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Abstract
Many real-world processes and phenomena aremodeled using systems of ordinary
differential equations with parameters. Given such a system, we say that a
parameter is globally identifiable if it can be uniquely recovered from input
and output data. The main contribution of this paper is to provide theory, an
algorithm, and software for deciding global identifiability. First, we rigorously
derive an algebraic criterion for global identifiability (this is an analytic property),
which yields a deterministic algorithm. Second, we improve the efficiency by
randomizing the algorithm while guaranteeing the probability of correctness.
With our new algorithm, we can tackle problems that could not be tackled before.
A software based on the algorithm (called SIAN) is available at https://
github.com/pogudingleb/SIAN. © 2000 Wiley Periodicals, Inc.
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1 Introduction

Many real-world processes and phenomena are modeled using systems of para-
metric ordinary differential equations (ODEs). There are multiple challenges in
designing such a model. In this paper, we address one of them: structural global
identifiability. One might be interested in knowing the values of some select param-
eters due to their importance. Usually, one tries to determine (uniquely identify)
them by collecting input and output data. However, due to the structure of the
model, it can be impossible to determine the parameters from input and output
data. When this happens, the parameters are said to be “not globally identifiable”.
In the process of model design, it is crucial to know whether the parameters of
interest in a potential model are globally identifiable, which is the topic of this
paper.

Checking global identifiability is challenging. Thus, a weaker notion, called
“local identifiability”, has been introduced, which means that a parameter can be
identified up to finitely many options. There has been remarkable progress in
checking local identifiability, resulting in efficient algorithms, including rigorously
justified probabilistic algorithms (see [17, 46, 9, 22] and the references given there).

If a parameter is not locally identifiable, then it is not globally identifiable. If it is
locally identifiable, then it still remains to check whether it is globally identifiable.
Thus, it is desirable and remains a challenge to have an algorithm for checking
whether a locally identifiable parameter is also globally identifiable.

Due to the importance of the challenge, there have been intensive effort on it.
Roughly stated, there have been three approaches.

• Taylor series approaches [37] with termination bounds in several particular
cases [50, 51, 30]. Such bounds lead to algorithms in these particular cases,
and these algorithms can be practical if applied to systems of small sizes.
• Generating series approaches based on composing the vector fields asso-
ciated to the model equations as well as a recursive approach based on
integrals [53]. See [54] for a comparison of the Taylor and generating se-
ries approaches as well as recent version of software GenSSI based on the
generating series approach [4, 8, 26]. Having correct termination criteria
for algorithms based on this approach has been an open problem (see also
Example 2.16).
• Differential algebra-based approaches can be divided in two groups. One
group is to treat the parameters as functions with zero derivatives and use
differential elimination (see, for example, [28]). This approach can be
practical if applied to systems of small sizes.

The other group is to treat the parameters as elements of the field of
coefficients and produce so-called input-output equations. This approach
is followed in COMBOS and DAISY [7, 41, 43, 32, 33] under an addi-
tional assumption on “solvability” (see [40, Remark 3] and Example 2.14).
Having an efficient algorithm that could verify, for a system, whether this
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assumption holds is an open problem. One of the software packages based
on this approach, DAISY, uses randomization to increase efficiency. This
can become a randomized algorithm once a probability analysis is carried
out.

Summarizing, there has been significant progress (both in theory and algorithms)
toward the challenge of checking global identifiability.

The main contribution of this paper is to make further progress by providing
a complete and rigorous theory (Theorems 3.16,4.2,5.5) and a symbolic-numeric-
randomized algorithm (Algorithm 1) that is general, reliable, and can tackle prob-
lems that could not be tackled before using the existing algorithms and software.
The algorithm is “complete” in the sense that, for any input that satisfies our
syntactically-checkable requirements, it halts with an answer that is correct with
any user-chosen probability of correctness (the standard correctness notion in the
theory of randomized algorithms). The algorithm is the first one for global identi-
fiability with such guarantees.

We briefly sketch our approach, which could be viewed as a combination of
the differential algebra and Taylor series approaches with a correct termination
criterion. Informally, identifiability problem can be formulated as a question about
fibers of the map that sends the parameter values and the initial conditions of the
system of ODEs to the output data, which are functions of the corresponding solu-
tion. This observation is formalized using differential algebra in Proposition 3.4.
One way to analyze this map is to reduce it to a map between finite-dimensional
spaces. We do this by replacing the output functions by truncations of their Tay-
lor series. Theorem 3.16 provides a criterion to find the order of truncation that
contains enough information for the identifiability checking. This criterion can be
applied efficiently using rank computation due to Proposition 3.20. After that, the
identifiability question is reduced to the question about the generic fiber of a map
between finite-dimensional varieties.

To significantly increase the efficiency at this step, instead of considering the
generic fiber, we consider a fiber over a randomly chosen point. We estimate
the probability of correctness of such an algorithm in Theorem 4.2. We do it by
first carefully analyzing the set of special points of this map and then applying
the Demillo-Lipton-Schwartz-Zippel lemma (we believe that our analysis could be
extended to improve other software for global identifiability such as DAISY so that
the output of DAISY would be correct with user-specified probability p).

After considering the fiber over a random point, the problem turns into checking
the consistency of a system of polynomial equations and inequations (,). This can
be performed using symbolic, symbolic-numeric, or numeric methods. It turns out
that, in practice, Gröbner bases computations are efficient enough for moderate-
size problems that we encountered and significantly outperformed (unexpectedly!)
numerical algebraic geometry software such as Bertini [6] in several examples that
we considered (see Method (iv) in Remark 5.3). Thus, in our implementation, we
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used Gröbner bases. Any new method for checking the consistency of a system of
polynomial equations and inequations can be potentially used tomake our algorithm
even more efficient.

We have implemented the resulting algorithm into a software called SIAN [19],
which stands for “Structural Identifiability ANalyser”. The software is available
at https://github.com/pogudingleb/SIAN. The article [19] focuses on the
functionality of the software. The present paper focuses on a rigorous theoretical
and algorithmic foundation underlying the software.

The paper is structured as follows. In Section 2, we state several notational
conventions, give a precise statement of the global identifiability problem and
illustrate it by several examples. In Section 3, we give an algebraic criterion for
global identifiability. In Section 4, we give a probabilistic criterion for global
identifiability. In Section 5, we give an algorithm based on the criteria developed
in the previous two sections. In Section 6, we discuss the performance of our
algorithm using challenging examples taken from the literature and discuss how
other existing software packages perform at those examples.

2 Identifiability Problem

In this section, we give a precise statement of the global identifiability problem
of algebraic differential models. For this, we introduce several notions.

2.1 Conventions
Throughout the paper, we will use the following notational conventions.

(a) Wewill use plain face for scalar variables and bold face for vector variables.
We will decorate variables (for instance by ˆ or ˜) to indicate particular
values of the variables. For example:

scalar vector
variable name θ θ
variable value θ̂ θ̂

(b) For two sets A and B, the notation A ⊂ B will be used to denote that A is a
subset of B (not necessarily a proper subset). The notation A ( B will be
used to denote that A ⊂ B & A , B.

(c) For the convenience of the reader, some of the notation is supplied with hy-
perlinks, highlighting the first occurrence and subsequent uses in statements
of results and in Definitions, Examples, etc.

2.2 Definition of Identifiability
We will start with stating what type of differential models we will be working

with.

https://github.com/pogudingleb/SIAN
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Definition 2.1 (Algebraic Differential Model). An algebraic differential model is a
system

(2.1) Σ :=


x ′ = f (x, µ, u),
y = g(x, µ, u),
x(0) = x∗,

where f = ( f1, . . . , fn) and g = (g1, . . . , gm) with fi = fi(x, µ, u)’s and gj =

gj(x, µ, u)’s being rational functions over the field of complex numbers C.

The components of the n-vector x = (x1, . . . , xn) are the state variables; the
derivative of x with respect to time is denoted by x ′. The scalar function u is
the input variable. The components of the m-vector y = (y1, . . . , ym) are the
output variables. The components of the λ-vector µ = (µ1, . . . , µλ) are the system
parameters. Finally, the components of the n-vector x∗ = (x∗1, . . . , x∗n) are the initial
states.

Remark 2.2. We assume that there is only one input function u for a simpler presen-
tation. However, all of our results and proofs can be generalized straightforwardly
to the case of several input functions. If the input u is fixed (known) or u just does
not appear, then u can be simply omitted when our algorithms/theoretical results
are used.

Remark 2.3. In our approach, the initial conditions in (2.1) form a part of the
parameters, as in [14, 53, 49, 50, 28, 54, 2, 30, 7, 9, 8, 32, 52], among other works.
Other approaches to introducing (2.1) include considering inequalities, specified
initial conditions, etc., see e.g. [14, 2, 42, 40], among others.

Notation 2.4. In stating the notion of identifiability precisely, the following notions
and notation are useful.

