

Proof. We have surjective morphisms

griA ⊗gr0A gr0M → griM.

By the hypotheses of the lemma, their compositions with gri f is an isomorphism. Thus, gri f is
an isomorphism. Since A is finitely filtered, we conclude that f is an isomorphism.

Proposition 4.18. Let
(
C,At1C

)
be as in Proposition 4.15. Then to define a DR-structure on C

with φ1
C

being given by At1C is the same as to define a functorial P2
R-submodule

At2C(X) ⊂ At1C
(
At1C(X)

)
such that, for all X and Y in C, the following is satisfied:

1. The map m sends At2C(X) ⊗ At2C(Y) to At2C(X ⊗ Y);
2. The adjoint quotients of the intersection of At2C(X) with the above filtration on At1C

(
At1C(X)

)
are contained in

X, ΩR ⊗R X, Sym2
R ΩR ⊗R X,

where we consider the diagonal embedding

ΩR ⊗R X ↪→ (ΩR ⊗R X) ⊕ (ΩR ⊗R X)

and the natural embedding

Sym2
R ΩR ⊗R X ↪→ ΩR ⊗R ΩR ⊗R X;

3. The induced map from At2C(X) to X = gr0 At1C
(

At1C(X)
)

is surjective.

Proof. Given a DR-structure φ2
C

, let At2C be the composition of φ2
C

with the forgetful functor

P2
R ⊗R C → C .

Since φ2
C

is a tensor functor and we have an isomorphism of tensor functors ΨC, At2C satisfies
statement 1. Also, by Lemma 4.14, we have statements 2 and 3.

Conversely, let At2C satisfy statements 1, 2, and 3. To construct the isomorphism ΨC, we need
to show that the natural morphism

µ :
(
P1

R ⊗R P1
R

)
⊗P2

R
At2C(X)→ At1C

(
At1C(X)

)
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is an isomorphism. Note that µ is a morphism between
(
P1

R ⊗R P1
R
)
-modules in C. Consider the

filtration on the source and target of µ given by filtration (14). By statements 2 and 3, the natural
morphism

At2C(X)
/
IR · At2C(X)→ X

is an isomorphism. Therefore, the first adjoint quotient of the source of µ is isomorphic to X
and gr0µ is an isomorphism (being the identity from X to itself). By Lemma 4.17 applied to the
finitely filtered ring

(
P1

R ⊗R P1
R
)
, µ is an isomorphism.

The tensor structure on the functor φ2
C

is given by the product map m. The fact that we obtain
an isomorphism follows from Lemma 4.17 applied to the finitely filtered ring P2

R. Finally,

φ2
C : C → P2

R ⊗R C

is R-linear with respect to the left homomorphism l : R→ P2
R, because so is the functor φ1

C
, and,

hence,
(

idP1
R
⊗φ1
C

)
◦ φ1
C

.

Definition 4.19. Given an object X in a rigid Dk-category C, let 〈X〉⊗,D denote the minimal full
rigid Dk-subcategory in C that contains X and is an closed under taking subquotients. We say
that the category 〈X〉⊗,D is Dk-tensor generated by the object X.

Remark 4.20. In the notation of Definition 4.19, C is Dk-tensor generated by X if and only
if there is no smaller full subcategory in C containing X and closed under taking direct sums,
tensor products, duals, subquotients, and applying the functor At1C (Section 4.3), because At2C is
a subobject in At1C

(
At1C(X)

)
. In addition, the category 〈X〉⊗,D is the union of all Ci’s, where Ci is

the subcategory in C tensor generated by
(

At1C
)◦ i(X).

Remark 4.21.

1. Definition 4.6 is analogous to the definition of a group action on a category (for example,
see [14]) so that the isomorphisms Φ and Ψ correspond to the unit and associativity con-
straints, respectively. We do not require the pentagon condition for Ψ in Definition 4.6 as
we are not considering P3

R (Section 3.7).
On the contrary, the compatibility condition between Φ and Ψ makes sense in our set-up
and means that, for any object X in C, the following compositions coincide:

At2C(X)→ At1C
(
At1C(X)

) At1(πX )
−−−−−−→ At1C(X), At2C(X)→ At1C

(
At1C(X)

) πAt1(X)
−−−−−−→ At1C(X),

where πX : At1C(X)→ X is the morphism given by exact sequence (12). We do not require
this condition in Definition 4.6 as well. However, it holds for Examples 4.7, 4.8 and for
the differential category constructed in Theorem 5.1.

2. Suppose that DR is of rank one over R and the compatibility condition from part 1 holds
for a DR-category C. Then we have

Sym2
R ΩR = ΩR ⊗R ΩR

and, by a dimension argument, the embedding

At2C(X)→ At1C
(
At1C(X)

)
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identifies At2C(X) with the kernel of the morphism

At1(πX) − πAt1(X) : At1C
(
At1C(X)

)
→ At1C(X).

Therefore, At2C is uniquely defined by At1C, or, equivalently, φ1
C

is uniquely defined up to a
canonical isomorphism by φ2

C
.

3. Suppose that F : C → D is a faithful differential functor between DR-categories and the
compatibility condition from part 1 holds for D. Then this condition also holds for C.
In particular, if C is a Dk-Tannakian category (Definition 4.22) over a differential field
(k,Dk), then the compatibility condition holds for C by the end of part 1. If, in addition,
dimk(Dk) = 1, then, by part 2, we see that Definition 4.22 is equivalent to the definitions of
a differential Tannakian category over a field with one derivation from [63, Definition 3]
and [41, Definition 5.2.1].

Let us discuss the relation between Definition 4.6 and the definition of a neutral differential
Tannakian category with several commuting derivations given in [55, Definition 3.1]. Suppose
that DR is a free R-module generated by commuting derivations ∂1, . . . , ∂d. Let ω1, . . . , ωd be the
dual basis in ΩR = D∨R . There is an involution σ of the (R⊗R)-algebra P1

R⊗R P1
R uniquely defined

by the condition σ(ωi ⊗ 1) = 1 ⊗ ωi for all i. For example, for any

ω =
∑

i

aiωi ∈ ΩR, ai ∈ R,

we have
σ(1 ⊗ ω) = ω ⊗ 1 +

∑
i

ωi ⊗ dai.

The subring of invariants under the involution σ coincides with P2
R, because dωi = 0 for all

i. Further, for any i, the morphism of differential rings (R,DR) → (R,R · ∂i) induces the ring
homomorphism P1

R → P1
i , where P1

i denotes the 1-jet ring associated with the differential ring
(R,R · ∂i). It follows that σ induces a collection of ring isomorphisms

P1
i ⊗R P1

j � P1
j ⊗R P1

i

that commute with σ via the homomorphisms

P1
R ⊗R P1

R → P1
i ⊗R P1

j .

Next, let C be a DR-category over R. Then, for any object X in C, the isomorphism

µ :
(
P1

R ⊗R P1
R

)
⊗P2

R
At2C(X)

∼
−→ At1C

(
At1C(X)

)
induces an involution σX on At1C

(
At1C(X)

)
such that the invariants of σX coincide with At2C(X).

For any i, the ring homomorphism P1
R → P1

i induces a morphism

At1C(X)→ At1i (X),

where we have a functorial exact sequence

0 −−−−−−→ X −−−−−−→ At1i (X) −−−−−−→ X −−−−−−→ 0.
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Since the ring homomorphism

P1
R ⊗R P1

R →
⊕

i, j

(
P1

i ⊗R P1
j

)
is injective, the natural morphism

At1C
(
At1C(X)

)
→

⊕
i, j

At1i
(
At1j (X)

)
is also injective. It follows that to define σX it is enough to specify a collection of isomorphisms

S i, j : At1i
(
At1j (X)

) ∼
−→ At1j

(
At1i (X)

)
that should satisfy certain compatibility conditions. If, in addition, R = k is a field, C is a neutral
Tannakian category, and the fiber functor commutes with At1 and sends the isomorphisms S i, j

to the corresponding isomorphisms in Vect(k), then S i, j satisfy the compatibility conditions and
define correctly At2C as the equalizer in At1C

(
At1C(X)

)
of all the isomorphisms S i, j. Also, one

needs to require the Baer sum isomorphisms for At1i to obtain the Baer sum isomorphism for
At1C, which would preserve At2C. The latter coincides with the definition of a neutral differential
Tannakian category as given in [55, Definition 3.1].

Finally, let us perform a calculation that we use in Section 4.4. Let (R,DR) be a differential
ring with free DR. Choose a basis ∂1, . . . , ∂d in DR over R and let ω1, . . . , ωd be the dual basis in
ΩR. Consider free R-modules

M = R · e1 ⊕ . . . ⊕ R · em and N = R · f1 ⊕ . . . ⊕ R · fn

and a morphism of R-modules φ : M → N given by a matrix T . Then the morphism

At1R(φ) : At1R(M)→ At1R(N)

is given by the matrix 

T 0 . . . 0 0
−∂1(T ) T . . . 0 0

...
. . .

...
−∂d−1(T ) 0 . . . T 0
−∂d(T ) 0 . . . 0 T


,

where we consider the basis{
e1 ⊗ 1, . . . , em ⊗ 1, ei ⊗ ω j

}
, 1 6 i 6 m, 1 6 j 6 d, in At1R(M) =

(
M ⊗R P1

R

)
R

with respect to the right R-module structure (Remark 4.16(1)) and the analogous basis in At1R(N).

4.4. Differential Tannakian categories

Throughout this subsection, we fix a differential field (k,Dk) and use the notions and notation
from Section A.2. Let us define differential Tannakian categories.

Definition 4.22.
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• A Dk-Tannakian category over (k,Dk) (or simply over k) is a Dk-category C over k (Defi-
nition 4.6) such that C is rigid, the homomorphism k → EndC(1) is an isomorphism, and
there exists a Dk-algebra R over k together with a differential functor ω : C → Mod(R)
(Definition 4.9).

• Given two differential functors ω, η : C → Mod(R), denote the set of isomorphisms be-
tween ω and η as differential functors by Isom⊗,D(ω, η).

• A neutral Dk-Tannakian category over k is a Dk-Tannakian category over k with a fixed
differential functor to Vect(k).

Remark 4.23. We use notation from Definition 4.22. Since the category C is rigid and any
differential functor is right-exact (Definition 4.9), we see that the functor ω is exact [13, 2.10(i)].
In particular, ω is a fiber functor from C to Mod(R).

Example 4.24. Let (R, A) be a Dk-Hopf algebroid over k (Example 3.43(3)) such that A is faith-
fully flat over R ⊗k R. Since the forgetful functor

Comodfg(R, A)→Mod(R)

is a fiber functor (Section A.1) and differential (Example 4.10(2)), the category Comodfg(R, A)
is a Dk-Tannakian category over k. In particular, if R = k and A is a Dk-Hopf algebra over k
(Example 3.43(2)), then the category Comodfg(A) is a neutral Dk-Tannakian category over k.

Given a Dk-Tannakian category C over k, a differential functor ω : C → Mod(R), and a
morphism of Dk-algebras R→ S , we put

ωS : C →Mod(S ), X 7→ S ⊗R ω(X).

Proposition 4.25. Let R be a Dk-algebra over k, C be a Dk-Tannakian category over k,

ω, η : C →Mod(R)

be differential functors, and let A be the R-algebra that corepresents the functor (Section A.2):

Isom⊗(ω, η) : Alg(R)→ Sets, S 7→ Isom⊗(ωS , ηS ).

Then A has a canonical structure of a DR-algebra over R such that A corepresents the functor

Isom⊗,D(ω, η) : DAlg(R,DR)→ Sets, S 7→ Isom⊗,D(ωS , ηS ).

Proof. First let us construct a DR-structure on A. The idea is as follows. The collection (C,R, ω, η)
is a Dk-object in the (2-)category of collections that consist of a Tannakian category over k, a k-
algebra, and two fiber functors to modules over this algebra. On the other hand, the (pseudo-)
functor that assigns A to such a collection commutes with extensions and restrictions of scalars
between k and P2

k . This defines a Dk-structure on A. Let us give more details. By the definition
of A, the P2

R-algebra A ⊗R P2
R corepresents the functor

Isom⊗
(
ωP2

R
, ηP2

R

)
: Alg

(
P2

R

)
→ Sets,

where, as above,

ωP2
R

: C →Mod
(
P2

R

)
, X 7→ ω(X) ⊗R P2

R, and ηP2
R

: C →Mod
(
P2

R

)
, X 7→ η(X) ⊗R P2

R.
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The functors ωP2
R

and ηP2
R

are exact k-linear tensor functors. Moreover, ωP2
R

is the composition of
the functor

− ⊗k P2
k : C → C⊗kP2

k

and the functor
ω ⊗k P2

k : C⊗kP2
k →Mod(R) ⊗k P2

k � Mod
(
P2

R

)
.

The analogous relations hold for ηP2
R

and η⊗k P2
k . Hence, by Proposition 4.3, there is a canonical

isomorphism of functors from Alg
(
P2

R
)

to Sets:

Isom⊗
(
ωP2

R
, ηP2

R

)
� Isom⊗

(
ω ⊗k P2

k , η ⊗k P2
k

)
. (15)

Similarly, the P2
R-algebra P2

R ⊗R A corepresents the functor

Isom⊗
(

P2
R
ω,P2

R
η
)

: Alg
(
P2

R

)
→ Sets

and we have an isomorphism of functors

Isom⊗
(

P2
R
ω,P2

R
η
)
� Isom⊗

(
P2

k ⊗k ω, P2
k ⊗k η

)
. (16)

Again, by Proposition 4.3, the right-exact k-linear tensor functor

φ2
C : C → P2

k ⊗k C

defines a right-exact P2
k-linear tensor functor

ε2
C : C⊗kP2

k → P2
k ⊗k C .

In addition, the isomorphism Πω defines an isomorphism of tensor functors

ω ⊗k P2
k
∼
−→

(
P2

k ⊗k ω
)
◦ ε2
C

from C⊗kP2
k to Mod

(
P2

R

)
. Analogously, Πη defines an isomorphism of tensor functors

η ⊗k P2
k
∼
−→

(
P2

k ⊗k η
)
◦ ε2
C.

This leads to a morphism of functors

Isom⊗
(
P2

k ⊗k ω, P2
k ⊗k η

)
→ Isom⊗

(
ω ⊗k P2

k , η ⊗k P2
k

)
.

Hence, by isomorphisms (15) and (16), we obtain a morphism of functors

Λ : Isom⊗
(

P2
R
ω,P2

R
η
)
→ Isom⊗

(
ωP2

R
, ηP2

R

)
.

By the corepresentability properties of A ⊗R P2
R and P2

R ⊗R A, the morphism of functors Λ corre-
sponds to a morphism of P2

R-algebras

ε2
A : A ⊗R P2

R → P2
R ⊗R A.