(a) We will study the identifiability of both µ and x∗. Hence we collectively
denote them by

θ := (µ, x∗) = (θ1, . . . , θs),

where s = λ + n.
(b) Let C∞(0) denote the set of all functions that are complex analytic in some

neighborhood of t = 0.
(c) We will need to avoid division by zero while evaluating f and g. For

this, let Ω denote the set of all (θ̂, û) ∈ Cs × C∞(0) such that none of the
denominators of f and g in Σ vanishes at t = 0 after the substitution of
(θ̂, û) into (θ, u).

(d) For (θ̂, û) ∈ Ω, let X(θ̂, û),Y (θ̂, û) denote the unique solution of the in-
stance Σ(θ̂, û) with entries in C∞(0), which are functions of t (see [18,
Theorem 2.2.2]).
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(e) We will need to capture precisely the informal notions such as “almost
always” and “generically”. We will do so by using the notion of Zariski
open subset. Define
• AsubsetΘ ⊂ Cs is calledZariski open if there is a non-zero polynomial

P ∈ C[θ] such that

Θ = {θ̂ ∈ Cs | P(θ̂) , 0}.

• A subset U ⊂ C∞(0) is called Zariski open if there exist h ∈ Z>0 and
a non-zero polynomial P(u0, u1, . . . , uh) ∈ C[u0, . . . , uh] such that

U =
{
û ∈ C∞(0) | P

(
û, û(1), . . . , û(h)

)
|t=0 , 0

}
.

• Let τ(Cs) denote the set of all Zariski open non-empty subsets of Cs.
• Let τ(C∞(0)) denote the set of all Zariski open non-empty subsets of
C∞(0).

Note that the complement to every nonempty Zariski open set is of
Lebesque measure zero [36, p. 83]. Thus, if some property is true on a
nonempty Zariski open subset, it is true “almost always” in the sense of
measure theory.

(f) For a parameter θ ∈ θ and a subset S ⊂ Cs, let projθ S denote the projection
of S onto the θ-coordinate, that is,

projθ S :=
{
θ̃1

�� ∃ θ̃2, . . . , θ̃s such that (θ̃1, . . . , θ̃s) ∈ S
}
,

where we assumed that θ = θ1 for notational simplicity.

Now we are ready to give a precise definition of identifiability.

Definition 2.5 (Identifiability). Let Σ be an algebraic differential model. A param-
eter θ ∈ θ is globally (resp., locally) identifiable if

∃Θ ∈ τ(Cs) ∃U ∈ τ(C∞(0)) ∀ (θ̂, û) ∈ Ω ∩ (Θ ×U)

the size of Sθ
(
θ̂, û

)
is one (resp., finite),

where
Sθ

(
θ̂, û

)
:= projθ

{
θ̃

�� (θ̃, û) ∈ Ω and Y
(
θ̂, û

)
= Y

(
θ̃, û

)}
.

Remark 2.6. One may notice that the above definition looks a bit different from
(although mathematically equivalent to, as we show in Proposition 3.4) the ones
used in the previous literature [14, 24, 53, 55, 30, 40]. Below, we provide more
details and explain the differences and our motivation:

(a) “θ ∈ θ”: Some authors [49, 50, 28, 54, 30, 7, 34] defined the identifiability
of all the parameters. We simplify the presentation by defining the iden-
tifiability of a single parameter. Of course, we can naturally extend it to
a subset of parameters by saying that θ# ⊂ θ is globally (resp., locally)
identifiable if every parameter in θ# is globally (resp., locally) identifiable.
See also Example 2.13.
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(b) “(θ̂, û), (θ̃, û) ∈ Ω”: In the previous literature, the values of θ, u are usually
assumed to be chosen so that the denominators of f and g are non-zero.
We make the assumption precise by using the “∈ Ω”.

(c) “∃Θ ∈ τ(Cs) ∃U ∈ τ(C∞(0))”: Most of the papers about identifiability
we have seen use the notion “almost all/generic” parameter values or inputs
while defining identifiability. In Examples 2.10 and 2.11, we remind the
reader why it is desirable to allow such a notion. We make the notion
precise by using the phrase “∃Θ ∈ τ(Cs) ∃U ∈ τ(C∞(0))”, that is, to
restrict the parameter values and inputs to Zariski open sets.

(d) “∀ û”: In most of the papers about identifiability we have seen (for example,
[14, 53, 49, 50, 30, 7, 55]), the quantification “∀ û” is put inside the definition
of the set S or its analogue (see Proposition 3.4(b) for a precise formulation).
We decided to put “∀ û” outside, due to the following reasons:
(i) The two resulting definitions of identifiability, though looking differ-

ent, turn out to be equivalent (see Proposition 3.4).
(ii) The new definition putting “∀ û” outside could be more appealing to

the model users because of the following reasons:
• The definition putting “∀ û” insidemakes themodel users reason
that more than one (in the worst case, infinitely many) inputs
might be needed in order to identify a parameter.
• The definition using “∀ û” outside makes the model users rea-
son that only one generically chosen input will be sufficient to
identify a parameter.

Summarizing, Definition 2.5 is mathematically equivalent to the previous definition
in the literature, is precisely stated, and could be more appealing to the model users.

2.3 Problem statement and illustrating examples
Now we are ready to state the problem of identifiability.

Problem 2.7 (Global Identifiability).
In: Σ : an algebraic differential model given by rational functions f (x, µ, u),

and g(x, µ, u)
θ` : a subset of θ = µ ∪ x∗ such that every parameter in θ` is locally

identifiable
Out: θg : the set of all globally identifiable parameters in θ`

Remark 2.8. Note that we require every parameter in θ` to be locally identifiable.
The requirement is not essential for the theory developed in this paper. It is only for
the sake of simple presentation of the theory. Furthermore, the resulting algorithm
is not practically restrictive because there are already very efficient algorithms for
assessing local identifiability (see, for example, [46, 22, 1, 38]).

In the following, we will illustrate Problem 2.7 on several simple examples.

Example 2.9. Consider the system
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In: Σ =


x ′1 = θ1,

y1 = x1,

x1(0) = θ2

θ` = {θ1, θ2}

Out: θg = {θ1, θ2}

Reason: We will explicitly show that θ1 is globally identifiable, thus also showing
that it is locally identifiable (a proof that θ2 is globally identifiable can be done
mutatis mutandi). For this, first note that Y (θ) = θ1t + θ2 and choose Θ = C2. For
all (θ̂1, θ̂2) ∈ Θ, we have

Sθ1(θ̂1, θ̂2) =
{
θ̃1 ∈ C

�� ∃ θ̃2 ∈ C such that θ̂1t + θ̂2 = θ̃1t + θ̃2
}

=
{
θ̃1 ∈ C

�� ∃ θ̃2 ∈ C such that θ̂1 = θ̃1, θ̂2 = θ̃2
}
=

{
θ̂1

}
.

Therefore, |Sθ1(θ̂1, θ̂2)| = 1, and thus θ1 is globally identifiable.

In Examples 2.10 and 2.11, we will see the importance of genericity (choosing
open subsets) that appears in Definition 2.5.

Example 2.10. Consider the system

In: Σ =


x ′1 = θ1x1,

y1 = x1,

x1(0) = θ2

θ` = {θ1, θ2}

Out: θg = {θ1, θ2}

Reason: We will explicitly show that θ1 is globally identifiable, thus also showing
that it is locally identifiable (a proof that θ2 is globally identifiable can be done
mutatis mutandi). For this, first note that Y (θ) = θ2eθ1t and choose Θ =

{
(z1, z2) ∈

C2
�� z2 , 0

}
. For all (θ̂1, θ̂2) ∈ Θ, we have

Sθ1(θ̂1, θ̂2) =
{
θ̃1 ∈ C

�� ∃ θ̃2 ∈ C such that θ̂2eθ̂1t = θ̃2eθ̃1t
}

=
{
θ̃1 ∈ C

�� ∃ θ̃2 ∈ C such that θ̂1 = θ̃1, θ̂2 = θ̃2
}
=

{
θ̂1

}
.

Therefore, |Sθ1(θ̂1, θ̂2)| = 1, and so θ1 is globally identifiable according to Defini-
tion 2.5.

However, note that choosing Θ = C2 would result in requiring us to consider
Sθ1(θ̂1, 0) = C, which is infinite. Therefore, if the genericity (restriction to open sets)
for θ̂ in Definition 2.5 were not used, then this system would not be globally/locally
identifiable.

Example 2.11. Consider the system
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In: Σ =


x ′1 = θ1u,
y1 = x1,

x1(0) = θ2

θ` = {θ1}

Out: θg = {θ1}

Reason: Note that Y (θ, u)′ = θ1u and choose Θ = C2 and U = {û ∈ C∞(0) | û(0) ,
0}. For all (θ̂1, θ̂2) ∈ Θ and û ∈ U, we have

Sθ1(θ̂1, θ̂2, û) =
{
θ̃1 ∈ C

�� ∃ θ̃2 ∈ C such that Y (θ̂, û) = Y (θ̃, û)
}

⊂
{
θ̃1 ∈ C

�� ∃ θ̃2 ∈ C such that Y (θ̂, û)′ = Y (θ̃, û)′
}

⊂
{
θ̃1 ∈ C

�� θ̂1û(0) = θ̃1û(0)
}
=

{
θ̂1

}
.

Therefore, |Sθ1(θ̂1, θ̂2, û)| = 1, and so θ1 is globally identifiable according to Defi-
nition 2.5.

However, note that choosingU = C∞(0)would result in requiring us to consider
Sθ1(θ̂, 0) = C, which is infinite. Therefore, if the genericity (restriction to open sets)
for û in Definition 2.5 were not used, then this system would not be globally/locally
identifiable.

Example 2.12. Consider the system

In: Σ =


x ′1 = θ

2
1,

y1 = x1,

x1(0) = θ2

θ` = {θ1, θ2}

Out: θg = {θ2}

Reason: To see that θ1 is locally identifiable, note that Y (θ) = θ2
1t + θ2 and choose

Θ = C2. For all (θ̂1, θ̂2) ∈ Θ,

Sθ1(θ̂1, θ̂2)

=
{
θ̃1 ∈ C

�� ∃ θ̃2 ∈ C such that θ̂2
1t + θ̂2 = θ̃

2
1t + θ̃2

}
=
{
θ̃1 ∈ C

�� ∃ θ̃2 ∈ C such that θ̂2
1 = θ̃

2
1, θ̂2 = θ̃2

}
=
{
θ̂1,−θ̂1

}
.

Therefore, |Sθ1(θ̂1, θ̂2)| 6 2. Similarly, we conclude that |Sθ2(θ̂1, θ̂2)| = 1, thus
showing that θ` = {θ1, θ2} and θ2 ∈ θ

g.
To see that θ1 < θ

g, letΘ ⊂ C2 be non-empty open such that, for all (θ̂1, θ̂2) ∈ Θ,
|Sθ1(θ̂1, θ̂2)| = 1. Since, for all (θ̂1, θ̂2) ∈ C

2, θ̂1 , 0 implies |Sθ̂1
(θ̂1, θ̂2)| = 2,

Θ ⊂
{
(θ̂1, θ̂2) ∈ C

2 | θ̂1 = 0
}
,

so Θ cannot be a non-empty open set.
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In the above elementary examples (see also Examples 2.14 and 2.16), we were
able to solve the ODEs explicitly and decide the identifiability directly. We now
give an example with a system to which explicit solutions are not known to us but
we are still able to check identifiability using the algorithm from this paper. The
example also illustrates that our approach allows working with proper subset of
the parameters.

Example 2.13. Consider the system (a predator-prey model)

In: Σ =



x ′1 = θ1x1 − θ2x1x2,

x ′2 = −θ3x2 + θ4x1x2,

y1 = x1,

x1(0) = θ5,

x2(0) = θ6.

θ` = {θ1, θ3, θ4, θ5}
Out: θg = {θ1, θ3, θ4, θ5}

Reason: This has been determined by Algorithm 1 (see Section 5). Additionally,
a calculation based on differential elimination terminates with representations for
θ1, θ3, θ4 that are consequences of Σ of the form

θi =
Pi(y, . . . , y

(5))

Qi(y, . . . , y(5))
, for i = 1, 3, 4.

Note that, if the values of θ1 and θ3 are known, we can also write in a simpler form:

θ4 =
θ1θ3y

2 − θ3yy
′ − y′′y + y′2

θ1y3 − y′2
.

One can also show directly by definition that neither θ2 nor θ6 is locally identifiable.
This result tells us that, if we can only observe the prey population (x1), then it is
impossible to identify the rate of decrease (θ2) of the prey population due to the
prey-predator interactions (x1x2). But we can identify the rate of increase (θ4) of
the predator population.

2.4 Subtleties with other approaches
In this section, we will consider a few subtleties in applying DAISY andGenSSI,

two existing software packages to test for global identifiability (for more details on
them, see the beginning of Section 6).

Example 2.14. Consider the system

In: Σ =


x ′1 = 0,
y1 = x1,

y2 = θ1x1 + θ
2
1,

x1(0) = θ2.

θ` = {θ1, θ2}
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Out: θg = {θ2}

Reason: To see that θ1 is locally identifiable, note that

Y (θ) =
(

θ2
θ1θ2 + θ

2
1

)
and Ω = C2 and choose Θ = C2. For all (θ̂1, θ̂2) ∈ Θ, we have

Sθ1(θ̂1, θ̂2) =
{
θ̃1 ∈ C

�� ∃ θ̃2 ∈ C s.t. θ̃2 = θ̂2, θ̃1θ̃2 + θ̃
2
1 = θ̂1θ̂2 + θ̂

2
1
}

(2.2)

=
{
θ̃1 ∈ C

�� θ̃1θ̂2 + θ̃
2
1 = θ̂1θ̂2 + θ̂

2
1
}
=

{
θ̂1,−θ̂1 − θ̂2

}
,

and so |Sθ1(θ̂1, θ̂2)| 6 2. Similarly, we conclude that |Sθ2(θ̂1, θ̂2)| = 1, thus showing
that θ` = {θ1, θ2} and θ2 ∈ θ

g.
To see that θ1 is not globally identifiable, let Θ ⊂ C2 be non-empty open such

that, for all (θ̂1, θ̂2) ∈ Θ, |Sθ1(θ̂1, θ̂2)| = 1. Formula (2.2) implies that, for all
(θ̂1, θ̂2) ∈ C

2,

|Sθ1(θ̂1, θ̂2)| = 2 ⇐⇒ θ̂1 , −θ̂1 − θ̂2.

Therefore,

Θ ⊂
{
(θ̂1, θ̂2) ∈ C

2 | θ̂1 = −θ̂1 − θ̂2
}
,

so Θ cannot be non-empty open.
However, the software tool DAISY (see [7, 43, 41]), which is based on theory

that uses input-output equations, returned that θ1 is globally identifiable. A possible
explanation for this is as follows. The equation

(2.3) y2 − θ1y1 − θ
2
1 = 0,

which is a consequence of Σ, is an input-output equation (see [40, formula (11)])
in this case. The approach based on input-output equations assumes that the
coefficients of input-output equations as polynomials with respect to the y’s and
u’s and their derivatives are globally identifiable (such an additional condition is
called “solvability” in [40, Remark 3]). In this example, however, this condition
does not hold. Indeed, if the coefficients of (2.3), 1, −θ1, and −θ2

1, were globally
identifiable, θ1 would be identifiable. However, we showed above that the values
of y1 and y2 are not sufficient for a unique recovery of the value of θ1 in the generic
case.

Remark 2.15. One can modify Example 2.14 so that so that the solutions of the
state variables are non-constant but with the same conclusion about “solvability”
and the output of DAISY, e.g., by considering
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Σ =



x ′1 = 1,
x ′2 = −1,
y1 = x1 + x2,

y2 = θ1(x1 + x2) + θ
2
1,

x1(0) = θ2,

x2(0) = θ3.

The same argument as in Example 2.14 shows that θ1 is locally but not globally
identifiable, while DAISY would output that θ1 is globally identifiable.

Example 2.16. Consider the system

In: Σ =


x ′1 = x1,

y1 = x1,

y2 = θ1 + θ
2
1 x1,

x1(0) = θ2

θ` = {θ1, θ2}

Out: θg = {θ1, θ2}

Reason: First note that

Y (θ) =
(

θ2 · et

θ1 + θ
2
1θ2 · et

)
.

To show that θ2 is globally identifiable, choose Θ = C2. For all (θ̂1, θ̂2) ∈ Θ, we
have

Sθ2(θ̂1, θ̂2) ⊂
{
θ̃2 ∈ C | ∃ θ̃1 ∈ C such that θ̂2 · et = θ̃2 · et

}
=

{
θ̂2

}
.

Therefore, |Sθ2(θ̂1, θ̂2)| 6 1. To show that θ1 is globally identifiable, chooseΘ = C2.
For all (θ̂1, θ̂2) ∈ Θ, we have

Sθ1(θ̂1, θ̂2)

=

{
θ̃1 ∈ C

����� ∃ θ̃2 ∈ C such that
θ̂2 · et = θ̃2 · et,

θ̂1 + θ̂
2
1 · θ̂2 · et = θ̃1 + θ̃

2
1 · θ̃2 · et

}
=
{
θ̃1 ∈ C | θ̂1 + θ̂

2
1 · θ̂2 · et = θ̃1 + θ̃

2
1 · θ̂2 · et

}
=
{
θ̃1 ∈ C | θ̂1 = θ̃1 & θ̂2

1 · θ̂2 = θ̃
2
1 · θ̂2

}
=
{
θ̂1

}
.

Therefore, |Sθ2(θ̂1, θ̂2)| = 1.
However, the software GenSSI 2.0 (see [4, 8, 26]) has returned that θ1 is

locally identifiable and is not able to conclude the global identifiability because of
limitations of the method that is used in the software. More precisely, GenSSI 2.0



GLOBAL IDENTIFIABILITY OF DIFFERENTIAL MODELS 13

checks that the Jacobian of

(2.4)

{
y1(0) = θ2,

y2(0) = θ1 + θ
2
1θ2

w.r.t. θ1 and θ2, which is (
0 1

1 + 2θ1θ2 θ2
1

)
,

has rank generically equal to the number of parameters. Having positively checked
this equality, following the steps outlined in “Electronic supplementary material” of
[4] as well as by running the code, GenSSI 2.0 does not differentiate y1 = x1, y2 =

θ1 + θ
2
1 x1 and checks whether θ1 and θ2 are uniquely determined by y1(0) and y2(0)

in (2.4). GenSSI 2.0 observes that θ1 is not uniquely determined by y1(0) and y2(0)
from (2.4) and thus outputs that θ1 is only locally identifiable, while θ2 is uniquely
determined by y1(0) and so is globally identifiable.