Since the isomorphisms ΨC and ΦC commute with ΨR and ΦR via ω and η, the morphism ε2
A

satisfies the required properties (Example 3.43(1)) to define a DR-structure on A.
48



Now let us prove the corepresentability property of A in the category of DR-algebras. Let
S be a DR-algebra, α : ωS → ηS be an isomorphism of tensor functors, and let f : A → S be
the corresponding morphism of R-algebras. We need to show that α is differential if only if f is
differential. Note that α is differential if and only if the map

ΛS : Isom⊗
(

P2
S
ω,P2

S
η
)
→ Isom⊗

(
ωP2

S
, ηP2

S

)
sends P2

S
α to αP2

S
. This is equivalent to the equality between the morphism

f ⊗ idP2
R

: A ⊗R P2
R → S ⊗R P2

R

and the composition

A ⊗R P2
R

ε2
A

−−−−−−→ P2
R ⊗R A

idP2
R
⊗ f

−−−−−−→ P2
R ⊗R S

(ε2
S )−1

−−−−−−→ S ⊗R P2
R.

The latter is equivalent to f being differential.

Example 4.26. Let Dk = k · ∂, where ∂ is a formal symbol that denotes the trivial derivation
from k to itself, K be a differential field over (k,Dk) such that k = K∂, let C = DMod(K,DK)
with DK = K · ∂, ω0 : C → Vect(k) be a fiber functor, and let ω : C → Vect(K) be the forgetful
functor. Since the left and the right k-module structures on P2

k coincide, C has the trivial Dk-
structure with

φ2
C(M) := P2

k ⊗k M � M ⊕ M

for a ∂-module M over K. Since

ω0

(
P2

k ⊗k M
)
� P2

k ⊗k ω0(M) � ω0(M) ⊗k P2
k ,

we see that ω0 is a differential functor. By Proposition 3.42, for any ∂-module M over K, there
is a canonical isomorphism of (K ⊗ K)-modules

M ⊗K P2
K � P2

K ⊗K M.

Since (
P2

K ⊗K M
)

K
�

(
P2

k ⊗k M
)

K
,

we obtain that ω is a differential functor. Let A be the K-algebra that corepresents the functor

Isom⊗
(
(K ⊗k −) ◦ ω0, ω

)
.

Proposition 4.25 provides a ∂-structure on A. This ∂-structure coincides with the one defined
in [13, 9.2] (note that the definition of a ∂-structure from [13, 9.2] works well for the whole
category DMod(K,DK), not just a subcategory tensor generated by one object).

Theorem 4.27. Let C be a Dk-Tannakian category over a differential field (k,Dk), R be a Dk-
algebra over k, and let ω : C → Mod(R) be a differential functor. Then there exists a Dk-
Hopf algebroid (R, A) over (k,Dk) such that A is faithfully flat over R ⊗k R and ω lifts up to an
equivalence of Dk-categories over k

C
∼
−→ Comodfg(R, A).
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Proof. Apply Proposition 4.25 to the differential functors R⊗R ω andωR⊗R fromC to Mod(R ⊗k R),
where, as above, for X in C, we put

(R⊗R ω)(X) := (R ⊗k R) ⊗R ω(X) � R ⊗k ω(X), (ωR⊗R)(X) := ω(X) ⊗R (R ⊗k R) � ω(X) ⊗k R.

This gives a differential algebra A over R⊗k R, where the differential structure on R⊗k R is defined
as on the tensor product of Dk-algebras (Remark 3.22). From the properties of the functor from
DAlg(R⊗k R) to Sets corepresented by A, it follows that (R, A) is a Dk-Hopf algebroid over k and
ω lifts to a differential functor between Dk-categories

C → Comodfg(R, A)

(Example 4.8). Finally, by [13, 1.12] (Theorem A.14), the latter functor is an equivalence of
categories and A is faithfully flat over R ⊗k R.

In particular, when R = k, Theorem 4.27 recovers [64, Theorem 2].
Now let us discuss finiteness properties of the algebra A from Proposition 4.25.

Proposition 4.28. In the notation of Proposition 4.25, suppose that C is Dk-tensor generated
by an object X (Definition 4.19). Then A is Dk-generated over R by the matrix entries of the
canonical isomorphism

ω(X)A
∼
−→ η(X)A

and the matrix entries of its inverse with respect to any choice of systems of generators of ω(X)A

and η(X)A over A.

Proof. This follows from Proposition A.13, Remark 4.20, and the calculation of At1R(φ) at the
end of Section 4.3.

Corollary 4.29. Suppose that (k,Dk) is differentially closed, char k = 0, and the category C is
Dk-tensor generated by one object. Then all differential functors from C to Vect(k) are isomor-
phic.

Proof. Let ω, η : C → Vect(k) be differential functors. By Proposition 4.25, isomorphisms
between ω and η as differential functors are in bijection with morphisms of Dk-algebras A → k.
By Proposition 4.28, A is Dk-finitely generated over (k,Dk). By [13, 1.12], A is non-zero, being
faithfully flat over k. Since char k = 0, there is a morphism from A to k (for example, see [76,
Definition 4] and the references given there), which finishes the proof.

Finally, let us describe the differential structure on the ring A from Proposition 4.25 explicitly.
We use its notation. First, recall an explicit construction of A. Consider the R-module

F :=
⊕

X∈Ob(C)

HomR(ω(X), η(X))

and the R-submodule T of F generated by all elements of type

(ψ ◦ ω(φ)) ⊕ (−η(φ) ◦ ψ) ∈ HomR(ω(X), η(X)) ⊕ HomR(ω(Y), η(Y)),

where φ ∈ HomC(X,Y), ψ ∈ HomR(ω(Y), η(X)), and X, Y are objects in C. Then we have
A = F/T ([15]). For each object X in C, choose an R-linear section

sX : η(X)→ At1R (η(X))
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of the morphism At1R (η(X)) → η(X). By Remark 4.16(1) and Proposition 3.42, sX corresponds
to a, possibly, non-integrable DR-structure on η(X). This uniquely defines an R-linear morphism

tX : At1R (η(X))→ ΩR ⊗R η(X)

such that the canonical morphism

ΩR ⊗R η(X)→ At1R (η(X))

is a section of tX and tX ◦ sX = 0. Next, for any ∂ ∈ DR, consider the additive map

∂ : HomR(ω(X), η(X))→ HomR

(
ω

(
At1C(X)

)
, η

(
At1C(X)

))
, ∂(ψ) := sX ◦

(
∂ ⊗ idη(X)

)
◦ tX ◦At1R(ψ),

where ψ ∈ HomR(ω(X), η(X)) and we use the functorial isomorphism

ω
(
At1C(X)

) ∼
−→ At1R (ω(X)) .

Taking the direct sum over all objects X in C, we get the additive map ∂ : F → F. One can show
that ∂ preserves the submodule T and defines a derivation on the R-algebra A. All together, this
defines a DR-structure on A.

5. Parameterized Atiyah extensions

5.1. Construction

Throughout this section, we fix a differential field (k,Dk) and a parameterized differential
algebra (R,DR) over (k,Dk) (Definition 3.14). Recall that we have a differential ring

(
R,DR/k

)
,

where DR/k is the kernel of the structure map DR → R ⊗k Dk associated with the morphism of
differential rings (k,Dk)→ (R,DR). Put ΩR/k := D∨R/k.

Theorem 5.1. There is a canonical Dk-structure on the category DMod
(
R,DR/k

)
such that the

forgetful functor from the Dk-category DMod
(
R,DR/k

)
over (k,Dk) to the DR-category Mod(R)

over (R,DR) is a differential functor.

Proof. We follow the explicit approach from Section 4.3. First, we need to construct a right-exact
k-linear tensor functor

φ1 : DMod
(
R,DR/k

)
→ k

(
P1

k ⊗k DMod
(
R,DR/k

))
together with certain isomorphisms between tensor functors. Then we need to functorially con-
struct a P2

k-submodule At2(M) in At1
(

At1(M)
)

satisfying several properties.
Recall that we distinguish between a P1

k-module in DMod(R,DR/k) and the corresponding
object in DMod(R,DR/k), which makes the difference between φ1 and At1 (Remark 4.16(3)). In
particular, φ1(φ1(M)

)
is not well-defined, while At1

(
At1(M)

)
is well-defined. We call At2(M) a

parameterized Atiyah extension. The proof is divided into several steps.
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Step 1. Construction of φ1(M)

Let M be a DR/k-module. Put

At1(M) :=

m ⊗ 1 +
∑

i

mi ⊗ ωi

∣∣∣ ∀ξ ∈ DR/k, ξ(m) =
∑

i

ωi(ξ)mi

 ⊂ M ⊗R P1
R, (17)

where m,mi ∈ M, ωi ∈ ΩR. Here we use that DR/k is an R-submodule in DR, whence, ωi(ξ) is
well-defined. Equivalently, At1(M) is the kernel of the map

λ : M ⊗R P1
R → ΩR/k ⊗R M, m ⊗ a +

∑
i

mi ⊗ ωi 7→ a∇M(m) + da ⊗ m −
∑

i

[ωi] ⊗ mi, (18)

where the brackets mean the application of the natural quotient map ΩR → ΩR/k. The Leibniz
rule for ∇M implies that λ is well-defined. Also, λ is R-linear with respect to the right R-module
structure on M ⊗R P1

R defined by the homomorphism r : R → P1
R. Hence, At1(M) is an R-

submodule in M ⊗R P1
R with respect to r. Explicitly, we have

a ·

m ⊗ 1 +
∑

i

mi ⊗ ωi

 = am ⊗ 1 + m ⊗ da +
∑

i

mi ⊗ aωi. (19)

Let us define a weak DR/k-module structure on At1(M) (Section 3.10). Recall that we have a
weak DR/k-module structure on P1

R. Hence, we obtain a weak DR/k-module structure on the
tensor product M⊗R P1

R. We claim that the corresponding action of an arbitrary element ∂ ∈ DR/k

on M ⊗R P1
R preserves At1(M). Indeed, for any

m ⊗ 1 +
∑

i

mi ⊗ ωi ∈ At1(M),

we have

∂

m ⊗ 1 +
∑

i

mi ⊗ ωi

 = ∂(m) ⊗ 1 +
∑

i

(∂(mi) ⊗ ωi + mi ⊗ L∂(ωi))

(see Definition 3.48 for L∂). Hence, we need to show that, for any ξ ∈ DR/k, we have

ξ(∂(m)) =
∑

i

(
ωi(ξ) · ∂(mi) + L∂(ωi)(ξ) · mi

)
.

By (8), the right-hand side is equal to∑
i

(
ωi(ξ) · ∂(mi) + ∂(ωi(ξ)) · mi − ωi([∂, ξ]) · mi

)
.

Further, by (17), the latter equals
∂(ξ(m)) − [∂, ξ](m).

Thus, we conclude by the integrability condition for the DR/k-module structure on M. Let us
check that the above weak DR/k-module structure actually defines a DR/k-module structure. For
all

a ∈ R, ∂ ∈ DR/k, m ⊗ 1 +
∑

i

mi ⊗ ωi ∈ At1(M),
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we have

a · ∂

m ⊗ 1 +
∑

i

mi ⊗ ωi

 = a ·

∂(m) ⊗ 1 +
∑

i

(∂(mi) ⊗ ωi + mi ⊗ L∂(ωi))

 =

= a∂(m) ⊗ 1 + ∂(m) ⊗ da +
∑

i

(∂(mi) ⊗ aωi + mi ⊗ aL∂(ωi)) =

= a∂(m) ⊗ 1 +
∑

i

(ωi(∂)mi ⊗ da + ∂(mi) ⊗ aωi + mi ⊗ aL∂(ωi)) =

= a∂(m) ⊗ 1 +
∑

i

(a∂(mi) ⊗ ωi + mi ⊗ La∂(ωi)) = (a∂)

m ⊗ 1 +
∑

i

mi ⊗ ωi

,
where we have used (9) and (19). Thus, we have shown that At1(M) is an object in DMod

(
R,DR/k

)
.

Now let us extend At1(M) to an object φ1(M) in P1
k ⊗k DMod

(
R,DR/k

)
, that is, let us define

a P1
k-module structure on At1(M) with respect to the right homomorphism r : k → P1

k . For this,
note that M ⊗R P1

R is a P1
R-module. In addition, the multiplication by P1

k ⊂ P1
R preserves At1(M):

for k ⊂ P1
k this follows from the existence of the R-linear structure on At1(M), while, for any

η ∈ Ωk and m ⊗ 1 +
∑

i

mi ⊗ ωi ∈ At1(M),

we have m ⊗ 1 +
∑

i

mi ⊗ ωi

 · η = m ⊗ η

and η(ξ) = 0 for any ξ ∈ DR/k. Moreover, the multiplication by P1
k commutes with the DR/k-

structure on At1(M), because the product on P1
R respects the weak DR/k-structure via the Leibniz

rule (Section 3.10) and
ξ(a + η) = 0

in the above notation. All together, this defines an object φ1(M) in P1
k ⊗k DMod

(
R,DR/k

)
.

Step 2. The functor M 7→ φ1(M)

It follows that φ1(M) depends functorially on M. Moreover, the explicit description of φ1(M)
from (17) implies a functorial exact sequence in DMod

(
R,DR/k

)
:

0→ Ωk ⊗k M → φ1(M)
π
−→ M → 0, π

m ⊗ 1 +
∑

i

mi ⊗ ωi

 = m.

It follows that the functor φ1 is exact. By construction, it is also k-linear with respect to the left
homomorphism l : k → P1

k , because the left R-linear structure on P1
R is involved in the tensor

product M ⊗R P1
R.

Let us show that the functor φ1 is tensor. Let M and N be DR/k-modules. We have a natural
isomorphism (

M ⊗ P1
R

)
⊗P1

R

(
N ⊗ P1

R

) ∼
−→ (M ⊗R N) ⊗R P1

R .

This induces a map
φ1(M) ⊗P1

k
φ1(N)→ (M ⊗R N) ⊗R P1

R.
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The Leibniz rule for the action of DR/k on M ⊗R N implies that the image of this map lies in the
subset

φ1(M ⊗R N) ⊂ (M ⊗R N) ⊗R P1
R,

which defines a morphism of P1
k-modules

m : φ1(M) ⊗P1
k
φ1(N)→ φ1(M ⊗R N).

Our aim is to show that m is an isomorphism. Note that the morphism π from above coincides
with taking modulo the ideal Ωk ⊂ P1

k . Also denote taking modulo the ideal in any P1
k-module

by π. Then the morphism m commutes with the identity map from M ⊗R N to itself via the
corresponding morphisms π. By Example 4.5, the kernel of π on

φ1(M) ⊗P1
k
φ1(N)

is equal to
Ωk ⊗k (M ⊗R N).