We will show how to remedy this limitation in checking global identifiability
for this example based on the above particular stopping criterion used in GenSSI.
It turns out that one additional derivative y′2 = θ

2
1 x ′1 = θ

2
1 x1 of y2 = θ1 + θ

2
1 x1 is

sufficient to conclude the global identifiability of θ1 in addition to using (2.4):

θ1 = y2(0) − θ2
1 · y1(0) = y2(0) − θ2

1 · x1(0) = y2(0) − y′2(0).

3 Algebraic Criteria

In this section, the analytic definition of global identifiability from the previous
section will be characterized algebraically. First, we provide an equivalence in
terms of field extensions in Proposition 3.4 of Section 3.3. This section culminates
in Theorem 3.16 of Section 3.4, which gives a constructive algebraic criterion for
global identifiability.

3.1 Basic Terminology
A derivation δ on a commutative ring R is a map δ : R → R such that, for all

a, b ∈ R,

(3.1) δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + aδ(b).

Call (R, δ) a differential ring. For a domain R, Quot(R) denotes the field of fractions
of R. The derivation δ can be extended uniquely to a derivation on Quot(R) using
the quotient rule. An ideal I ⊂ R is said to be a differential ideal if a′ ∈ I for every
a ∈ I.

The ring of differential polynomials in z1, . . . , zs with coefficients in C is de-
noted by C{z1, . . . , zs}. As a ring, it is the ring of polynomials in the algebraic
indeterminates

z1, . . . , zs, z′1, . . . , z
′
s, z
′′
1 , . . . , z

′′
s , . . . , z

(q)
1 , . . . , z(q)s , . . . .
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A differential ring structure is defined by, for all i, 1 6 i 6 s and q > 0,(
z(q)i

) ′ := z(q+1)
i , z(0)i := zi

and extended to C{z1, . . . , zs} by the Leibniz rule, additivity (see (3.1)) and c′ = 0
for all c ∈ C. For example,(

2z′21 z3 + 3z′′5
) ′
= 4z′1z′′1 z3 + 2z′21 z′3 + 3z′′′5 .

For all i, 1 6 i 6 s, and P ∈ C{z1, . . . , zs}, we define ordzi P to be the largest
integer q such that z(q)i appears in P if such a q exists and −1 if such a q does not
exist. For non-empty S,T ⊂ R, we define

T : S∞ = {r ∈ R | there exist s ∈ S and n ∈ Z>0 such that snr ∈ T}.

If T is an ideal of R, then T : S∞ is an ideal of R. For subsets X ⊂ Cn and
J ⊂ C[x1, . . . , xn], we denote

I(X) := { f ∈ C[x1, . . . , xn] | f (p) = 0 for all p ∈ X},

Z(J) := {p ∈ Cn | f (p) = 0 for all f ∈ J}.

3.2 Algebraic Preparation
We will start with introducing technical notation and proving several auxiliary

statements in this subsection.
Fix Σ from Definition 2.1 (see Notation 2.4 as well). Let Q be the lcm of all

denominators in f and g. Then all these rational functions can be written as

fi =
Fi

Q
for 1 6 i 6 n, and gj =

G j

Q
for 1 6 j 6 m.

Denote F := (F1, . . . , Fn) and G := (G1, . . . ,Gm). Let

(3.2) R := C[µ]{x, y, u}

considered as a differential ring with µ′ = 0 (which is set up this way due to the
time-independence of the parameters). For all i, 1 6 i 6 n and j, 1 6 j 6 m, we
consider Fi, G j , and Q as elements of C[µ, x, u] ⊂ R. Let

(3.3) J =
{
r ∈ R | ∀((µ̂, x̂∗), û) ∈ Ω r

(
µ̂, X

(
(µ̂, x̂∗), û

)
,Y

(
(µ̂, x̂∗), û

)
, û

)
= 0

}
,

which is a (differential) ideal in R. For all ((µ̂, x̂∗), û) ∈ Ω, we have

Q(µ̂, x̂∗, û) , 0.

Therefore, for every P ∈ R,

(3.4) Q · P ∈ J =⇒ P ∈ J .

Lemma 3.1. J ∩ C[µ, x]{u} = {0}.
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Proof. Assume that there is nonzero P
(
µ, x, u, u′, . . . , u(h)

)
∈ J ∩C[µ, x]{u}.

Since P and Q are nonzero polynomials, there exist θ̂ := (µ̂, x̂∗) ∈ Cs and
û ∈ C[t] ⊂ C∞(0) such that

Q
(
µ̂, x̂∗, û(0)

)
, 0 and P

(
µ̂, x̂∗, û(0), û′(0), . . . , û(h)(0)

)
, 0,

which contradicts (3.3). �

Lemma 3.2. We have

(3.5) J =
( (

Qx ′i − Fi

) (j)
, (Qyk − Gk)

(j)
�� 1 6 i 6 n, 1 6 k 6 m, j > 0

)
: Q∞

and J is a prime ideal.

Proof. Consider any ordering > of the variables in R such that

(a) y
(k+1)
i > y

(k)
j for every 1 6 i, j 6 m and k > 0;

(b) y
(k)
i is larger that any variable in C[µ]{x, u} for every 1 6 i 6 m and k > 0;

(c) x(k+1)
i > x(k)j for every 1 6 i, j 6 n and k > 0;

(d) x(k)i is larger that any variable in C[µ]{u} for every 1 6 i 6 n and k > 0;

Then the set of polynomials

(3.6) S :=
{(

Qx ′i − Fi

) (j)
, (Qyk − Gk)

(j) | 1 6 i 6 n, 1 6 k 6 m, j > 0
}

is a triangular set (see [20, Definition 4.1 and page 10]).
In order to prove (3.5), we consider J̃ := (S) : Q∞. For all ((µ̂, x̂∗), û) ∈ Ω, it

follows from the definition of X((µ̂, x̂∗), û),Y ((µ̂, x̂∗), û) that

Q(µ̂, x̂∗, û) · X((µ̂, x̂∗), û)′ − F
(
µ̂, X((µ̂, x̂∗), û), û

)
= 0,

Q(µ̂, x̂∗, û) · Y ((µ̂, x̂∗), û) − G
(
µ̂, X((µ̂, x̂∗), û), û

)
= 0.

Since J is a differential ideal, we therefore have S ⊂ J . By (3.4), we moreover
obtain J̃ ⊂ J . For the reverse containment, consider P ∈ J . Since S is a
triangular set, let N be a positive integer and P0 ∈ C[µ, x]{u} (see [20, Section 4.2])
such that

QNP − P0 ∈ (S) ⊂ J .

Hence, P0 ∈ J , so P0 = 0 by Lemma 3.1. Then QNP ∈ J̃ , so P ∈ J̃ .
For the primality of J , consider P1 and P2 such that P1 ·P2 ∈ J . Let N be such

that QNP1 and QNP2 are equivalent to elements P̃1 and P̃2 of C[µ, x]{u} modulo
J . If P̃1P̃2 = 0, then P1 ∈ J or P2 ∈ J . If P̃1P̃2 , 0, then, by Lemma 3.1 and a
straightforward argument,

QNP1 · QNP2 < J,

so P1P2 < J , which is a contradiction. �
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3.3 Algebraic Criterion: Non-constructive Version
Notation 3.3. We will use the following notation.

(i) Let T := R/J and F := Quot(T ) (Recall (3.2) and (3.3)). The latter is
well-defined because J is prime, so T is a domain.

(ii) Note that F is generated by the images of µ, x, u, u′, . . ..
(iii) Let E denote the subfield of F generated by the image of C{y, u}.
(iv) We will denote elements of R and their images in T by the same symbols.
(v) θ will be understood as a tuple (µ, x∗) if it is considered as the tuple of

parameters of Σ and as a tuple of variables (µ, x1, . . . , xn) if it is considered
as a tuple of elements of R or its subalgebras.

(vi) For every θ̂ ∈ Cs, let Ωθ̂ := {û ∈ C∞(0) | Q(θ̂, û) , 0} ⊂ C∞(0).

Proposition 3.4. For every parameter θ of system Σ, the following statements are
equivalent

(a) θ is globally (resp., locally) identifiable according to Definition 2.5, that is,

∃Θ ∈ τ(Cs) ∃U ∈ τ(C∞(0)) ∀ (θ̂, û) ∈ Ω ∩ (Θ ×U)

the size of Sθ
(
θ̂, û

)
is one (resp., finite),

where

Sθ(θ̂, û) := projθ
{
θ̃

�� (θ̃, û) ∈ Ω and Y
(
θ̂, û

)
= Y

(
θ̃, û

)}
.