It follows that the morphism m induces the identity map from Ωk ⊗k (M ⊗R N) to itself on the
kernels of π. Therefore, m is an isomorphism, which fixes a tensor structure for the functor φ1.
Also, we obtain an isomorphism of tensor functors

(e ⊗ id) ◦ φ1 � id,

where, as above, e : P1
k → k is taking modulo Ωk.

Step 3. Construction of At2(M)

Put
At2(M) := At1

(
At1(M)

)
∩ M ⊗R P2

R ⊂ M ⊗R P1
R ⊗R P1

R.

By Remark 3.49, the subring
P2

R ⊂ P1
R ⊗R P1

R

is preserved under the action of DR/k, whence At2(M) is a weak DR/k-module. Besides, as
shown above, At1

(
At1(M)

)
is a DR/k-module, whence At2(M) is also a DR/k-module. Since

At1
(

At1(M)
)

is preserved under the right multiplication by P1
k ⊗k P1

k , we obtain that At2(M) is
preserved under the right multiplication by

P2
k ⊂

(
P1

k ⊗k P1
k

)
∩ P2

R.

Since multiplication by P1
k ⊗k P1

k on At1
(

At1(M)
)

commutes with the DR/k-structure, multi-
plication by P2

k commutes with the DR/k-structure on At2(M). Thus, we see that At2(M) is a
P2

k-submodule in At1
(

At1(M)
)

in the category DMod
(
R,DR/k

)
.

It follows that At2(M) depends functorially on M. By Step 2, the tensor structure on At1 ◦At1

is induced by the isomorphism(
M ⊗R P1

R ⊗R P1
R

)
⊗(P1

R⊗RP1
R)

(
N ⊗R P1

R ⊗R P1
R

) ∼
−→ (M ⊗R N) ⊗R

(
P1

R ⊗R P1
R

)
.

Since P2
R is a subring in P1

R ⊗R P1
R, we see that the product map

At1
(
At1(M)

)
⊗ At1

(
At1(N)

)
→ At1

(
At1(M ⊗R N)

)
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preserves At2.
Consider the filtration by ideals:

P1
k ⊗k P1

k ⊃
(
Ωk ⊗k P1

k + P1
k ⊗k Ωk

)
⊃ Ωk ⊗k Ωk ⊃ 0.

This defines a decreasing filtration on At1
(

At1(M)
)

with the following adjoint quotients (see
Section 4.3 for more computational details):

M, (Ωk ⊗k M) ⊕ (Ωk ⊗k M) , Ωk ⊗k Ωk ⊗k M.

Consider the intersection of this filtration with At2(M). Since At2(M) is contained in M ⊗R P2
R,

the corresponding adjoint quotients are contained in

M, Ωk ⊗k M, Sym2
k Ωk ⊗k M.

Hence, by Proposition 4.18, DMod(R,DR/k) with the functor At2 is a Dk-category, provided that
the induced map

At2(M)→ M = gr0 At1
(
At1(M)

)
is surjective.

Step 4. Surjectivity of At2(M)→ M

Take any
m ∈ M and m ⊗ 1 +

∑
i

mi ⊗ ωi ∈ At1(M).

First, let us prove that there exists x ∈ M ⊗R ΩR ⊗R ΩR such that the image of x under the map

M ⊗R ΩR ⊗R ΩR → M ⊗R ∧
2
RΩR

is equal to
y :=

∑
i

mi ⊗ dωi

and the image of x under the map

M ⊗R ΩR ⊗R ΩR → M ⊗R ΩR/k ⊗R ΩR

is equal to
z := −

∑
i

∇(mi) ⊗ ωi,

where we apply the isomorphism

ΩR/k ⊗R M � M ⊗R ΩR/k.

For short,

A := ΩR ⊗R ΩR, B := Ker
(
ΩR ⊗R ΩR → ∧

2
RΩR

)
, C := Ker

(
ΩR ⊗R ΩR → ΩR/k ⊗R ΩR

)
.

We have the following exact sequence

A→ (A/B) ⊕ (A/C)→ A
/
(B + C)→ 0,
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where the first map is given by the diagonal embedding and the second arrow is induced by
taking the difference. Since the R-modules

A = ΩR ⊗R ΩR, A/B � ∧2
RΩR, A/C � ΩR/k ⊗R ΩR, and A/(B + C) � ∧2

RΩR/k

are projective and, henceforth, flat, we obtain the exact sequence

M ⊗R ΩR ⊗ΩR →
(
M ⊗R ∧

2
RΩR

)
⊕

(
M ⊗R ΩR/k ⊗R ΩR

)
→ M ⊗R ∧

2
RΩR/k → 0.

The integrability condition on M implies that y ⊕ z is in the kernel of the rightmost non-zero
map (note that we have switched the tensor factors M and ΩR/k unlike in Definition 3.19, whence
there is a sign change). Hence, by the exactness in the middle, there exists x with the required
properties.

Now let us show that the element

n := m ⊗ 1 ⊗ 1 +
∑

i

mi ⊗ ωi ⊗ 1 +
∑

i

mi ⊗ 1 ⊗ ωi − x ∈ M ⊗R P1
R ⊗R P1

R

belongs to At2(M). Since x is sent to y, we see that n belongs to M ⊗R P2
R. By the hypotheses,

m ⊗ 1 ⊗ 1 +
∑

i

mi ⊗ ωi ⊗ 1 ∈ At1(M) ⊗ 1 ⊂ At1(M) ⊗R P1
R.

Since x is sent to z, we see that the map

λ ⊗ idP1
R

: M ⊗R P1
R ⊗R P1

R → ΩR/k ⊗R M ⊗R P1
R

sends
∑

i mi ⊗ 1 ⊗ ωi − x to zero (recall that λ is defined in (18)). Since P1
R is a projective and,

therefore, flat R-module, we conclude that∑
i

mi ⊗ 1 ⊗ ωi − x ∈ At1(M) ⊗R ΩR.

Therefore,
n ∈ At1(M) ⊗R P1

R.

It remains to check that
n ∈ At1

(
At1(M)

)
.

For this, we need to show that, for any ξ ∈ DR/k, we have

ξ

m ⊗ 1 +
∑

i

mi ⊗ ωi

 =
∑

i

ωi(ξ) · (mi ⊗ 1) − x(− ⊗ ξ) ∈ At1(M),

where
x(− ⊗ ξ) ∈ M ⊗R ΩR � HomR(DR,M)

sends any ∂ ∈ DR to x(∂ ⊗ ξ) ∈ M. By the explicit formula for the DR/k-module structure on
At1(M) given in Step 1, the left-hand side is equal to

ξ(m) ⊗ 1 +
∑

i

ξ(mi) ⊗ ωi +
∑

i

mi ⊗ Lξ(ωi).
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By the explicit formula (19) for the R-module structure on At1(M) also given in Step 1, the
right-hand side is equal to∑

i

ωi(ξ)mi ⊗ 1 +
∑

i

mi ⊗ d(ωi(ξ)) − x(− ⊗ ξ).

Since
m ⊗ 1 +

∑
i

mi ⊗ ωi ∈ At1(M),

we have that
ξ(m) ⊗ 1 =

∑
i

ωi(ξ)mi ⊗ 1.

Further, by the definition of the Lie derivative, we have∑
i

mi ⊗ Lξ(ωi) =
∑

i

mi ⊗ d(ωi(ξ)) +
∑

i

mi ⊗ (dωi)(ξ ∧ −).

Since x is sent to y, we have that∑
i

mi ⊗ (dωi)(ξ ∧ −) = x(ξ ⊗ −) − x(− ⊗ ξ).

Finally, since x is sent to z, we have that

x(ξ ⊗ −) = −
∑

i

ξ(mi) ⊗ ωi,

which shows the required equality.

Step 5. The forgetful functor DMod
(
R,DR/k

)
→Mod(R)

It remains to show that the forgetful functor DMod
(
R,DR/k

)
→ Mod(R) is differential. By

Definition 4.9 and (10) from Section 4.1, it is enough to show that the canonical morphism of
P2

R-modules
At2(M) ⊗(P2

k⊗kR) P2
R → M ⊗R P2

R

is an isomorphism. This follows directly from Lemma 4.17 applied to the filtered ring P2
R.

Remark 5.2.

1. If (R,DR) = (k,Dk), then we have DMod
(
R,DR/k

)
= Vect(k). It follows from the con-

struction in Step 1 in the proof of Theorem 5.1 that the Dk-structure on DMod
(
R,DR/k

)
given by Theorem 5.1 coincides with the usual Dk-structure on Vect(k).

2. There is a motivating example for the construction of a DR/k-structure on DMod(R,DR/k).
Let M be a DR-module over R and put N := MDR/k (Definition 3.19). Note that N is a
k-vector subspace in M. Moreover, there is a Dk-module structure on N over k defined as
follows. For ∂ ∈ Dk, consider any lift ∂̃ ∈ DR of 1 ⊗ ∂ with respect to the structure map
DR → R ⊗k Dk. Then, for any n ∈ N, put

∂(n) := ∂̃(n).

In Theorem 5.1, M is replaced by the category Mod(R) and, correspondingly, N is replaced
by DMod(R,DR/k). It seems that both constructions can be generalized for a wider class
of DR-objects or categories instead of M or Mod(R).
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3. In [5, 1.6.3], one finds an alternative definition of the DR/k-module structure on At1(M) in
terms of lifts of the DR/k-structure on M to, possibly, non-integrable DR-structures on M.
The construction from op.cit. is given for families of varieties but it applies in the setting of
parameterized differential algebras as well. However, the approach to At1(M) from Step 1
of the proof of Theorem 5.1 seems to be more convenient to show that one, thus, obtains a
Dk-structure on DMod(R,DR/k).

In Section 5.3, we use the following result.

Lemma 5.3. Given a morphism (R,DR) → (S ,DS ) of parameterized differential algebras over
(k,Dk), the extension of scalars functor (Definition 3.23)

S ⊗R − : DMod
(
R,DR/k

)
→ DMod

(
S ,DS/k

)
is canonically a differential functor between Dk-categories over (k,Dk).

Proof. For a DR/k-module M, consider the morphism

M ⊗R P1
R → MS ⊗S P1

S = M ⊗R P1
S .

It follows that this morphism sends At1(M) to At1(MS ). Hence, the morphism

M ⊗R P2
R → MS ⊗S P2

S = M ⊗R P2
S

sends At2(M) to At2(MS ). Thus, we obtain a morphism of P2
S -modules

At2(M) ⊗(P2
R⊗RS ) P2

S → At2(MS ).

By Lemma 4.17 applied to the filtered ring P2
S , this is an isomorphism.

5.2. Matrix description

Let us describe the differential structure on At1(M) in the case of a parameterized field explic-
itly. In the particular case when Dk is one-dimensional, this will coincide with the prolongation
functor from [64, Section 5]. Let (K,DK) be a parameterized differential field over (k,Dk). Let
∂t,1, . . . , ∂t,q be a basis of Dk over k, and let

∂x,1, . . . , ∂x,p, ∂̃t,1, . . . , ∂̃t,q

be a basis of DK over K such that ∂̃t,i are sent to 1 ⊗ ∂t,i under the structure map DK → K ⊗k Dk.
Let ωt,1, . . . , ωt,q be the dual basis in Ωk to ∂t,1, . . . , ∂t,q, and let

ω̃x,1, . . . , ω̃x,p, ωt,1, . . . , ωt,q

be the dual basis in ΩK to ∂x,1, . . . , ∂x,p, ∂̃t,1, . . . , ∂̃t,q. Thus, we have ω̃x,i
(
∂̃t, j

)
= 0.

Let M be a finite-dimensional DK/k-module over K and {e1, . . . , em} be a basis of M over K.
For ∂ ∈ DK/k, let A∂ ∈ Matm×m(K) be the connection matrix on M [67, Section 1.2], that is, we
have

∂(e) = −e · A∂,

where e := (e1, . . . , em). Put Ai := A∂x,i , 1 6 i 6 p. Then we obtain the following basis for
At1(M):

{
f1, . . . , fm, ei ⊗ωt, j

}
, 1 6 i 6 m, 1 6 j 6 q, ( f1, . . . , fm) = f , f := e⊗ 1−

p∑
i=1

e · Ai ⊗ ω̃x,i.
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Proposition 5.4. In the above basis for At1(M), the connection matrix for ∂ ∈ DK/k is equal to

A∂ 0 . . . 0 0
B1 A∂ . . . 0 0
...

. . .
...

Bq−1 0 . . . A∂ 0
Bq 0 . . . 0 A∂


, Bi := −∂̃t,i(A∂) − A[∂,∂̃t,i], 1 6 i 6 q.

Proof. We use the construction of the differential structure on At1(M) as given in Step 1 of the
proof of Theorem 5.1. By definition, we have

∂
(
ei ⊗ ωt, j

)
= ∂(ei) ⊗ ωt, j

and

∂
(

f
)

= −e · A∂ ⊗ 1 −
p∑

i=1

e · ∂(Ai) ⊗ ω̃x,i +

p∑
i=1

e · AiA∂ ⊗ ω̃x,i −

p∑
i=1

e · Ai ⊗ L∂
(
ω̃x,i

)
.

On the other hand, by the definition of K-linear structure (19) on At1(M), we have

f · A∂ = e · A∂ ⊗ 1 + e ⊗ dA∂ −

p∑
i=1

e · Ai ⊗ A∂ω̃x,i.

Since the action of ∂ is well-defined on At1(M), the sum

∂
(

f
)

+ f · A∂ = −

p∑
i=1

e · ∂(Ai) ⊗ ω̃x,i −

p∑
i=1

e · Ai ⊗ L∂
(
ω̃x,i

)
+ e ⊗ dA∂

belongs to M ⊗k Ωk and, hence, it is uniquely determined by its values at all ∂̃t, j. Evaluating this
explicitly and using that ω̃x,i

(
∂̃t, j

)
= 0, we obtain the needed result.

5.3. PPV extensions and differential functors

The following statement is a parameterized version of [13, 9.6] (see also Proposition 2.4).

Theorem 5.5. Let (K,DK) be a parameterized differential field over a differential field (k,Dk),
char k = 0, M be a finite-dimensional DK/k-module over K. Then there is an equivalence of
categories

Φ : PPV(M)
∼
−→ FunD

k (C,Vect(k)),

where C := 〈M〉⊗,D is the full subcategory in DMod(K,DK/k) Dk-tensor generated by M (Defini-
tion 4.19), where the Dk-structure on DMod(K,DK/k) is as in Theorem 5.1.