(b) θ is globally (resp., locally) identifiable according to much of the previous
literature [14, 53, 49, 50, 30, 7, 55], that is,

∃Θ ∈ τ(Cs) ∀ θ̂ ∈ Θ the size of S′θ
(
θ̂
)
is one (resp., finite),

where

S′θ(θ̂) := projθ
{
θ̃

��Ωθ̃ , � and ∀ û ∈ Ωθ̃ ∩Ωθ̂ Y (θ̃, û) = Y (θ̂, û)
}
.

Note that the main difference with Definition 2.5 is that “∀ û” has been put
inside of S.

(c) the fields E and E(θ) coincide (resp., the extension E ⊂ E(θ) is algebraic).

Proof. (c) =⇒ (a). Assume (c). Considering the preimage of a minimal polyno-
mial of θ over T in R, we obtain a nonzero polynomial (resp., nonzero polynomial
linear in θ) in C{y, u}[θ] ∩ J such that its leading coefficient ` does not lie in
J . From Lemma 3.2 and the triangular set constructed in its proof, we obtain
that there exists M such that QM` is equal to some `0 ∈ C[θ]{u} modulo J . We
apply Lemma 3.5 (see next) to the polynomial ` and obtain nonempty open Θ ⊂ Cs
and U ⊂ C∞(0). We claim that Definition 2.5 holds for this choice of open sets.
Consider any (θ̂, û) ∈ (Θ × U) ∩ Ω. The choice of Θ and U implies that `0 does
not vanish at (θ̂, û). Since Q does not vanish at (θ̂, û), then ` does not vanish at this
point, so there are only finitely many (resp., only one) possible values for every θ
provided that ŷ := Y (θ̂, û) and û are fixed. Thus, we have (a).



GLOBAL IDENTIFIABILITY OF DIFFERENTIAL MODELS 17

(a) =⇒ (b). Assume (a) and let Θ0 ⊂ C
s and U ⊂ C∞(0) be the open subsets

from the definition. We claim that (b) holds with

Θ1 := Θ0 ∩
{
θ̂

�� Q(θ̂, u) , 0
}
.

Assume the contrary. Then there exists θ̂ ∈ Θ1 such that |S′θ(θ̂)| > 1 (resp., S′θ(θ̂)
is infinite). The inequation Q(θ̂, u) , 0 implies Ωθ̂ , �. Now consider local and
global identifiability separately

(i) Global identifiability. Let θ̃ ∈ S′θ(θ̂) such that θ̃ , θ̂. Consider the cor-
responding θ̃ from the definition of S′θ . Since U,Ωθ̂,Ωθ̃ are nonempty
Zariski open sets, there exists û in their intersection by Lemma 3.10. Then
θ̂, θ̃ ∈ Sθ(θ̂, û), but this contradicts (a).

(ii) Local identifiability. Let θ̃1, θ̃2, . . . ∈ S′θ(θ̂) be distinct elements. Con-
sider the corresponding θ̃1, θ̃2, . . . from the definition of S′θ . Since
U,Ωθ̃1

,Ωθ̃2
, . . . are nonempty Zariski open sets, Lemma 3.10 implies that

there exists û in their intersection. Then θ̃1, θ̃2, . . . ∈ Sθ(θ̂, û), but this
contradicts (a).

(b) =⇒ (c) for global identifiability. Assume (b) but the containment E ⊂ E(θ)
is proper. Let Q1 ∈ C[θ] be a polynomial defining the complement to Θ from (b)
and Q2 ∈ C[θ] be any non-zero coefficient of Q viewed as a polynomial in u. Due
to [21, Theorem 2.6] applied with K being E, L being F , and s being θ, there is a
differential field F̂ ⊃ F and a differential automorphism α : F̂ → F̂ over E such
that α(θ) , θ. For a finitely generated subalgebra

A := C[1/Q1(θ), θ, α(θ), 1/(θ − α(θ)), 1/Q2(θ), 1/Q2(α(θ))]

of F̂ , there exists a C-algebra homomorphism ε : A → C. Let θ̂ := ε(θ) and
θ̃ := ε(α(θ)). Then θ̂ ∈ Θ, θ̂ , θ̃, and Ωθ̂ and Ωθ̃ are nonempty. Applying
Lemma 3.9 to the natural embedding T → F̂ and the restriction of α to T → F̂
as β2 and β1 and to the appropriate restriction of ε as γ, we show that θ̃ ∈ S′θ(θ̂).
Thus, |S′θ(θ̂)| > 2, and this contradicts (b).

(b) =⇒ (c) for local identifiability. Assume (b) but θ is transcendental over
E. Let Q1 ∈ C[θ] be a polynomial defining the complement to Θ from (b)
and Q2 ∈ C[θ] be any non-zero coefficient of Q viewed as a polynomial in u.
Lemma 3.11 implies that there exists a differential field F̃ ⊃ F and automorphisms
α1 = id, α2, α3, . . . of F̃ over its differential subfield E such that α1(θ), α2(θ), . . .
are all distinct. Since the subalgebra A := C[S1, S2], where

S1 := {1/Q1(θ), α1(θ), α2(θ), . . . , 1/Q2(α1(θ)), 1/Q2(α2(θ)), . . .} ,

S2 :=
{
1/(αi(θ) − αj(θ)) | 1 6 i < j

}
,

of F̃ is countably generated, there exists a C-algebra homomorphism ε : A →
C [48, Theorem 10.34.11]. Let θ̂ := ε(θ), then θ̂ ∈ Θ and all ε(αi(θ)) are distinct.
Moreover, for every i > 0, Ωε(αi (θ)) , �. Consider i > 1 and apply Lemma 3.9
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to the restrictions of α1 and αi to T → F̃ as β2 and β1 and to the appropriate
restriction of ε as γ. We obtain that, for every i > 1, ε(αi(θ)) ∈ S′θ(θ̂), which is a
contradiction. �

Lemma 3.5. Let P(θ, u, . . . , u(N )) ∈ C[θ]{u} be nonzero. Then there exist
nonempty Zariski open subsets Θ ∈ Cs and U ⊂ C∞(0) such that, for every
θ̂ ∈ Θ and û ∈ U, the function P(θ̂, û, . . . , (û)(N )) is a nonzero element of C∞(0).

Proof. We write P(θ, u, . . . , u(N )) =
∑̀
i=1

ci(θ)mi(u), where m1, . . . ,m` are distinct

monomials from C{u} and c1(θ), . . . , c`(θ) ∈ C[θ]. Let W(u) ∈ C{u} be the
determinant of the Wronskian matrix of m1, . . . ,m` . We set

Θ := {θ ∈ Cs | c1(θ) , 0} and U = {u ∈ C∞(0) |W(u)|t=0 , 0} .

Since c1(θ) is a nonzero polynomial, Θ , �. The differential polynomial W can
be considered as an algebraic polynomial W

(
u, u′, . . . , u(M)

)
∈ C

[
u, u′, . . . , u(M)

]
for some M . Let (a0, . . . , aM ) ∈ C

M+1 be such that W(a0, . . . , aM ) , 0. We set

û(t) :=
M∑
i=0

ai t
i

i! . A direct computation shows that

W
(
û, . . . , û(M)

)
|t=0 = W(a0, . . . , aM ) , 0.

Thus, û ∈ U, so U , �. Let θ̂ ∈ Θ and û ∈ U. If the function P
(
θ̂, û, . . . , û(N )

)
is zero, it provides a nontrivial (because of c1(θ̂) , 0) linear dependence of
m1(û), . . . ,m`(û). Since W(û) , 0, such a dependence does not exist due to
[29, Proposition 2.8]. �

Lemma 3.6. Let ϕ : R → C be a C-algebra homomorphism such that ϕ(Q) , 0
and J ⊂ Ker ϕ. We define power series

(3.7) uϕ(t) =
∞∑
i=0

ϕ
(
u(i)

)
i!

ti, yϕ =
∞∑
i=0

ϕ
(
y(i)

)
i!

ti .

If uϕ converges in some neighborhood of 0, then yϕ defines a function in C∞(0) and

yϕ = Y
(
ϕ(θ), uϕ

)
.

Proof. A direct computation shows that, for every k > 0, u(k)ϕ (0) = ϕ(u(k)). We
also define

xϕ :=
∞∑
i=0

ϕ
(
x(i)

)
i!

ti .

By the theorem of existence and uniqueness of solutions for differential equations
[18, Theorem 2.2.2], there exist unique

X
(
(ϕ(µ), ϕ(x)), uϕ

)
,Y

(
(ϕ(µ), ϕ(x)), uϕ

)
∈ C∞(0)
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satisfying the instance Σ((ϕ(µ, ϕ(x)), uϕ), as in Notation 2.4. We denote these
functions by x̂ and ŷ, respectively. We prove that

(x̂i)(j)(0) = ϕ
(
x(j)i

)
for every 1 6 i 6 n and j > 0 by induction on j. The base case is j = 0. Then
(x̂i)(0) = ϕ(xi), because ϕ(xi) is the initial condition. Assume that, for all i and k,
1 6 i 6 n and 0 6 k 6 j,

(x̂i)(k)(0) = ϕ
(
x(k)i

)
.

Wewrite the differential polynomial
(
Qx ′i − Fi

) (j) in the form Qx(j+1)
i +P, where P

only involves derivatives of x of order at most j. Since this differential polynomial
belongs to J ,

ϕ
(
x(j+1)
i

)
= −

ϕ(P)
ϕ(Q)

.

The inductive hypothesis implies that the right-hand side is equal to

−
P(x̂, µ, uϕ)
Q(x̂, µ, uϕ)

���
t=0
= (x̂i)(j+1)(0).

Hence, x̂ and xϕ have the same Taylor expansion, so coincide. Using this, one can
analogously prove that ŷ and yϕ coincide. �

Notation 3.7. We denote F θ := C(θ) and F u := C(u, u′, . . .), which are subfields
of F .

Lemma 3.8. For all
• differential fields K containing F u and
• ψi : F → K , i = 1, 2, homomorphisms of differential fields over F u,

u, u′, . . . are algebraically independent over K0, where

K0 := C(ψ1(F θ) ∪ ψ2(F θ)) ⊂ K .

Proof. Consider the following set of indices

H :=
{
h ∈ Z>0 | u(h) is algebraic over C

(
K0, u, . . . , u(h−1))} ⊂ Z>0.

Claim: The set H is finite. Assume the contrary and let H = {h1, h2, . . .}, where
h1 < h2 < . . .. Consider M := 2s + 1, where s = |θ |. Then the definition of H
implies that

trdegC C
(
K0, u, . . . , u(hM )

)
6 trdegC K0 + hM + 1 − M .

Since trdegC K0 6 2s, the latter expression does not exceed hM . On the other hand,
since C

(
K0, u, . . . , u(hM )

)
contains C

(
u, . . . , u(hM )

)
, its transcendence degree over

C is at least hM + 1. The obtained contradiction proves the claim.
Claim: The set H is empty. Assume the contrary. Since we already know that

H is finite, we can consider the maximal element in H, say h. Let P(z0, . . . , zh) ∈
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K0[z0, . . . , zh] be a polynomial of the smallest degree such that P
(
u, u′, . . . , u(h)

)
= 0

and P depends on zh. Then ∂P
∂zh

(
u, u′, . . . , u(h)

)
, 0. Using K ′0 ⊂ K0(u), we obtain

u(h+1) ·
∂P
∂zh

(
u, u′, . . . , u(h)

)
∈ K0

(
u, u′, . . . , u(h)

)
.

Hence, h + 1 ∈ H, so the contradiction with the maximality of h proves the claim.
The latter claim proves the lemma. �

Lemma 3.9. LetQ2 ∈ C[θ] be any non-zero coefficient ofQ viewed as a polynomial
in u. For every

• differential field K over F u,
• injective C{u}-algebra homomorphisms β1, β2 : T → K such that
β1 |C{y,u } = β2 |C{y,u },
• C-algebra homomorphism γ : B→ C, where

B := C[β1(θ), β2(θ), 1/Q2(β1(θ)), 1/Q2(β2(θ))] ⊂ K,

• parameter θ ∈ θ,

γ ◦ β1(θ) ∈ S′θ(γ ◦ β2(θ)).

Proof. We set
θ̃ := γ ◦ β1(θ) and θ̂ := γ ◦ β2(θ).

Since γ(Q2(β1(θ))) , 0 and γ(Q2(β2(θ))) , 0, the sets Ωθ̂ and Ωθ̃ are nonempty.
Consider û ∈ Ωθ̂ ∩ Ωθ̃ . Lemma 3.8 applied to the extensions of β1 and β2
to F , implies that u, u′, . . . are algebraically independent over B. Hence, the
homomorphism γ can be extended to γ : B{u} → C in such a way that γ

(
u(h)

)
=

û(h)(0) for every h > 0. Hence, since û ∈ Ωθ̂ ∩Ωθ̃ ,

γ(Q(β1(θ), u)) , 0 and γ(Q(β2(θ), u)) , 0.

So, γ can be extended to

γ : B{u} [1/β1(Q), 1/β2(Q)] → C,

where the domain contains both β1(T ) and β2(T ) because T ⊂ C{u}[θ, 1/Q]. Let
π : R → T be the natural surjection. We apply Lemma 3.6 to γ ◦ β1 ◦ π and
γ ◦ β2 ◦ π and obtain

Y (θ̃, û) =
∑
j=0

γ ◦ β1 ◦ π
(
y(j)

)
j!

t j and Y (θ̂, û) =
∑
j=0

γ ◦ β2 ◦ π
(
y(j)

)
j!

t j .

Since β1
(
π
(
y(j)

) )
= β2

(
π
(
y(j)

) )
, we have Y (θ̂, û) = Y (θ̃, û). Hence, θ̃ ∈ S′θ(θ̂). �

Lemma 3.10. Let A1, A2, . . . be nonempty Zariski open subsets of C∞(0). Then
∞⋂
i=1

Ai is nonempty.



GLOBAL IDENTIFIABILITY OF DIFFERENTIAL MODELS 21

Proof. For every i > 0, let Pi(u) ∈ C{u} denote a differential polynomial defining
the complement to Ai. Let hi := ordu Pi. We will inductively construct an infinite
sequence of complex numbers u0, u1, u2, . . . such that

• |ui | < 1 for every i > 0;
• for every i > 0 and j > 1, Pj does not vanish after substituting uk instead
of u(k) for every k 6 i.

Assume that we have already constructed first i > 0 elements u0, . . . , ui−1 of the
sequence. For every j > 1, there are only finitely many complex numbers z such
that Pj vanishes after substituting uk instead of u(k) for every k < i and z instead
of u(i). Thus, at most countably many values of u(i) will vanish at least one of
P1, P2, . . .. Since there are uncountably many complex numbers z with |z | < 1,
there exists ui satisfying both requirements.

We set û(t) :=
∞∑
i=0

ui t
i

i! . Since |ui | < 1 for every i > 0, û defines an element of

C∞(0). For every j > 1, we have

Pj(û)|t=0 = Pj(u0, u1, . . . , uh j ) , 0.

Hence, û ∈ Aj for every j > 1. �

Lemma 3.11. For every extension E ⊂ F of differential fields and a ∈ F transcen-
dental over E , there exists an extension of differential fields F ⊂ K and infinitely
many differential automorphisms α1, α2, . . . of K over E such that the elements
α1(a), α2(a), . . . are all distinct.

Proof. In this proof, we will use some methods and notions from model theory of
differential fields [31]. Let K be a differential closure of F [31, Definition, p. 49].
For every b ∈ K , we denote the differential subfield generated by b and E in K by
E 〈b〉. [31, Theorem 2.9(a)] implies that K is atomic over E , so there is a first-order
formula ϕ(x) in the language of differential fields with parameters from E such that,
for all b ∈ K , ϕ(b) is equivalent to

∃ differential field isomorphism f : E 〈a〉 → E 〈b〉 over E such that f (a) = b.

Since a is transcendental over E , [31, Lemma 5.1] implies that there are infinitely
many elements a1, a2, . . . ∈ K such that, for every i > 1, ϕ(ai) is true. For every
i > 1, we introduce an isomorphism αi : E 〈a〉 → E 〈ai〉 sending a to ai. Since K
is a differential closure of both E 〈a〉 and E 〈ai〉, [31, Corollary 2.10] implies that
αi can be extended to an isomorphism of differential fields K → K . �

3.4 Algebraic Criterion: Constructive Version
Although Proposition 3.4 provides us with an algebraic criterion, it involves the

quotient field of an infinitely generated algebra, so is not constructive enough. In
this section, we will show how to find the order h′ of derivatives that is sufficient
to consider to make conclusion about identifiability. This will reduce deciding
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identifiability to a question about the size of the generic fiber of a projection of
finite-dimensional algebraic varieties.

Notation 3.12. Let z be an `-tuple of differential indeterminates, and h ∈ Z`>0.
Then we define

zh := {z(j)i | 0 6 j < hi, 1 6 i 6 `}.

Notation 3.13. Let h = (h1, . . . , hm) ∈ Zm>0. We construct a set of differential
polynomials Sh by the following procedure.

(a) We put (Qyk − Gk)
(j) (see the beginning of Section 3.2 for notation) into

Sh for every 1 6 k 6 m and 0 6 j < hk ;
(b) While there exist 1 6 i 6 n and j > 1 such that x(j)i appears in some

element of Sh but
(
Qx ′i − Fi

) (j−1)
< Sh, we put

(
Qx ′i − Fi

) (j−1) into Sh.
Since the orders of all variables involved in the above procedure do not exceed
max{h1, . . . , hm}, the second step will terminate after a finite number of iterations.

We introduce tuples out(h) ∈ Zm>0, st(h) ∈ Z
n
>0, and in(h) ∈ Z1

>0 bounding the
orders of derivatives of outputs, states, and input appearing in Sh:

out(h)i := max{ordyi P | P ∈ Sh} + 1, for i = 1, . . . ,m,
st(h)i := max{ordxi P | P ∈ Sh} + 1, for i = 1, . . . , n,
in(h) := max{ordu P | P ∈ Sh} + 1.