Proof. First, let us construct the functor Φ. Let L be a PPV extension for M. By construction,
the solution space functor

ω0 : C → Vect(k), X 7→ XDL/k

L

is k-linear. By definition of a PPV extension, there is a canonical isomorphism

L ⊗k ω0(X)
∼
−→ XL (20)
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in DMod(L,DL/k). Therefore, the functor ω0 is exact and tensor. Let us show that ω0 is a
differential functor between Dk-categories over k. By Remark 5.2(1) and Lemma 5.3 applied to
the morphism (k,Dk)→ (L,DL),

L ⊗k − : Vect(k)→ DMod
(
L,DL/k

)
is a differential functor. Since the functor L ⊗k − is also fully faithful, by Lemma 4.11, it is
enough to prove that the composition

(L ⊗k −) ◦ ω0 : C → DMod
(
L,DL/k

)
is a differential functor. By isomorphism (20), this composition is isomorphic to the extension of
scalars functor

L ⊗K − : C → DMod
(
L,DL/k

)
.

By Lemma 5.3, the L⊗K − is a differential functor, which implies that ω0 is a differential functor.
We put Φ(L) := ω0. One checks that Φ extends to a functor.

Now let us construct a quasi-inverse functor Ψ to Φ. Let ω0 : C → Vect(k) be a differential
functor. Consider the forgetful functor ω : C → Vect(K). By Theorem 5.1, ω is a differential
functor. By Theorem 4.2, there exists the extension of scalars K ⊗k C. By Proposition 4.12(1),
K ⊗k C has a canonical DK-structure and, by Proposition 4.12(2), the functor ω corresponds to a
differential functor

η : K ⊗k C → Vect(K)

between DK-categories over K. By Remark 4.13(2), we also have a differential functor

K ⊗k ω0 : K ⊗k C → K ⊗k Vect(k) = Vect(K)

between DK-categories over K. By Proposition 4.25, the functor

Isom⊗,D(K ⊗k ω0, η) : DAlg(K,DK)→ Sets

is corepresented by a DK-algebra A over K. We will show that A is a domain and L := Frac(A) is
a PPV extension for M. For this, we use analogous results from [13, 9]. By Proposition 4.25, A
as a K-algebra corepresents the functor

Isom⊗(K ⊗k ω0, η) : Alg(K)→ Sets.

By Definition 4.1, there is an equivalence of categories

Funr,⊗
K (K ⊗k C,Vect(K))

∼
−→ Funr,⊗

k (C,Vect(K)),

which sends K ⊗k ω0 to (K ⊗k −) ◦ ω0 and sends η to ω by the construction of η. Therefore, A
corepresents the functor

Isom⊗((K ⊗k −) ◦ ω0, ω) : Alg(K)→ Sets. (21)

Let Ci be the full subcategory in C tensor generated by
(

At1
)◦ i(M) and let Ai be the K-algebra

that corepresents the functor

Isom⊗
(
(K ⊗k −) ◦ ω0|Ci , ω|Ci

)
.
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By Remark 4.20, the category C is a union of all Ci’s, whence we have that

A = lim
−−→

i

Ai.

Each ring Ai is a particular example of a ring considered in [13, 9.2], where it is denoted by
Γ(P,O). A DK/k-structure on Ai is defined in [13, 9.2]. Moreover, all morphisms

Ai → A j, i 6 j,

are morphisms of DK/k-algebras over k, which defines a DK/k-structure on A. By Example 4.26,
this DK/k-structure coincides with the one obtained from the DK-structure on A. Thus, it follows
from [13, 9.3] that A is a domain and the field L := Frac(A), being a DK-field over K, has
no new DK/k-constants. Since A corepresents functor (21), the embedding A ↪→ L induces an
isomorphism

L ⊗k ω0(M) � ML.

It follows from [13, 9.6] that this isomorphism identifies 1 ⊗ ω0(M) with MDL/k

L . Thus, we have
an isomorphism

L ⊗k MDL/k

L → ML.

Hence, by Proposition 4.28, L is DK-generated by the coordinates of horizontal vectors in a basis
of M over K, whence L is a PPV extension. We put Ψ(ω0) := L. One checks that Ψ extends to
a functor. The proof of the fact that Φ and Ψ are quasi-inverses of each other is the same as the
proof of [13, Proposition 9.5].

Remark 5.6. It follows from the proof of Theorem 5.5 and Proposition 4.28 that A as above is
equal to the PPV ring associated with L (Definition 3.28). Moreover, by the construction of A,
for any Dk-algebra R, there is a canonical isomorphism

AutDK (R ⊗k A/R ⊗k K) � Isom⊗,D(ωR, ωR).

6. Definability of differential Hopf algebroids

6.1. Reduction to faithful flatness

The goal of this section is to prove Theorem 6.1. This technical result is needed for the proof
of Theorem 2.5.

Theorem 6.1. Let (K,H) be a Dk-Hopf algebroid (Example 3.43(3)) over a differential field
(k,Dk) with K being a field and char k = 0. Suppose that H is a Dk-finitely generated (Defini-
tion 3.12) faithfully flat algebra over K ⊗k K. Then there exist a Dk-finitely generated subalgebra
R in K over k and a Dk-Hopf algebroid (R, A) over k such that A is a Dk-finitely generated
faithfully flat algebra over R ⊗k R and there is an isomorphism of Dk-Hopf algebroids over k

(K, K AK) � (K,H).

The following statement is not used in the paper, but we include it for its own interest.

Corollary 6.2. Let C be a Dk-Tannakian category over a differentially closed field (k,Dk) with
char k = 0. Suppose that C is Dk-tensor generated by one object. Then there exists a differential
(fiber) functor C → Vect(k).

61



Proof. There is a Dk-morphism from any Dk-algebra over k to a Dk-field over k. Thus, it follows
from Definition 4.22 that there is a differential functor C → Vect(K) for a Dk-field K over k.
Combining Theorem 4.27, Proposition 4.28, Theorem 6.1, Section A.1, and Example 4.10(3),
we obtain a differential functor C →Mod(R), where R is a Dk-finitely generated Dk-algebra over
k. Since char k = 0, there is a morphism from R to k (for example, see [76, Definition 4] and the
references given there), which finishes the proof.

The proof of Theorem 6.1 uses the following statements.

Lemma 6.3. Let B be a Dk-finitely generated Dk-Hopf algebra over a differential field (k,Dk)
with char k = 0. Then B is of Dk-finite presentation over k (Definition 3.13).

Proof. By [8, Proposition 12], B is a quotient of the Hopf algebra of the differential algebraic
group GLn, that is, we have a surjective morphism of Dk-Hopf algebras

C := k{Ti j}[1/ det]
ϕ
−→ B.

Since C is of Dk-finite presentation, it is enough to prove that the kernel I of ϕ is Dk-finitely
generated. Let Cn ⊂ C be the subring generated over k by all derivatives of Ti j of order at most n
with respect to Dk. Put Jn := I ∩Cn. Then Jn is a finitely generated Hopf ideal [79, Section 2.1]
in the finitely generated Hopf algebra Cn over k, because the comultiplication ∆ : C → C ⊗k C is
a Dk-morphism.

Let In be the Dk-ideal in C generated by Jn. Again, since ∆ is a Dk-morphism, In is a
Dk-finitely generated Hopf ideal in the Hopf algebra C over k. Therefore, In is radical [79,
Theorem 11.4]. Since I =

⋃
n In, by [42, Theorem 7.1], I = In for some n, whence I is Dk-

finitely generated.

Lemma 6.4. Let (K,H) be a Dk-Hopf algebroid over a differential field (k,Dk) with K being a
field and char k = 0. Suppose that H is a Dk-finitely generated faithfully flat algebra over K⊗k K.
Then H is of Dk-finite presentation over K ⊗k K.

Proof. Since H is Dk-finitely generated over K ⊗k K, we have that

B := K ⊗K⊗K H

is a Dk-finitely generated Dk-Hopf algebra over K. Therefore, B is of Dk-finite presentation over
K by Lemma 6.3. Since Spec(H) is a Dk-pseudo-torsor under the group scheme Spec(B ⊗k K)
over K ⊗k K (Section A.2), we have an isomorphism of Dk-algebras over H:

B ⊗K H � H ⊗K⊗K H.

Hence, H ⊗K⊗K H is of Dk-finite presentation over H. By the hypotheses of the lemma, H is
faithfully flat over K ⊗k K. The same argument as in the non-differential case (for example,
see [28, Proposition 2.7.1(vi)]) implies that H is of Dk-finite presentation over K ⊗k K.

Proposition 6.5. Let (R, A) be a Dk-Hopf algebroid over a differential field (k,Dk) with R being
a domain and char k = 0. Suppose that R and A are Dk-finitely generated over k and AF , 0,
where F is the total fraction ring of R⊗k R. Then there exists a non-zero element f ∈ R such that
the localization f A f is faithfully flat over the localization R f ⊗k R f .
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Proof of Theorem 6.1. By Lemma 6.4, H is of Dk-finite presentation over K ⊗k K. A standard
argument implies that there is a Dk-finitely generated subalgebra R in K over k and a Dk-Hopf
algebroid (R, A) over k such that A is of Dk-finite presentation over R ⊗k R and there is an iso-
morphism of Dk-Hopf algebroids

(K, K AK) � (K,H)

over k. Since H is faithfully flat over K ⊗k K, we have AF , 0. Hence, by Proposition 6.5,
localizing R by a non-zero element, we obtain that A is faithfully flat over R ⊗k R.

Remark 6.6. Proposition 6.5 is implied by the following hypothetical statement: given a mor-
phism S → A between Dk-finitely generated algebras over k, suppose that there is a multiplicative
set Σ ⊂ S such that the localization Σ−1A is faithfully flat over Σ−1S ; then there is g ∈ Σ such
that Ag is faithfully flat over S g. The validity of this statement seems to be not clear, while its
non-differential version is well-known (for example, see [29, 8.10.5(vi), 11.2.6.1(ii)]). Proposi-
tion 6.5 provides the partial case of the above statement in the remark in which A comes from
the differential Hopf algebroid (R, A) and S = R ⊗k R.

The rest of the section is on the proof of Proposition 6.5, which we actually prove in Sec-
tion 6.3.

6.2. Auxiliary results

The following is a modification of [75, Proposition 5]. The authors are grateful to D. Trushin
for his suggestion to use this result.

Lemma 6.7. Let A be a DS -finitely generated algebra over a differential ring (S ,DS ) and
let a1, . . . , ap be its generators. Suppose that A is a domain. Consider the following (non-
differential) S -subalgebras in A:

An := S [(∂1 · . . . · ∂m)(ai) | ∂ j ∈ DS , m ≤ n, 1 6 i 6 p] , n ∈ N .

Then there exist a natural number N and a non-zero element g ∈ AN such that, for any n ≥ N,
there is an isomorphism

(An+1)g � (An)g
[
T1, . . . ,Tln

]
of algebras over the localization (An)g, where the Tl’s are formal variables.

Proof. Replacing S by its image under the homomorphism S → A, we may assume that this
homomorphism is injective and S is a domain. Let p be the kernel of the surjective morphism of
DS -algebras over S

ϕ : B→ A, yi 7→ ai,

where B := S {y1, . . . , yp} (Definition 3.12). Then p is a prime DS -ideal. For a natural n, put

Bn := S [(∂1 · . . . · ∂m)(yi) | ∂ j ∈ DS , m ≤ n, 1 6 i 6 p] ⊂ B.

Then we have
An � Bn

/
(p∩Bn).

Since DS is a finitely generated projective S -module, localizing S by a non-zero element, assume
that DS is now a finitely generated free S -module. Let

DS = S · δ1 ⊕ . . . ⊕ S · δd.
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Then we have

[δi, δ j] =

d∑
q=1

cq
i jδq, cq

i j ∈ S , 1 6 i, j 6 d,

which is exactly the situation considered in [34].
For every DS -polynomial f ∈ B \ S , we define its leader, separant, and initial as in [34,

Section 3.2]. More precisely, put

Θ := {id} ∪
{
δi1 · . . . · δim | 1 6 i j 6 d, m > 1

}
, M := { θy j | θ ∈ Θ, 1 6 j 6 p } ⊂ B,

and let the order of
δi1 · . . . · δim y j ∈ M

be m. Thus, B is the ring of polynomials in elements of M. Consider an orderly differential
ranking on M [34, Definition 3.3], for example, the ranking that first compares the orders of two
elements in M and then compares lexicographically the y j’s and δi’s. If u f ∈ M is the leader of f
with respect to this ranking on M and

f = Irur
f + . . . + I0,

where Ii, 0 6 i 6 r, do not contain u f , then the separant is S f := ∂ f /∂u f and the initial I f is Ir.
Let Σ ⊂ p be a characteristic set of p with respect to our ranking, [34, Section 6.3], and put

W := {u f | f ∈ Σ}, Z :=
{
θu f | f ∈ Σ, θ ∈ Θ, θ , id

}
, X := M \ (Z ∪W), and g̃ :=

∏
f∈Σ

I f S f .

Note that g̃ < p, because the differential ideal p is prime. By [34, Section 6.1], for every f ∈ p,
there exists q > 0 such that

g̃ q · f =
∑

i

hi · (θi fi)ni , (22)

for some hi ∈ B, θi ∈ Θ, fi ∈ Σ, and ni > 0, where the polynomials hi’s are free of the elements
of Z. Let N ∈ N be such that BN ⊃ W, that is, N is the maximal order of the elements of W.
Since the ranking is orderly, this implies that Σ ⊂ BN . Further, I f and S f belong to BN for any
f ∈ Σ, because they are differential polynomials of order not exceeding N. Hence, g̃ ∈ BN . Put

g := ϕ(g̃).

We have that g , 0, because g̃ < p as shown above. Since, again, the ranking is orderly, the
localization Ag is generated by ϕ(W), ϕ(X), and 1/g over S . Moreover, if

f ∈ S [W ∪ X] ⊂ B

is such that ϕ( f ) = 0 in Ag, then (22) implies that there exists q > 0 such that

g̃q f ∈ (Σ),

the (non-differential) ideal generated by Σ. Therefore,

Ag � S [W ∪ X]g/(Σ)

as S -algebras. Thus, for every n > N, we have that (An+1)g is a polynomial ring over (An)g.
Precisely, we have

(An+1)g = (An)g[T ],

where T := (ϕ(X) ∩ An+1) \ An.
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We use the following notation and conventions in our geometric constructions. Given mor-
phisms of schemes ϕ : Y → X and π : Z → X, denote the fibred product Y ×X Z by ϕ∗Z and the
projection to Y by ϕ∗π : ϕ∗Z → Y . Thus, there is a Cartesian square of schemes

ϕ∗Z −−−−−−→ Z

ϕ∗π

y π

y
Y

ϕ
−−−−−−→ X.