Observe that, due to the construction of Sh, we will always have out(h) = h, so we
will use h instead of out(h) to keep the notation simple. Using Notation 3.12, we
can express all the derivatives appearing in Sh as yh, xst(h), and uin(h).

Finally, we introduce the smallest polynomial ring Rh containing Sh and the
corresponding ideal Jh as

Rh := C[µ, xst(h), yh, uin(h)] and Jh := (Sh) : Q∞ ⊂ Rh .

Remark 3.14. For every h ∈ Zm>0, Sh, being a subset of S, is a triangular set for
Jh with respect to every ordering described in the proof of Lemma 3.2 such that
the free variables are exactly x, µ, and uin(h).

Lemma 3.15. For every tuple h ∈ Zm>0, J ∩Rh = Jh. In particular, Jh is prime.

Proof. By Lemma 3.2, J is prime. The statement now follows from [20, Proposi-
tion 4.5]. �

We denote the i-th standard basis vector in Zm>0 by 1i and set
1 := 11 + . . . + 1m.

For all h ∈ Zm>0, we denote the zero set of Jh by Zh. We will denote the d-
dimensional affine C-space by Ad.

A morphism f : X → Y between two algebraic varieties is said to be dominant
(or dominating) if its image f (X) is dense in Y , i.e., Y = f (X) (see [35, Definition
1, p. 48]).



GLOBAL IDENTIFIABILITY OF DIFFERENTIAL MODELS 23

Theorem 3.16. For all h ∈ Zm>0 such that
(a) the projection of Zh to (yh, uin(h))-coordinates is dominant,
(b) the projection of Zh+1i to the (yh+1i, uin(h+1i ))-coordinates is not dominant

for every 1 6 i 6 m,
for every non-empty subset θ# ⊂ θ and every h′ ∈ Zm such that h′ − h ∈ Zm

>0, we
have(
every parameter in θ#

is globally identifiable

)
⇐⇒

(
the generic fiber of the projection of Z to the
(yh′, uin(h′))-coordinates is of cardinality one

)
,

where Z is the Zariski closure of the projection of Zh′ to the subspace with coordi-
nates (θ#, yh′, uin(h′)).

Remark 3.17. One can check efficiently whether h satisfies requirements (a) and (b)
from Theorem 3.16 using Proposition 3.20 (see next). Corollary 3.21 (see next)
implies that such an h always exists. The intuition behind such an h is that we are
looking for a prolongation that would determine all Taylor coefficients of y from
the first h + 1 and in(h + 1) Taylor coefficients of y and u, respectively.

Lemma 3.18. Let h be the tuple from the statement of Theorem 3.16. Then E is
generated in F (see Notation 3.3) by the image of C[yh+1]{u}.

Proof. Consider i, 1 6 i 6 m. Since the projection of Zh+1i to the (yh+1i, uin(h+1i ))-
coordinates is not dominant and the projection of Zh to the (yh, uin(h))-coordinates
is dominant,

Jh+1i ∩C[yh+1i, uin(h+1i )] , {0} and Jh ∩C[yh, uin(h)] = {0}.

Consider a nonzero P ∈ Jh+1i ∩C[yh+1i, uin(h+1i )]. Since Sh+1i is a triangular set,
Jh+1i = (Sh+1i ) : Q∞, and the ideal Jh+1i is prime,Sh+1i is a characteristic set of
Jh+1i (see [20, Definitions 5.5 and 5.10, Theorem 5.13]). Hence, P can be reduced
to zero with respect to Sh+1i . If P does not involve y(hi ) (which is an element of
yh+1i , see Notation 3.13), then the reduction uses only Sh, hence all coefficients
of P as a polynomial in uin(h+1i ) \ uin(h) are elements of Jh ∩C[yh, uin(h)]. Since
the latter is zero, every nonzero element in Jh+1i ∩C[yh+1i, uin(h+1i )] depends on
y
(hi )
i . Consider such an element Pi of minimal possible degree in y

(hi )
i .

We will prove by induction on k that the subfield of F generated by the image of
C[yh+k1]{u} coincides with the subfield of F generated by the image ofC[yh+1]{u}
for every k > 2. Let k = 2. Consider i, 1 6 i 6 m, and P′i = Siy

(hi+1)
i + Ti, where

Si,Ti ∈ C[yh+1]{u} and Si < Jh+1. Hence, the image of y(hi+1)
i in F belongs to the

subfield generated byC[yh+1]{u}, so the base case is proved. Let k > 2. Consider i,
1 6 i 6 m. The inductive hypothesis implies that there are A, B ∈ C[yh+(k−1)1]{u}
such that Ay(hi+k−1)

i + B ∈ J , but A < J . Taking the derivative of Ay(hi+k−1)
i + B,

we obtain
Ay(hi+k)i + A′y(hi+k−1)

i + B′ ∈ J .
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This implies that the image of y(hi+k)i in F belongs to the subfield generated by the
image of C[yh+k1]{u}. By the inductive hypothesis, the latter coincides with the
subfield generated by the image of C[yh+1]{u}. �

Proof of Theorem 3.16. If the generic fiber of the projection of Z to the (yh′, uin(h′))-
coordinates is of cardinality one, then every θ ∈ θ# is algebraic of degree one over
C[yh′, uin(h′)]modulo Jh′ (see [45, page 562]). Then the images of θ# in F belong
to the subfield generated by the image if C{u}[yh′] in F , so they belong to E.
Proposition 3.4 implies that θ# are globally identifiable.

Let θ# be globally identifiable. Proposition 3.4 implies that the image of every
θ ∈ θ# in F belongs to E. Consider θ ∈ θ#. Lemma 3.18 implies that E is generated
by the image of C{u}[yh+1]. Hence, θ is algebraic of degree one over C{u}[yh′]
modulo Jh′ ∩C{u}[yh′]. Let Pθ be such a relation. Since Sh′ is a triangular set,
Jh′ = (Sh′) : Q∞, and the ideal Jh′ is prime, Sh′ is a characteristic set of Jh′

(see [20, Definitions 5.5 and 5.10, Theorem 5.13]).
Therefore, Pθ can be reduced to zero with respect to Sh′. Consider Pθ as a

polynomial in all derivatives of u that do not belong to uin(h′), i.e., do not occur in
Sh′. Then each of these coefficients can also be reduced to zero with respect toSh′,
and so each of these coefficients belongs to Jh′, therefore, to Jh′ ∩C[yh′, uin(h′)].
Taking one of them involving θ, we obtain a polynomial equation of degree one
for θ over C[yh′, uin(h′)] modulo Jh′ ∩C[yh′, uin(h′)]. Since this holds for every
θ ∈ θ#, the cardinality of the generic fiber of the projection of Z onto (yh′, uin(h′))-
coordinates is one. �

The following statement can be proved in the same way as Theorem 3.16 using
the part of the statement of Proposition 3.4 about local identifiability.

Proposition 3.19. We will use the notation from Theorem 3.16. Parameters θ# ⊂ θ
are locally identifiable if and only if the generic fiber of the projection of Z to the(
yh′, uin(h′)

)
-coordinates is finite.

Proposition 3.20. For all h ∈ Zm>0, the projection of Zh to the (yh, uin(h))-
coordinates is dominant if and only if the rank of the Jacobian of Sh with respect
to (µ, xst(h)) is equal to | Sh | on a dense open subset of Zh.

Proof. We set
N := |yh | + |xst(h) | + |µ | + |uin(h) | and N0 := |yh | + |uin(h) |.

Then Zh ⊂ A
N , and we denote the projection to the (yh, uin(h))-coordinates by

π : AN → AN0 . Let M be the Jacobian matrix of Sh with respect to (xst(h), µ).
Since Sh is a triangular set and Jh = (Sh) : Q∞, codim Zh = | Sh | by [20,
Theorem 4.4].

Assume that π(Zh) is not dense in AN0 . Then, by [47, Theorem 1.25], for every
x ∈ Zh,
(3.8) dim π−1(π(x)) ∩ Zh > dim Zh − N0.
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Let p :=
(
ŷh, ûin(h)

)
∈ π(Zh). Then

M̂ := M
[
yh ← ŷh, uin(h) ← ûin(h)

]
can be viewed as the Jacobian of the polynomials Sh

[
yh ← ŷh, uin(h) ← ûin(h)

]
in (xst(h), µ), which all vanish on π−1(p) ∩ Zh. Then the rank of M̂ at every point
of π−1(p) ∩ Zh does not exceed the codimension of π−1(p) ∩ Zh in π−1(p) [15,
Theorem 16.19], which, by (3.8), is less than

(N − N0) − (dim Zh − N0) = codim Zh .