The morphism ϕ∗π is usually called a base change of π by the morphism ϕ. The notation ϕ∗Z is
correct, provided that π is the only considered morphism from Z to X.

Given a morphism of schemes ϕ : Y → X and an open or closed subscheme U ⊂ Y , denote
the restriction of the morphism ϕ to U by ϕ|U . Given an open or closed subscheme W ⊂ X,
denote the restriction of Y to W, that is, the preimage ϕ−1(W), by YW , and denote the morphism
ϕ|YW by

ϕW : YW → W.

In particular, if x is a point in X, then Yx denotes the fiber of ϕ over x considered as a scheme
over the residue field k(x) at x.

Given a scheme X, denote the projection to the i-th factor by

pi : X × X → X, i = 1, 2.

Denote the projection to the product of the i-th and j-th factors by

pi j : X × X × X → X × X, 1 6 i < j 6 3.

Given a scheme X and a field F, denote the set of F-points of X by X(F). That is, an element
in X(F) is a morphism of schemes Spec(F)→ X.

Recall that a morphism is faithfully flat if and only if it is both flat and surjective. A base
change ϕ∗π of a (faithfully) flat morphism π by any morphism ϕ is (faithfully) flat. Further, if a
composition of morphisms of schemes

W
λ
−→ Z

π
−→ X,

is (faithfully) flat with λ being faithfully flat, then π is (faithfully) flat. Also, we will use the
following fact.

Lemma 6.8. Consider a Cartesian square of schemes

ϕ∗Z
π∗ϕ

−−−−−−→ Z

ϕ∗π

y π

y
Y

ϕ
−−−−−−→ X.

Suppose that ϕ is faithfully flat and there is an open subset W ⊂ ϕ∗Z such that the morphism
(ϕ∗π)|W : W → Y is (faithfully) flat and the morphism (π∗ϕ)|W : W → Z is surjective. Then π is
(faithfully) flat. In particular, if ϕ∗π is (faithfully) flat, then π is (faithfully) flat.
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Proof. The morphism π∗ϕ : ϕ∗Z → Z is faithfully flat, being the base change of the faithfully
flat morphism ϕ by the morphism π. Therefore, the morphism

(π∗ϕ)|W : W → Z

is also faithfully flat, being both flat and surjective. On the other hand, the composition π◦(π∗ϕ)|W
is (faithfully) flat, because it is equal to the composition of (faithfully) flat morphisms ϕ◦(ϕ∗π)|W .
Therefore, the morphism π is (faithfully) flat.

Definition 6.9. Let G → X be a group scheme over a scheme X. Suppose that we are given an
action of G on a scheme T → X over X, that is, a morphism a : G ×X T → T that satisfies the
group action condition. We say that T is a pseudo-torsor under G if the morphism(

a, prT
)

: G ×X T → T ×X T

is an isomorphism, where prT is the projection to T .

Lemma 6.10. Let ρ : G → X be a group scheme over a scheme X, and π : T → X be a pseudo-
torsor under G over X. Suppose that there exists an open subset V ⊂ T such that the restriction
π|V : V → X is faithfully flat and the fibers of the morphism π|V : V → X are dense in the fibers
of the morphism π : T → X. Then the morphisms ρ and π are faithfully flat.

Proof. The morphism ρ is surjective because of the existence of the unit section and the mor-
phism π is surjective, because the morphism π|V is faithfully flat and, in particular, surjective.
Hence, one needs to show the flatness of ρ and π.

With this aim, we construct a faithfully flat morphism ϕ : Y → X that satisfies the following
two conditions. The first condition is that there is an open subset W ⊂ ϕ∗G such that the mor-
phism (ϕ∗ρ)|W : W → Y is flat and the morphism (ρ∗ϕ)|W : W → G is surjective. By Lemma 6.8,
this implies that ρ is flat. In particular, ϕ∗ρ is flat. The second condition on ϕ : Y → X is that
there is an isomorphism

ϕ∗G � ϕ∗T

of schemes over Y , thus, ϕ∗π is also flat. Again by Lemma 6.8, this implies that π is flat, which
gives the needed result.

Now let us construct the required morphism ϕ : Y → X. We claim that

Y := V, ϕ := π|V ,

satisfies all conditions above. Indeed, by the hypotheses of the lemma, ϕ is faithfully flat. Further,
since T is a pseudo-torsor under G, there is an isomorphism

G ×X T
∼
−→ T ×X T

that commutes with the right projection to T . After the restriction to the open subset V ⊂ T , we
obtain an isomorphism

ψ : G ×X V
∼
−→ T ×X V

of schemes over V . In the other notation, ψ is an isomorphism ϕ∗G � ϕ∗T of schemes over Y .
Further, consider the open subset

V ×X V ⊂ T ×X V
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and put
W := ψ−1(V ×X V) ⊂ G ×X V = ϕ∗G.

The (right) projection V×X V → V is flat, being the base change of the flat morphism π|V : V → X
by itself. Since ψ is an isomorphism, the projection W → V is also flat, that is, we obtain the
flatness of the morphism

(ϕ∗ρ)|W : W → Y.

It remains to prove that the morphism

(ρ∗ϕ)|W : W → G

is surjective. Take a point g ∈ G. We need to show that the fiber Wg is non-empty. Let F denote
the residue field at g and put x := ρ(g) to be the corresponding F-point of X. The point g ∈ Gx(F)
defines an automorphism of the scheme Tx over F, which we denote by the same letter g. By the
construction of W, we have the equality

Wg = Vx ∩ g−1Vx ⊂ Tx.

By the hypotheses of the lemma, Vx is a dense open subset in Tx, whence the latter intersection
is non-empty.

Recall that an affine groupoid Γ acting on an affine scheme X over κ is a pair (X,Γ), where
Γ = Spec(A), X = Spec(R), and the pair (R, A) is a Hopf algebroid. It follows from the definition
of a Hopf algebroid that one has a morphism π : Γ → X × X and a morphism of schemes over
X × X × X

m : p∗12Γ ×(X×3) p∗23Γ→ p∗13Γ.

Moreover, the morphism

(m, pr) : p∗12Γ ×(X×3) p∗23Γ→ p∗13Γ ×(X×3) p∗23Γ

is an isomorphism, where
pr : p∗12Γ ×(X×3) p∗23Γ→ p∗23Γ

is the projection. Consider the restriction Γ∆ of Γ to the diagonal ∆ ⊂ X × X, that is, we have
Γ∆ = π−1(∆). The morphism

π∆ : Γ∆ → ∆ � X

defines a group scheme over X. Take the base change of the latter morphism by the projection
p1 : X × X → X and obtain the group scheme over X × X

ρ : G → X × X, ρ := p∗1(π∆), G := p∗1(Γ∆).

It follows that π : Γ → X × X is a pseudo-torsor under G over X × X. We will need only affine
groupoids acting on affine schemes, so, one may suppose this in the following.

Lemma 6.11. Let π : Γ → X × X be a groupoid acting on a scheme X. Suppose that there
are open subsets U ⊂ X × X and V ⊂ Γ such that for any i = 1, 2, the fibers of the projection
pi|U : U → X are dense in the fibers of the projection pi : X×X → X, the image π(V) is contained
in U, the morphism π|V : V → U is faithfully flat, and the fibers of the morphism π|V : V → U
are dense in the fibers of the morphism πU : ΓU → U. Then the morphism π : Γ → X × X is
faithfully flat.
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Proof. The idea of the proof is to construct a faithfully flat morphism ϕ : Y → X × X such that
the base change

ϕ∗π : ϕ∗Γ→ Y

is faithfully flat and to conclude by Lemma 6.8. We are going to define the morphism ϕ as a
composition of two faithfully flat morphisms. First, consider the open subset

W := U ×X U = (U × X) ∩ (X × U) ⊂ X × X × X.

Since the open embedding W ↪→ X × X × X and the projection p13 : X×3 → X×2 are both flat,
their composition

p13|W : W → X × X

is flat as well. Let us show that the morphism p13|W is surjective. Take a point z on X × X. We
need to show that the fiber Wz is non-empty. Let F denote the residue field at z and put xi := pi(z)
to be the corresponding F-points in X. By the construction of W, we have the equality

Wz =x1U ∩ Ux2 ⊂ Xk,

where
x1 U := p−1

1 (x) ∩ U, Ux2 := p−1
2 (x) ∩ U, and XF := X × Spec(F).

By the hypotheses of the lemma, the open subsets x1 U and Ux2 are dense in XF , whence their
intersection is non-empty. We conclude that the morphism

p13|W : W → X × X

is surjective, whence it is faithfully flat. Secondly, consider the morphism

p∗23π : p∗23Γ→ X × X × X

and put
Y :=

(
p∗23Γ

)
W
.

Let us show that the morphism
(
p∗23π

)
W

: Y → W is faithfully flat. There is a Cartesian square

p∗23Γ −−−−−−→ Γ

p∗23π

y π

y
X × X × X

p23
−−−−−−→ X × X.

Changing X × X by the open subset U, we obtain a Cartesian square

Y −−−−−−→ ΓU

(p∗23π)W

y πU

y
W

p23 |W
−−−−−−→ U.

Hence, it is enough to show that the morphism πU : ΓU → U is faithfully flat. With this aim,
consider the group scheme

ρ : G = p∗1(Γ∆)→ X × X
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as in the discussion before the lemma. Take the restrictions ΓU = π−1(U) and GU = ρ−1(U).
Note that the group scheme ρU : GU → U over U, the pseudo-torsor πU : ΓU → U under GU ,
and the open subset V ⊂ ΓU satisfy the hypotheses of Lemma 6.10. Therefore, the morphism
πU : ΓU → U is faithfully flat, whence the morphism(

p∗23π
)

W
: Y → W

is faithfully flat as explained above. Put

ϕ := p13|W ◦
(
p∗23π

)
W

: Y → X × X.

The morphism ϕ is faithfully flat, being a composition of faithfully flat morphisms.
Now let us prove that the morphism ϕ∗π : ϕ∗Γ→ Y is faithfully flat. For this, we use another

equivalent constructions of the morphism ϕ∗π. Consider the diagram of Cartesian squares

p∗23Γ ×(X×3) p∗13Γ −−−−−−→ p∗13Γ −−−−−−→ Γy p∗13π

y π

y
p∗23Γ

p∗23π
−−−−−−→ X × X × X

p13
−−−−−−→ X × X.

This gives the diagram of Cartesian squares(
p∗23Γ

)
W
×W

(
p∗13Γ

)
W
−−−−−−→

(
p∗13Γ

)
W
−−−−−−→ Γy (p∗13π)W

y π

y
Y =

(
p∗23Γ

)
W

(p∗23π)W
−−−−−−→ W

p13 |W
−−−−−−→ X × X.

Since
ϕ∗Γ =

(
p∗23π

)∗
W

(p13|W )∗Γ,

we obtain that
ϕ∗Γ =

(
p∗13Γ

)
W
×W

(
p∗23Γ

)
W

and the morphism in question ϕ∗π : ϕ∗Γ→ Y coincides with the projection

pr :
(
p∗13Γ

)
W
×W

(
p∗23Γ

)
W
→

(
p∗23Γ

)
W
.

So, we are reduced to show the faithful flatness of the morphism pr.
Since (X,Γ) is a groupoid, there is an isomorphism

p∗12Γ ×(X×3) p∗23Γ
∼
−→ p∗13Γ ×(X×3) p∗23Γ

of schemes over p∗23Γ (see the discussion before the lemma). Thus, there is an isomorphism(
p∗12Γ

)
W ×W

(
p∗23Γ

)
W

∼
−→

(
p∗13Γ

)
W
×W

(
p∗23Γ

)
W

of schemes over
(
p∗23Γ

)
W . This shows that faithful flatness of the morphism pr is equivalent to

the faithful flatness of the projection

pr′ :
(
p∗12Γ

)
W ×W

(
p∗23Γ

)
W
→

(
p∗23Γ

)
W
.
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Finally, the morphism pr′ is the base change of the faithfully flat morphism πU : ΓU → U by the
composition (

p∗23Γ
)

W

(p∗23π)W
−−−−−−→ W

p12 |W
−−−−−−→ U.

Therefore, the morphism pr′ is faithfully flat, which finishes the proof.

Lemma 6.12. Let ψ : G′ → G be a morphism between group schemes of finite type over a
scheme X, let π : T → X be a pseudo-torsor under G, π′ : T ′ → X be a pseudo-torsor under G′,
and let ϕ : T ′ → T be a morphism compatible with ψ in the following sense: the diagram

G′ ×X T ′ −−−−−−→ T ′

ψ×ϕ

y ϕ

y
G ×X T −−−−−−→ T

commutes. Let V ⊂ T be an open subset and put V ′ := ϕ−1(V). Suppose that the fibers of
the morphism π|V : V → X are dense in the fibers of the morphism π : T → X and the mor-
phism ϕ|V ′ : V ′ → V is surjective. Then the fibers of the morphism

π′|V ′ : V ′ → X

are dense in the fibers of the morphism π′ : T ′ → X.

Proof. First, we reduce the lemma to a question about algebraic groups. Since the needed result
is fiber-wise and all data in the lemma are stable under a base change, we may assume that
X = Spec(F), where F is a field. Further, it is enough to show the density after the extension of
scalars to the algebraic closure of F. Thus, we assume that F is algebraically closed. Taking an
F-point t′ on T ′ and the point t := ϕ(t′) on T , we obtain isomorphisms G′

∼
−→ T ′ and G

∼
−→ T

that send ψ to ϕ.
Therefore, we may assume that T ′ = G′ and T = G. Finally, we may assume that the schemes

G and G′ are reduced. Summarizing, we have a morphism of algebraic groups ψ : G′ → G and an
open dense subset V ⊂ G such that the morphism ψ|V ′ : V ′ → V is surjective, where V ′ = ψ−1(V).
We need to show that V ′ is dense in G′.

The image of the morphism ψ is a closed subgroup in G (for example, see [73, Proposi-
tion 2.2.5]). On the other hand, this image contains the dense subset V , because the morphism

ψ|V ′ : V ′ → V

is surjective. Consequently, the morphism ψ is surjective. It follows that all irreducible compo-
nents of the fibers of ψ have the same dimension d := dim(G′) − dim(G).

Since V ⊂ G is a dense open subset and all irreducible components of G have the same
dimension dim(G), we see that all irreducible components of the closed subset Z := G\V ⊂ G
have dimension strictly less than dim(G). Therefore, all irreducible components of the closed
subset ψ−1(Z) ⊂ G′ have dimension strictly less than d + dim(G) = dim(G′). Since

V ′ = G′\ψ−1(Z)

and all irreducible components of G′ have the same dimension dim(G′), we conclude that V ′ is
dense in G′, which finishes the proof.
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6.3. Proof of Proposition 6.5

We are now ready to give a proof of Proposition 6.5. We use the geometric notation from
Section 6.2.

Proof of Proposition 6.5. We will localize the ring R over a finite set of non-zero elements and
then prove that the corresponding localization of A is faithfully flat over the obtained localization
of R ⊗k R.

Let {ai} be a finite set of Dk-generators of A over R ⊗k R and put A0 to be the (R ⊗k R)-
subalgebra in A generated by the set {ai}. Since L := Frac(R) is a field, by [13, 3.7, 3.8] (see also
[79, §3.3]), the images of ai’s in LAL are contained in a Hopf subalgebroid of

(
L, LAL

)
finitely

generated over L ⊗k L. Therefore, localizing R by a non-zero element and enlarging the finite
subset {ai} ⊂ A, we obtain that (R, A0) is a Hopf subalgebroid in (R, A).

For each natural n, put An to be the (R⊗k R)-subalgebra in A generated by all elements of the
form

(∂1 · . . . · ∂m)(ai), ∂ j ∈ Dk, m 6 n.

Since (R, A) is a differential Hopf algebroid, it follows that (R, An) is a Hopf subalgebroid in (R, A)
for all n. Put

X := Spec(R), Γ := Spec(A), Γn := Spec(An).

Denote the groupoid morphisms by πn : Γn → X × X.
Since A is Dk-finitely generated over k, we see that Γ has finitely many irreducible compo-

nents [42, Theorem 7.5]. Applying Lemma 6.7 to each irreducible component of Γ, we see that
there exist a natural number N and an affine dense open subset WN ⊂ ΓN such that for any n ≥ N,
the morphisms

ϕn|Wn : Wn → WN

are faithfully flat, where Wn := ϕ−1
n (WN) and ϕn : Γn → ΓN are the morphisms that arise in the

projective system formed by Γn.
Since char k = 0 and R is a domain, the ring R ⊗k R is reduced. Since the morphism

πN |WN : WN → X ×k X

is of finite type, by the generic flatness (for example, see [39, Proposition 7.91.7]), there is a
dense open subset U ⊂ X ×k X such that the morphism πN |VN : VN → U is flat and of finite
presentation, where

VN := WN ∩ π
−1
N (U).

As AF , 0, we may also assume that πN |VN is faithfully flat. It follows that the morphisms

πn|Vn : Vn → U

are faithfully flat, where
Vn := ϕ−1

n (VN), n > N.

By [29, 9.5.3], replacing U with a dense open subset, we obtain that the fibers of the morphism

πN |VN : VN → U

are dense in the fibers of the morphism

(πN)U : (ΓN)U → U,
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because WN is dense in Γn. Since R ⊗k R has finitely many irreducible components [42, Theo-
rem 7.5], we may assume that U is an affine dense open subset in X ×k X. Localizing R by a
non-zero element, we obtain that, for any i = 1, 2, the fibers of the projections pi|U : U → X are
dense in the fibers of the projection

pi : X ×k X → X

(by the extension of scalars, this follows from the analogous statement about irreducible varieties
over fields). For each n, put

Gn := p∗1((Γn)∆),

where ∆ ⊂ X ×k X is the diagonal. Then Γn is a pseudo-torsor under the group scheme Gn over
X ×k X. The morphism of group schemes ψn : Gn → GN induced by ϕn is compatible with the
morphism of pseudo-torsors ϕn : Γn → ΓN in the sense of Lemma 6.12. Since the fibers of the
morphism

πN |VN : VN → U

are dense in the fibers of the morphism (πN)U : (ΓN)U → U, we see that, by Lemma 6.12, the
fibers of the morphism πn|VN : Vn → U are dense in the fibers of the morphism

(πn)U : (Γn)U → U.

We obtain that, for every n ≥ N, the groupoid Γn → X ×k X and the open subsets Vn ⊂ Γ,
U ⊂ X ×k X satisfy all hypotheses of Lemma 6.11 (which is also true for schemes over a field k
with the product of schemes taken over k). Therefore, the morphism πn is faithfully flat. In other
terms, the ring An is faithfully flat over R ⊗k R. Since A =

⋃
n An, where An ⊂ An+1, we conclude

that A is faithfully flat over R ⊗k R, which finishes the proof.

7. Proofs of the main results

7.1. Proof of Theorem 2.5

We use the notation from Theorem 2.5. Let M be a finite-dimensional DK/k-module over K.
Consider a Dk-structure on DMod(K,DK/k) as in Theorem 5.1. Let C be the subcategory 〈M〉⊗,D
in DMod

(
K,DK/k

)
Dk-tensor generated by M (Definition 4.19). By Theorem 5.5, to prove the

theorem, it is enough to construct a differential functor from C to Vect(k), which is our goal in
what follows.

First, we would like to apply Theorem 4.27 to the forgetful functor C → Vect(K) and, thus,
obtain a Dk-Hopf algebroid. The problem here is that, a priori, there is no Dk-structure on K.
To overcome this, the splitting D̃k is introduced in the hypotheses of the theorem (see also Re-
mark 2.7). This allows to switch between the Dk-structure on C and the DK-structure on K as
follows.

The morphism of differential fields (k,Dk) →
(
k, D̃k

)
defines a D̃k-structure on C by Propo-

sition 4.12 (1). Denote the category C with this D̃k-structure by C̃. Thus, the identity functor
C → C̃ is a differential functor from a Dk-category C to a D̃k-category C̃. By Theorem 5.1, the
forgetful functor is a differential functor from the Dk-category C to the DK-category Vect(K).
Apply the extension of scalars along the vertical morphisms of the diagram from Remark 3.16 to
the forgetful functor C → Vect(K).
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By Proposition 4.12(2), we obtain a differential functor ω from the D̃k-category C̃ to the D̃K-
category Vect(K) (the latter category is with the usual D̃K-structure as in Example 4.7). Recall
that

D̃K = K ⊗k D̃k

and K is a D̃k-field over k. Thus, we have a differential functor ω : C̃ → Vect(K) between
D̃k-categories.

By Theorem 4.27, there exists a D̃k-Hopf algebroid (K,H) over k such that H is faithfully flat
over K ⊗k K and ω lifts up to an equivalence of D̃k-categories

C̃
∼
−→ Comodfg(K,H).

Since C is Dk-tensor generated by one object, the D̃k-category C is also D̃k-tensor generated by
one object. Hence, Proposition 4.28 and the proof of Theorem 4.27 imply that H is D̃k-finitely
generated over K ⊗k K. We apply Theorem 6.1 to (K,H) and obtain the corresponding Hopf
algebroid (R, A). The extension of scalars

K ⊗R − : Comodfg(R, A)→ Comodfg(K,H)

is a differential functor between D̃k-categories (Example 4.10(3)). The forgetful functor

Comodfg(R, A)→Mod(R)

is a differential functor, where we consider the D̃R-category structure on Mod(R) with

D̃R := R ⊗k D̃k

(Example 4.10(2)). We have that R is D̃k-finitely generated over k, the morphism
(
R, D̃R

)
→(

K, D̃K
)

is strict, where D̃K := K ⊗k D̃k, and (k,Dk) is relatively differentially closed in
(
K, D̃K

)
by the hypotheses of the theorem. Therefore, there is a morphism of differential rings

(
R, D̃R

)
→

(k,Dk). This defines a differential functor

Mod(R)→ Vect(k), N 7→ k ⊗R N

from the D̃R-category Mod(R) to the Dk-category Vect(k) (Example 4.10(1)). Summarizing, we
obtain a collection of differential functors

C → C̃ → Comodfg(K,H)
K⊗R−
←−−−−−− Comodfg(R, A)→Mod(R)→ Vect(k).

Since A is faithfully flat over R ⊗k R, the extension of scalars functor K ⊗R − is an equivalence
of categories (see [13, 1.8,3.5] and also Section A.1). All together, this defines a differential
functor from C to Vect(k), which finishes the proof.

7.2. Proof of Theorem 2.8

We need the following simple facts.

Lemma 7.1. Let Y be an irreducible variety over a field k0 with char k0 = 0, k be a field extension
of k0, and let K0 := k0(Y). Suppose that k0 is existentially closed in K0. Then, for any non-empty
open subset U ⊂ X := Y ×k0 k, there exists a k0-point y on Y such that the k-point x := y ×k0 k of
X belongs to U.
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Proof. First note that, if the lemma is proven for an extension k′ of k, then this implies the lemma
for k. Thus, replacing k by its extension, if needed, we may assume that kΓ = k0, where Γ is the
group of all field automorphisms of k over k0, because char k0 = 0. For a non-empty open subset
U ⊂ X, take its complement Z := X\U and consider the intersection

Z′ :=
⋂
σ∈Γ

σ(Z).

The closed subvariety Z′ ⊂ X is invariant under Γ, therefore there exists a closed subvariety
W ⊂ Y such that Z′ = W ×k0 k. Moreover, W , Y , because Z′ ⊂ Z , X. Put V := Y\W, which is
a non-empty open subset in Y . Since k0 is existentially closed in K0, there exists y ∈ V(k0). This
defines a k-point x := y ×k0 k in X. If x ∈ Z(k), then x ∈ σ(Z(k)) for any σ ∈ Γ. Thus, x ∈ Z′(k),
which contradicts to the fact that y is not in W. Hence, we obtain that x belongs to U.

Lemma 7.2. Let k ⊂ K be a field extension and let ϕ1, . . . , ϕn : k → k be maps that are linearly
independent over k. Then ϕ1, . . . , ϕn are linearly independent over K considered as maps from k
to K.

Proof. Since ϕ1, . . . , ϕn are linearly independent over k, the image of the map

Φ : k → k⊕n, f 7→ (ϕ1( f ), . . . , ϕn( f )),

spans all k⊕n over k. Therefore, the image of the composition of Φ and the natural embedding
k⊕n ⊂ K⊕n spans all K⊕n over K, so, ϕ1, . . . , ϕn are linearly independent over K.

Lemma 7.3. Let K be a Dk-field over a differential field (k,Dk) with char k = 0 such that K is of
finite transcendence degree over k. Then any finite subset Σ ⊂ K is contained in a Dk-subalgebra
R in K over k that is finitely generated as an algebra over k.

Proof. Let L be the Dk-subfield generated by Σ in K. It follows from [45, Theorem 5.6.3] that
L is a finitely generated field over k. Hence, there exists a finite set S ⊂ L such that Σ ⊂ S and
L = k(S ). It now follows from differentiating fractions that R := k[S ∪ 1/T ] ⊂ K satisfies the
requirement of the lemma, where T ⊂ K is the set of the denominators of Dk(S ).

Now, we prove Theorem 2.8 using its notation. Suppose that condition 1 of the theorem
holds. Then the structure map identifies D̃k and 1⊗Dk, where D̃k is given in condition 1. Hence,

(k,Dk)→
(
k, D̃k

)
is an isomorphism and K is a Dk-field. Let R be a Dk-finitely generated subalgebra in K over k.
We need to show that there is a morphism of Dk-algebras R→ k. By Remark 2.9(1), we have

K = Frac
(
K0 ⊗k0 k

)
.

Let {ai/bi} be a finite set of Dk-generators of R over k with ai, bi ∈ K0 ⊗k0 k. Let R0 be the
subalgebra in K0 generated over k by the K0-components of summands in ai’s and bi’s and put

f :=
∏

i

bi.
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Since K0 is the field of Dk-constants, R0 ⊗k0 k is a Dk-differential subalgebra in K over k. Hence,
R is contained in the localization

(
R0 ⊗k0 k

)
f . By Lemma 7.1 applied to

Y := Spec(R0), U := Spec
((

R0 ⊗k0 k
)

f

)
,

there exists a k0-point y on Y(k0) such that the k-point x := y ×k0 k of X belongs to U. The point
x defines a morphism of k-algebras f : R → k. The kernel of f is generated by Dk-constants
in R, because K0 = KDk . Therefore, f is a morphism of Dk-algebras, and (k,Dk) is relatively
differentially closed in

(K,K ⊗k Dk) �
(
K,K ⊗k D̃k

)
.

Now suppose that condition 2 of the theorem holds. Our first goal is to construct a splitting D̃k

of (K,DK) over (k,Dk) such that the natural map K ⊗k D̃k → DK is an isomorphism. With this
aim, we consider the “effective” quotients

Deff
K := Im(θK : DK → Der(K,K)), Deff

k := Im(θk : Dk → Der(k, k))

of the differential structures DK and Dk, respectively. It follows from Lemma 7.2 that the natural
map

K ⊗k Deff
k → Der(k,K)

is injective. Therefore, the composition

DK → K ⊗k Dk → K ⊗k Deff
k

factors through Deff
K , that is, we have a commutative diagram

DK −−−−−−→ K ⊗k Dky y
Deff

K −−−−−−→ K ⊗k Deff
k .

Hence,
(
K,Deff

K
)

is a parameterized differential field over
(
k,Deff

k
)
. By condition 2 of the theorem,

we have
DK/k

∼
−→ Derk(K,K).

Consequently, the natural K-linear morphism

DK/k = Ker (DK → K ⊗k Dk)→ Ker
(
Deff

K → K ⊗k Deff
k

)
⊆ Derk(K,K)

is an isomorphism. It follows that there is an isomorphism

DK � Deff
K ×(K⊗Deff

k ) (K ⊗k Dk). (23)

Take commuting bases in Deff
K and Deff

k from Proposition 3.18. Put D̃eff
k to be the k-linear span of

the basis in Deff
K . Then D̃eff

k is a splitting of
(
K,Deff

K
)

over
(
k,Deff

k
)

such that

Deff
K � K ⊗k D̃eff

k .

Put
D̃k := D̃eff

k ×Deff
k

Dk ⊂ DK . (24)
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Since taking effective quotients is a morphism of Lie rings and by formula (3) from Section 3.2,
we have that D̃k is closed under the Lie bracket on DK . Thus, D̃k is a splitting of (K,DK) over
(k,Dk). Comparing (23) and (24), we see that

K ⊗k D̃k � DK .

Note that, in this case,
dimk

(
D̃k

)
= dimK(DK),

while, in the previous case (condition 1 of the theorem), dimk
(
D̃k

)
could be less than dimK(DK).

So, in this case, D̃k could be “much larger”. Put

D := Ker
(
D̃k → Dk

)
.

Then we have K ⊗k D � DK/k.
Let (R,DR) be a differential subalgebra in (K,DK) over (k,Dk) such that the morphism

(R,DR) → (K,DK) is strict and (R,DR) is differentially finitely generated over k. Extending
R by a finite number of elements from K, we obtain that

DR � R ⊗k D̃k

and R is a D̃k-finitely generated D̃k-subalgebra in K over k. Since

dimK(DK/k) = dimk(Derk(K,K))

is finite, K is of finite transcendence degree over k. Hence, by Lemma 7.3, we may assume that
R is finitely generated as an algebra over k. By the hypotheses of the theorem, we have

DK/k � Derk(K,K).

Since char k = 0 and R is finitely generated, localizing R by a non-zero element, we may assume
that R is smooth over k and

R ⊗k D � Derk(R,R).

Since k is existentially closed in K, there is a homomorphism f : R → k of k-algebras. We
claim that f extends to a morphism of differential algebras (R,DR) → (k,Dk) over (k,Dk). By
definition, to prove this, we have to construct a morphism of Lie rings

s : Dk → D̃k = k ⊗R DR

such that, for all ∂ ∈ Dk and a ∈ R, we have

∂( f (a)) = f (s(∂)(a)). (25)

We claim that, for any ∂ ∈ Dk, there is a unique s(∂) ∈ D̃k that satisfies (25). Indeed, consider
the derivation δ from R to itself defined as the composition

R
f

−−−−−−→ k
∂

−−−−−−→ k −−−−−−→ R

and consider any ∂̃ ∈ D̃k such that ∂̃ is sent to ∂ by the surjective map D̃k → Dk. The difference
δ − θK

(
∂̃
)

is a k-linear derivation from R to itself, that is, it belongs to

R ⊗k D � Derk(R,R).
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Put
s(∂) := ∂̃ + f

(
δ − θK

(
∂̃
))
,

where f denotes also the map

R ⊗k D̃k
f ·id

−−−−−−→ D̃k.

By construction, s(∂) satisfies (25). The uniqueness of s(∂) follows from the fact that if s(∂) and
s(∂)′ in D̃k satisfy (25), then s(∂) − s(∂)′ belongs to

Ker
(
R ⊗k D̃k

f ·id
−→ D̃k

)
,

whose intersection with 1 ⊗ D̃k is trivial. By construction, the obtained map s : Dk → D̃k is
k-linear. The uniqueness of s(∂) implies that s is a morphism of Lie rings: given ∂1, ∂2 ∈ Dk,
the commutator

[
s(∂1), s(∂2)

]
satisfies (25) with ∂ = [∂1, ∂2]. This shows that (k,Dk) is relatively

differentially closed in
(K,DK) =

(
K,K ⊗k D̃k

)
.

8. PPV extensions with non-closed constants

In this section, we discuss two aspects of PPV extension for parameterized differential fields
over an arbitrary differential field (k,Dk) (in contrast to the usual assumption [10] that (k,Dk) be
differentially closed).

8.1. Galois correspondence

We establish the Galois correspondence for PPV extensions. Basically, we use the classical
differential Galois correspondence for PV extensions. Also, we use the differential Tannakian
formalism, in particular, Theorem 5.5.

First, let us recall several notions concerning differential algebraic groups. Let (k,Dk) be a
differential field and G be a linear Dk-group, that is, G is a group-valued functor on DAlg(k)
corepresented by a Dk-finitely generated Dk-Hopf algebra U over k. A Dk-subgroup H in G is a
corepresentable group subfunctor H in G on the category DAlg(k). By [79, Theorem 15.3], this
corresponds to a surjective morphism U → V between Dk-Hopf algebras over k. Hence, H is a
linear Dk-group.

Suppose that G acts on a Dk-algebra A, that is, we have a morphism of Dk-algebras m : A→
A ⊗k U that satisfies the axioms of a comodule over a Hopf algebra. Let A be a domain and
L := Frac(A). We put

LG := {a/b ∈ L | a, b ∈ A, b · m(a) = a · m(b)} .

It follows that LG is a Dk-subfield in L.
Let (K,DK) be a parameterized differential field over (k,Dk) and let M be a finite-dimensional

DK/k-module. Suppose that there exists a PPV extension L for M.

Definition 8.1. The parameterized differential Galois group of L over K is the group functor

GalDK (L/K) : DAlg(k,Dk)→ Sets, R 7→ AutDK (R ⊗k A/R ⊗k K),

where A is a PPV ring associated with L (Definition 3.28) and we consider a DK-structure on the
extension of scalars R ⊗k K as given by Definition 3.23.
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Lemma 8.2. The functor GalDK (L/K) is corepresented by a Dk-finitely generated Dk-Hopf alge-
bra, that is, GalDK (L/K) is a linear Dk-group.

Proof. By Theorem 5.5, the PPV extension L corresponds to a differential functor

ω : 〈M〉⊗,D → Vect(k).

By Remark 5.6, the functor GalDK (L/K) is canonically isomorphic to the functor

DAlg(k,Dk)→ Sets, R 7→ Isom⊗,D(ωR, ωR).

By Proposition 4.25, the latter functor is corepresentable by a Dk-Hopf algebra U over k. By
Proposition 4.28, U is Dk-finitely generated.

Note that one can also prove Lemma 8.2 more explicitly without using the Tannakian for-
malism.

Remark 8.3. It follows from Proposition 4.25, Theorem 5.5, and [13, 9.6] that L is a union of
(possibly, infinitely many) PV-extensions defined by the DK/k-modules

(
At1

)◦i(M) and GalDK (L/K)
with forgotten Dk-structure is the differential Galois group GalDK/k (L/K).

Recall the differential Galois correspondence in the case of arbitrary constants from [22,
Section 4]. Given a Hopf algebra U, an algebraic subgroup Spec(V) in Spec(U) corresponds to
a surjective homomorphism between Hopf algebras U → V .

Proposition 8.4. There is a bijective correspondence between algebraic subgroups H ⊂ GalDK/k (L/K)
and DK/k-subfields K ⊂ E ⊂ L given by

H 7→ E := LH , E 7→ H := GalDE/k (L/E).

The Galois correspondence in the parameterized case is as follows.

Proposition 8.5. There is a bijective correspondence between Dk-subgroups H ⊂ GalDK (L/K)
and DK-subfields K ⊂ E ⊂ L given by

H 7→ E := LH , E 7→ H := GalDE (L/E).

Proof. By Proposition 8.4 and Remark 8.3, we only need to show that an algebraic subgroup

H ⊂ GalDK/k (L/K)

is a Dk-subgroup in GalDK (L/K) if and only if the corresponding DK/k-subfield E ⊂ L is a DK-
subfield. Suppose that E is a DK-subfield. Then L is a PPV extension for the DE-module ME

over E, where DE := E ⊗K DK . Therefore, the corresponding Galois group H has a canonical
Dk-structure and corepresents a group subfunctor in G on DAlg(k) given by Definition 8.1. Thus,
H is a Dk-subgroup in G.

Conversely, suppose that H is a Dk-subgroup in G := GalDK (L/K). Consider the extension of
scalars GK from (k,Dk) to (K,DK) for G (Definition 3.23). We have a DK-subgroup HK in GK . By
the adjunction between restriction and extension of scalars (Definition 3.37) and Definition 8.1,
GK acts on the DK-field L over K and LH = LHK . By Proposition 8.4, we have E = LH , whence,
E is an DK-subfield in L.
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The proof of the normal subgroup case uses the differential Tannakian formalism.

Proposition 8.6. Under the correspondence from Proposition 8.5, a normal Dk-subgroup H
corresponds to a PPV extension E over K, and we have an isomorphism of Dk-groups

GalDK (L/K)/H � GalDK (E/K).

Proof. For short, put G := GalDK (L/K). Let

ω : 〈M〉⊗,D → Vect(k)

be the differential functor that corresponds to the PPV extension L by Theorem 5.5. It follows
from Theorem 4.27 and the proof of Lemma 8.2 that ω lifts up to an equivalence of Dk-categories

〈M〉⊗,D
∼
−→ Repfg(G). (26)

Let H be a normal Dk-subgroup in G. Then Repfg(G/H) is a full Dk-subcategory in Repfg(G).
By [8, Proposition 15], G/H is a linear Dk-group, that is, there is a faithful finite-dimensional
representation of G/H over k. Let N be the corresponding DK/k-module over K under the equiv-
alence (26). Taking the restriction of ω to the subcategory 〈N〉⊗,D in 〈M〉⊗,D, by Theorem 5.5,
we obtain a PPV extension E for N, which is embedded into L as a DK-subfield. Moreover, by
construction, we have an isomorphism

G/H � GalDK (E/K).

We need to show that E is the subfield in K associated with H by the Galois correspondence, that
is, E = LH . By Proposition 8.5, it is enough to show the equality GalDE (L/E) = H. It is implied
by the fact that GalDE (L/E) is the kernel of the restriction homomorphism

GalDK (L/K) = G → GalDK (E/K) = G/H. (27)

Conversely, if E is a PPV extension of K in L, then H := GalDE (L/E) is the kernel of the group
homomorphism (27), whence H is normal.

8.2. Extension of constants in parameterized differential fields

Now let us consider the behavior of PPV extensions and the corresponding differential cate-
gories under extensions of the differential field (k,Dk). Let (K,DK) be a parameterized differen-
tial field over (k,Dk) with char k = 0. Let l be a Dk-field over k (Definition 3.12). In particular,
we have a differential field (l,Dl) with Dl := l⊗k Dk. Since char k = 0, the field k is algebraically
closed in K and the ring

R := l ⊗k K

is a domain (for example, see [36, Corollary 1, p. 203]). Denote the fraction field of R by L.
By Definition 3.23, R is a DK-algebra over K. Therefore, L is a DK-field over K and we have
morphisms of differential rings

(l,Dl)→ (R,DR)→ (L,DL),

where DR := R ⊗K DK and DL := L ⊗K DK . Also, we have

DR/l := Ker(DR → R ⊗l Dl) � R ⊗K DK/k � l ⊗k DK/k, DL/l := Ker(DL → L ⊗l Dl) � L ⊗K DK/k,

because the functors R ⊗K − and L ⊗K − are exact.
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Lemma 8.7. The DK/k-algebra R over K has no non-zero DK/k-ideals besides R itself.

Proof. Let I be a non-zero DK/k-ideal in R and consider 0 , f ∈ I with

f =

n∑
i=1

ci ⊗ fi, 0 , ci ∈ l, 0 , fi ∈ K

such that c1 . . . , cn are linearly independent over k. Suppose that f has the minimal possible
number n among all non-zero elements in I. Take any ∂ ∈ DK/k. Since ∂ f ∈ I, we have

g := (1 ⊗ f1)∂ f − (1 ⊗ ∂ f1) f ∈ I.

On the other hand,

∂ f =

n∑
i=1

ci ⊗ ∂ fi,

hence,

g =

n∑
i=2

ci ⊗ ( f1∂ fi − ∂ f1 fi)

has less summands than f . Therefore, g = 0. Since c1, . . . , cn are linearly independent over k,
we obtain that ∂( fi/ f1) = 0 for all i = 2, . . . , n and for all ∂ ∈ DK/k. Hence,

hi := fi/ f1 ∈ k = KDK/k

and we have

f =

 n∑
i=1

cihi

 ⊗ f1.

Thus, f is invertible in R and I = R.

Lemma 8.8. Let P and P′ be DR/l-modules over R such that P is a finitely generated R-module
and let φ : PL → P′L be a morphism between the corresponding differential modules over
(L,DL/l). Then we have

φ(P ⊗ 1) ⊆ P′ ⊗ 1.

Proof. Consider the subset I ⊂ R that consists of all f ∈ R such that, for all v ∈ P ⊗ 1, we have

f · φ(v) ∈ P′ ⊗ 1.

It is readily seen that I is an ideal in R. Moreover, since the module P is finitely generated over
R, the ideal I is non-zero. Take any ∂ ∈ DK/k. Since the R-submodule P ⊗ 1 ⊂ PL is stable under
∂ and φ is L-linear and commutes with ∂, for all f ∈ I and v ∈ P ⊗ 1, we get

∂ f · φ(v) = ∂( f · φ(v)) − f · φ(∂v) ∈ P′ ⊗ 1.

Hence, I is a non-zero DK/k-ideal in R. By Lemma 8.7, we conclude that I = R.
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Corollary 8.9. For all finite-dimensional DK/k-modules M and M′ over K, the natural map

l ⊗k HomDK/k

(
M,M′

)
� HomDL/l

(
ML,M′L

)
is an isomorphism, where, for a differential ring (A,DA), HomDA (−,−) denotes morphisms be-
tween differential modules over (A,DA). In particular, we have

l ⊗k MDK/k = MDL/l

L and l = LDL/l .

Proof. First, by Lemma 8.8 with P = MR and P′ = M′R, the natural morphism

HomDR/l

(
MR,M′R

)
→ HomDL/l

(
ML,M′L

)
is an isomorphism. Since DR/l � l⊗k DK/k acts trivially on l and MR � l⊗k M, we have canonical
isomorphisms:

HomDR/l (MR,M′R) = HomR(MR,M′R)DR/l �
(
l ⊗k HomK(M,M′)

)l⊗k DK/k � l ⊗k HomDK/k (M,M′).

Thus, we see that (L,DL) is a parameterized differential field over (l,Dl), and that there are no
non-trivial new solutions over L of linear DK/k-differential equations given over K. The following
result is implied directly by Corollary 8.9 (more precisely, by its last assertion l = LDL/l ).

Corollary 8.10. Let M be a finite-dimensional DK/k-module over K, E be a PPV extension for M,
and let A be the Dk-Hopf algebra of the parameterized Galois group of E over K. Then the DL-
field F := Frac(l ⊗k E) is a PPV extension for ML and the Dl-Hopf algebra of the parameterized
Galois group of F over L is Al.

By Theorem 5.5, Corollary 8.10 also follows from the following categorical statement, which
makes sense without the assumption of the existence of a PPV extension (or, equivalently, the
existence of a differential functor) and has interest on its own right.

Proposition 8.11. Let M be a finite-dimensional DK/k-module over K. Then the differential
functor from a Dk-category over k to a Dl-category over l (Definition 4.19, Proposition 4.12, and
Theorem 5.1)

〈M〉⊗,D → 〈ML〉⊗,D, X 7→ XL

induces an equivalence Dl-categories

Φ : l ⊗k 〈M〉⊗,D
∼
−→ 〈ML〉⊗,D.

Proof. It is known that Hom-spaces in the extension of scalars category l⊗k 〈M〉⊗,D are obtained
by taking l⊗k − from the Hom-spaces in the category 〈M〉⊗,D ([54, p.407], [74]). Thus, it follows
from Corollary 8.9 that Φ is fully faithful. Let us show that Φ is essentially surjective. Any
object N in 〈ML〉⊗,D is a subquotient of QL for some object Q in 〈M〉⊗,D, that is, there are DL/l-
submodules

N1 ⊂ N2 ⊂ QL such that N � N2/N1.

Indeed, this is true for ML, and also this property is preserved under taking direct sums, tensor
products, duals, subquotients, and the functor At1. Put

Pi := Ni ∩ (l ⊗k Q) ⊂ QL, i = 1, 2, and P := P1/P2.
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We have
Pi = lim

−−→
(Pi ∩ (V ⊗k Q)) ,

where the limit is taken over all finite-dimensional over k subspaces V in l. Recall that objects in

l ⊗k 〈M〉⊗,D

are l-modules in the category of ind-objects in 〈M〉⊗,D ([54, p. 407], [74]). Therefore, Pi and P
are objects in l⊗k 〈M〉⊗,D. Finally, Ψ(P) = N, because L = Frac(l⊗k K), whence L⊗R P � N.
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Appendix

Here we recollect several known definitions and results and fix some notation we extensively
use in the paper.

A.1. Hopf algebroids

There are many references concerning Hopf algebroids, for example, see [13, 1.6, 1.14].
Also, the book [39] is very useful. A Hopf algebroid is a pair of rings (R, A) with the following
data and properties. First, there are two ring homomorphisms l : R → A and r : R → A, that is,
A is an algebra over R⊗R. In particular, A is an R-bimodule with the left and the right R-module
structures given by the homomorphisms l and r, respectively. Further, there are morphisms of
algebras over R ⊗ R:

∆ : A→ A ⊗R A, e : A→ R, ı : A→ As.

According to our notation, the tensor product A ⊗R A involves both left and right R-module
structures on A. The ring R is considered as an algebra over R ⊗ R via the multiplication on R.
In particular, we have the identities e ◦ l = idR and e ◦ r = idR. Also, As denotes the same ring A
with the right and left R-module structures being the initial left and right R-module structures on
A, respectively, that is, we have

ı
(
l( f )a

)
= ı(a) r( f ) and ı

(
ar( f )

)
= l( f )ı(a) for all f ∈ R, a ∈ A.

The morphisms (l, r,∆, e, ı) are required satisfy the following set of axioms, which are similar to
the axioms in the definition of a Hopf algebra. The coassociativity axiom requires the equality
of the compositions

A A ⊗R A A ⊗R A ⊗R A∆ //
∆⊗idA //

idA ⊗∆
// .
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The counit axiom requires that both compositions

A A ⊗R A A
∆ //

e⊗idA //

idA ⊗e
//

are equal to the identity. Finally, the antipode axiom requires that the following diagrams com-
mute:

A
∆

−−−−−−→ A ⊗R Aye
yı·idA

R
r

−−−−−−→ A,

A
∆

−−−−−−→ A ⊗R Aye
yidA ·ı

R
l

−−−−−−→ A.
In particular, it follows that ı is an involution and that e ◦ ı = e. Also, ı is uniquely defined by ∆

and e. Note that a Hopf algebroid (R, A) with l = r is the same as a Hopf algebra A over R.
A Hopf algebroid (R, A) defines a Hopf algebra B over R by the formula

B := R ⊗(R⊗R) A.

Further, by the extension of scalars, B defines a Hopf algebra B ⊗ R over R ⊗ R. It follows
from the definition of a Hopf algebroid that Spec(A) is a pseudo-torsor under the group scheme
Spec(B ⊗ R) over Spec(R ⊗ R) (for example, see Definition 6.9).

A Hopf algebroid over a ring κ is a Hopf algebroid (R, A) such that A and R are κ-algebras,
the morphisms l and r are morphisms of κ-algebras and the morphisms (∆, e, ı) are morphisms of
algebras over R⊗κR. In this case, Spec(A) is a pseudo-torsor under the group scheme Spec(R⊗κB)
over Spec(R ⊗κ R), where B is defined as above.

A comodule over a Hopf algebroid (R, A) is an R-module M together with a morphism of
A-modules

εM : M ⊗R A→ A ⊗R M

that satisfies two axioms, which are similar to the axioms in the definition of a comodule over a
Hopf algebra. The first axiom requires the equality

R ⊗A εM = idM ,

where the A-module structure on R is defined by the ring homomorphism e : A → R and we use
that

R ⊗A (M ⊗R A) � R ⊗A (A ⊗R M) � M.

The second axiom requires the equality of the composition

M ⊗R A ⊗R A
εM⊗RA
−−−−−−→ A ⊗R M ⊗R A

A⊗RεM
−−−−−−→ A ⊗R A ⊗R M

to the extension of scalars

(A ⊗R A) ⊗A εM : M ⊗R A ⊗R A→ A ⊗R A ⊗R M,

where the A-module structure on A ⊗R A is given by the ring homomorphism ∆ and we use that

(A ⊗R A) ⊗A (M ⊗R A) � M ⊗R A ⊗R A and (A ⊗R A) ⊗A (A ⊗R M) � A ⊗R A ⊗R M.
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One proves that εM is an isomorphism. By adjunction between extension and restriction of
scalars, one obtains a left R-linear morphism

φM : M → A ⊗R M,

and one can give an equivalent definition of a comodule in terms of φM . Denote the category
of comodules over a Hopf algebroid (R, A) by Comod(R, A). Denote the full subcategory of
comodules over (R, A) that are finitely generated as R-modules by Comodfg(R, A).

Remark A.12. Given a Hopf algebroid (R, A) over a ring κ, the pair (Spec(A),Spec(R)) defines
a category G fibred in groupoids over κ-schemes. A comodule over (R, A) is the same as a
quasi-coherent sheaf on G, or, equivalently, a morphism of fibred categories from G to the fibred
category of quasi-coherent sheaves, [13, 3.3].

Given a morphism of rings R→ S and a Hopf algebroid (R, A), there is a canonical structure
of a Hopf algebroid on the extension of scalars (S , S AS ), where

S AS := (S ⊗ S ) ⊗(R⊗R) A.

The extension of scalars also induces a functor

Comod(R, A)→ Comod(S , S AS ), M 7→ S ⊗R M.

If (R, A) is a Hopf algebroid over a ring κ and κ′ is an algebra over κ, then (Rκ′ , Aκ′ ) is a Hopf
algebroid over κ′ with

Rκ′ := κ′ ⊗κ R and Aκ′ := κ′ ⊗κ A.

For a Hopf algebroid (R, A) over a ring κ, suppose that A is a faithfully flat module over R⊗κR,
that is,

N 7→ A ⊗(R⊗κR) N

is a faithful exact functor on the category of modules over R ⊗κ R. Then a very important fact
is that any R-finitely generated comodule M in Comodfg(R, A) is a projective R-module, [13,
1.9,3.5]. It follows that Comodfg(R, A) is a Tannakian category with the forgetful fiber functor

ω : Comodfg(R, A)→Mod(R)

(Section A.2). Further, given a morphism of κ-algebras R → S , the extension of scalars S AS is
faithfully flat over S ⊗κ S and the functor

S ⊗R − : Comodfg(R, A)→ Comodfg(S , S AS )

is an equivalence of categories, [13, 1.8,3.5].

A.2. Tannakian categories

General references for Tannakian categories are [13] and [15]; also, an outline is given in [67,
B.3]. By a tensor category, we mean a category C together with a functor

C×C → C, (X,Y) 7→ X ⊗ Y, (A.1)

a unit object 1C, and functorial isomorphisms

X ⊗ 1C � X, X ⊗ Y � Y ⊗ X, X ⊗ (Y ⊗ Z) � (X ⊗ Y) ⊗ Z
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that satisfy a set of axioms, which can be found in the references above. A functor F : C → D
between tensor categories is tensor if there are functorial isomorphisms

F(X) ⊗ F(Y) � F(X ⊗ Y), F(1C) � 1D (A.2)

that are compatible with the commutativity and associativity isomorphisms above. A morphism
between tensor functors, F → G, is a morphism between functors that commutes with the iso-
morphisms (A.2) for F and G. Denote the category of tensor functors between tensor categories
C andD by Fun⊗(C,D).

An internal Hom object HomC(X,Y) in a tensor category C is an object that represents the
functor from C to the category of sets U 7→ HomC(U ⊗ X,Y), that is, there is a functorial isomor-
phism

HomC(U,HomC(X,Y)) � HomC(U ⊗ X,Y).

An internal Hom objectHomC(X,Y) is unique up to a canonical isomorphism if it exists. Denote
the internal Hom object HomC(X,1) by X∨. An object X in C is dualizable if, for any object Y ,
there exists the internal Hom objectHomC(X,Y) and the natural morphism

X∨ ⊗ Y → HomC(X,Y)

is an isomorphism, [13, 2.3]. A tensor category C is rigid if all objects in C are dualizable.
Let C andD be tensor categories. Then, for any tensor functor F : C → D and any dualizable

object X in C, the object F(X) is also dualizable and the natural morphism

F(HomC(X,Y))→ HomD(F(X), F(Y))

is an isomorphism for any object Y in C, [13, 2.7]. If C is rigid, then any morphism between
tensor functors from C toD is an isomorphism, [13, 2.7].

Recall that, in an abelian category, morphisms between objects form abelian groups, there
is a zero object, there are finite direct sums of objects, and there are kernels and cokernels of
morphisms, satisfying some conditions. In particular, an analogue of the homomorphism theo-
rem for groups is satisfied. Also, in an abelian category, exact sequences are well-defined. A
functor F : C → D between abelian categories is (left, right)-exact if it sends (left, right)-exact
sequences to (left, right)-exact sequences.

By an abelian tensor category, we mean a tensor category such that the tensor product functor
is additive and right-exact on both arguments. Let F : C → D be a right-exact tensor functor
between abelian tensor categories with C being rigid. Then, the functor F is exact, [13, 2.10(i)],
and faithful, that is, injective on morphisms with the same source and target [13, 2.13(ii)].

For an abelian rigid tensor category C and an object X in C, denote the minimal full rigid
tensor subcategory in C that contains X and is closed under taking subquotients by 〈X〉⊗. We say
that 〈X〉⊗ is tensor generated by X. It follows that 〈X〉⊗ is an abelian subcategory in C.

Let R be a commutative ring. An R-linear category C is an additive category C such that, for
all objects X, Y in C, the group of morphisms HomC(X,Y) is given with an R-module structure
and the composition of morphisms is R-bilinear, that is, induces morphisms of R-modules

HomC(X,Y) ⊗R HomC(Y,Z)→ HomC(X,Z)

for all object X, Y , and Z in C. A functor F : C → D between R-linear categories is R-linear if
it induces R-linear maps

HomC(X,Y)→ HomD(F(X), F(Y)).
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Denote the category of R-linear functors between R-linear categories C andD by FunR(C,D).
Given a tensor category C, a ring homomorphism R → EndC(1C) induces an R-linear cate-

gory structure on C. By an R-linear tensor category we mean a tensor category with an R-linear
structure obtained as above. Equivalently, one requires that the tensor product functor (A.1) is
R-linear in both variables. For example, for a finite commutative group G, the tensor category
Rep(G) is k[G]-linear, but it is not a k[G]-linear tensor category with the tensor structure given
by the usual tensor product of representations. On the other hand, Rep(G) is a k-linear tensor
category.

A Tannakian category over a field k is an abelian rigid tensor category C with a fixed isomor-
phism EndC(1C) � k such that there exist a k-algebra R and a right-exact k-linear tensor functor
ω : C → Mod(R). The functor ω is called a fiber functor. It follows from the above that ω
is exact and faithful. A Tannakian category C is neutral if, in the above notation, one can take
R = k, that is, there exists a fiber functor ω : C → Vect(k).

Given a Tannakian category C and two fiber functors

ω, η : C →Mod(R),

denote the set of all tensor isomorphisms between ω and η by Isom⊗(ω, η). Given an R-algebra
S , one has the fiber functor

ωS : C →Mod(S ), X 7→ S ⊗R ω(X).

Note that the functor ωS is denoted by S ⊗R ω in [13]. It is more convenient for us to reserve the
notation S ⊗R ω for the extension of scalars of the functor defined in Section 4.1. The functor

Isom⊗(ω, η) : Alg(R)→ Sets, S 7→ Isom⊗(ωS , ηS ),

is corepresented by an R-algebra A, [13]. In particular, the identity map from A to itself corre-
sponds to a canonical isomorphism of tensor functors ωA

∼
−→ ηA.

Proposition A.13. In the above notation, suppose that C is tensor generated by an object X.
Then the R-algebra A is generated by the matrix entries of the canonical isomorphism

ω(X)A
∼
−→ η(X)A

and the matrix entries of its inverse with respect to any choice of systems of generators of ω(X)A

and η(X)A over A.

Proof. Let B be a k-subalgebra in A generated by the matrix entries as in the proposition. We
need to show that B = A. Given projective B-modules P and Q, the extension of scalars map

HomB(P,Q)→ HomA(PA,QA)

is injective, because P and Q are direct summands in free B-modules and B is embedded into A.
Therefore, by the universal property of A, it is enough to prove that the canonical isomorphisms

ω(Y)A
∼
−→ η(Y)A

are defined over B, where Y runs through all objects in C. By the construction of B, this is true
for the tensor generator X. Further, this property is preserved under taking direct sums, tensor
products, and duals of objects in C.
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It remains to show that this property is preserved under taking subquotients, for which it
is enough only to consider subobjects. Assume that there is an isomorphism of B-modules
λ : ω(Y)B

∼
−→ η(Y)B whose extension of scalars λA is equal to the canonical isomorphism

ω(Y)A
∼
−→ η(Y)A.

Given a subobject Z ⊂ Y , consider the composition

µ : ω(Z)B → ω(Y)B
λ
−→ η(Y)B → η(Y/Z)B.

Since µA = 0 and ω(Z)B, η(Y/Z)B are projective B-modules, we have that µ = 0. Hence,
λ
(
ω(Z)B

)
= η(Z)B, which implies the needed condition for Z.

Theorem A.14. Let C be a Tannakian category over k and let ω : C → Mod(R) be a fiber
functor. Then there exists a Hopf algebroid (R, A) over k such that A is faithfully flat over R ⊗k R
and ω lifts up to a tensor k-linear equivalence of tensor categories

C
∼
−→ Comodfg(R, A).

That is, for any object X in C, there is a functorial in X structure of a comodule over (R, A) on
ω(X) giving the above equivalence ([13, 1.12]).

In particular, for a neutral Tannakian category (C, ω), there exists a Hopf algebra A over k
such that ω lifts up to an equivalence between C and Comodfg(A) (equivalently, there exists an
affine group scheme G over k such that ω induces an equivalence between C and Repfg(G)). The
Hopf algebroid A from Theorem A.14 corepresents the functor

Isom⊗(R⊗R ω,ωR⊗R) : Alg(R ⊗k R)→ Sets,

where, as above, we put

(R⊗R ω)(X) := (R ⊗k R) ⊗R ω(X) � R ⊗k ω(X), (ωR⊗R)(X) := ω(X) ⊗R (R ⊗k R) � ω(X) ⊗k R.
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