Assume that π(Zh) is dense in AN0 . Let A := C[yh, uin(u)] and B := Quot(A).
Hence, Jh ∩A = 0. We introduce a new variable z and set R̃ := Rh[z] and
J̃ := (Sh,Qz − 1). Then J̃ ∩Rh = Jh by [11, Theorem 14, page 205]. The ideal
J̃ is prime because R̃/J̃ can be obtained from the domain Rh/Jh by inverting
the image of Q. Since J̃ ∩ A = {0}, B · J̃ is a prime ideal in the B-algebra B⊗A R̃.
Note that (

B ⊗A R̃
/

B · J̃
)
(0)

is a regular local ring. Let c denote the codimension of B · J̃ in B ⊗A R̃. [15,
Corollary 16.20] implies the ideal of B ⊗A R̃

/
B · J̃ generated by the c × c minors

of M̃ , the Jacobian of {Sh,Qz − 1} with respect to (z, µ, xst(h)), strictly contains
(0). Therefore, rank M̃ > c. By [15, Theorem 16.19], rank M̃ 6 c. Since M̃ is of
the form (

Q ∗

0 M

)
,

its rank is equal to the rank of M modulo Jh plus one. Since J̃ ∩ A = {0}, the
codimension of BJ̃ in B⊗A R̃ is equal to the codimension of J̃ in R̃, and the latter
is equal to one plus the codimension of Jh in Rh. Thus, the rank of M modulo
Jh is equal to | Sh |. �

Corollary 3.21. There exists h ∈ Zm>0 satisfying requirements (a) and (b) from
Theorem 3.16. Moreover, for every h = (h1, . . . , hm) satisfying requirement (a),
h1 + . . . + hm 6 s = |θ |.

Proof. Let h = (h1, . . . , hm) satisfy requirement (a) from Theorem 3.16. By
Proposition 3.20, | Sh | 6 |xst(h) | + |µ |. Since also | Sh | is equal to the sum of |yh |
and the number of the elements of xst(h) of nonzero order,

| Sh | > |yh | + |xst(h) | − n = h1 + . . . + hm + |xst(h) | − n.

Therefore, h1 + . . . + hm 6 n + |µ | = s. Thus, h1 + . . . + hm 6 s.
Let H be the set of all h ∈ Zm>0 that satisfy requirement (a) from Theorem 3.16.

Since h1 + . . . + hm 6 s for every h = (h1, . . . , hm) ∈ H , H is finite. Then it
contains a maximal element with respect to the coordinate-wise partial ordering.
Such an element also satisfies requirement (b) from Theorem 3.16. �
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4 Probabilistic Criterion

The goal of the present section is to provide theoretical grounds for our proba-
bilistic algorithm for checking the fiber condition in the statement of Theorem 3.16
efficiently. For an example of using these results in Algorithm 1, we refer to
Example 5.4.

Notation 4.1. Let h ∈ Zm>0 be a tuple from the statement of Theorem 3.16, θ# be
any non-empty subset of θ, and h′ ∈ Zm be a tuple such that h′ − h ∈ Zm

>0. We
introduce the following affine spaces:

(i) the ambient space V with coordinates (µ, xst(h′), yh′, uin(h′));
(ii) the input-output space Vio ⊂ V with coordinates (yh′, uin(h′));
(iii) the identification space V# ⊂ V with coordinates

(
θ#, yh′, uin(h′)

)
, where

θ# ⊂ θ is the set of parameters whose global identifiability we would like
to check.

Below are several natural projections between them:
• πio : V → Vio is the projection of what we consider to what we observe;
• π# : V → V# is the projection of what we consider to what we care about;
• π : V# → Vio is the projection of what care about to what we observe.

Using this notation, we can define Z from the statement of Theorem 3.16 as

Z = π#(Zh′).

Theorem 4.2. If parameters θ# are locally identifiable, then there exists a polyno-
mial P ∈ C[V#] such that

(i) P does not vanish everywhere on Z;
(ii) deg P 6 (2 + |θ# |) deg Zh′;
(iii) For all a ∈ Z such that P(a) , 0, the following statements are equivalent:

(a) every θ ∈ θ# is globally identifiable,
(b)

(
Jh′ +I(π(a)) · C[V]

)
∩ C[V#] = I(a),

(c) the zero set of
(
Jh′ +I(π(a)) · C[V]

)
∩ C[V#] is {a}.

Before proving Theorem 4.2, we formulate and prove two technical lemmas, in
which we do not use any notation introduced beyond Section 3.1. We will denote
the d-dimensional affine and projective C-spaces by Ad and Pd, respectively.

Lemma 4.3. Let n, m, and r be non-negative integers such that n = m + r ,
X ⊂ An = Ar × Am an irreducible variety, and π : An → Am the projection onto
the second component. Assume that the generic fiber of π |X is finite.

(i) Then there exists a proper subvariety Y ⊂ π(X) such that
(a) degY 6 deg X and
(b) for every point p ∈ π(X) \ Y , there exists a closed (in the standard

topology) ball B ⊂ Am centered at p such that π−1(B) ∩ X is compact
(in the standard topology) and π−1(p) ∩ X , �.
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(ii) Then there exists a hypersurface H ⊂ An (possibly, empty) not containing
X such that
(a) deg H 6 r · (deg X − 1) and
(b) for every p ∈ X\H, there exists a closed ball (in the standard topology)

B ⊂ Am centered at π(p) such that π defines a bijection between
the connected component (in the standard topology) of π−1(B) ∩ X
containing p and its image.

(iii) If the generic fiber of π |X is of cardinality one, then there exists a hyper-
surface H ⊂ An (possibly empty) not containing X such that
(a) deg H 6 r · deg X and
(b) for every p ∈ X \ H,

I(X) + I(π(p)) · C[An] = I(p).

Proof. We introduce coordinates x := (x1, . . . , xr ) in Ar and y := (y1, . . . , ym)
in Am. The condition that the generic fiber of π |X is finite implies that dim X =
dim π(X) [47, Theorem 1.25(ii)], so each element of x is algebraic over C[y]
modulo I(X). We prove each claim.

(i) Embed Ar into Pr , then π can be extended to πP : Pr × Am → Am. Let

H∞ := Pr × Am \ Ar × Am

and X
P
be the closure of X in Pr × Am. We set

Y := πP
(
X
P
∩ H∞

)
.

By [11, Corollary 9, page 431], Y ⊂ π(X). Since π |X has finite generic
fiber, dim X = dim π(X) by [47, Theorem 1.25(ii)]. On the other hand,

dimY 6 dim X
P
∩ H∞ 6 dim X − 1,

hence Y is a proper subvariety in π(X). Also,

degY 6 deg X
P
∩ H∞ 6 deg X .

Let p ∈ π(X)\Y and B ⊂ Am a closed ball (of a positive radius) centered
at p such that π−1(B) ∩ X is compact. Such a B exists by [23, Lemma 2].
Moreover, π−1(B) ∩ X , �. Indeed, [35, Theorem 1, page 58] implies that
π(X) is dense in π(X) with respect to the standard topology, so B contains
at least one point of π(X). Let us show that π−1(p) ∩ X , �. For this, let
p1, p2, . . . ∈ π(X)∩B be a sequence of points converging to p, which exists
because p ∈ π(X). Let q1, q2, . . . ∈ π

−1(B) ∩ X be such that π(qi) = pi,
i > 1. Since π−1(B) ∩ X is compact, there exists a converging subsequence
of the sequence q1, q2, . . . with a limit q ∈ X . Since p1, p2, . . . converge to
p and π is continuous, π(q) = p.
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(ii) We choose a subset S ⊂ {y} that is a transcendence basis of C[y] modulo
I(X) over C. For every i, 1 6 i 6 r , the projection of X to the (xi, S)-
coordinates is an irreducible hypersurface of degree at most deg X . We
denote its defining irreducible polynomial by Pi(xi, y). For every i, 1 6
i 6 r , ∂

∂xi
Pi does not vanish everywhere on X . Hence,

P :=
r∏
i=1

∂

∂xi
Pi

does not vanish everywhere on X . Let H := Z(P). We prove that H satisfies
the requirements.

Consider p ∈ X \H, and let p = (x̂, ŷ). Let X̃ := Z(P1, . . . , Pr ), a subva-
riety in Ar ×Am. Then X ⊂ X̃ . Since P(p) , 0, the Jacobian of P1, . . . , Pr

with respect to x is invertible at p. The implicit function theorem [44, The-
orem 3.1.4] (applied to X = Am, Y = Ar , f = (P1, . . . , Pr )) implies that
there exist neighborhoods U1 ⊂ A

m and U2 ⊂ A
r of ŷ and x̂, respectively,

such that S(X̃ ∩U2 ×U1) is a graph of some function ϕ : U1 → U2, where
S(a, b) := (b, a), a ∈ Ar , b ∈ Am. Hence, π defines a bijection between
X̃ ∩U2 ×U1 and its image under π.

Let B ⊂ U1 be a closed ball centered at π(p) and C the connected
component of X̃ ∩ π−1(B) containing p. Let GB denote the graph of ϕ|B.
We claim that C ⊂ S(GB). Consider the intersection

C ∩ S(GB) = C ∩
(
X̃ ∩ (U2 × B)

)
.

Since C ⊂ X̃ , the latter intersection is equal to C ∩ (U2 × B). Since
π(C) ⊂ B, the latter intersection is the same as C ∩ (U2 ×U1). Hence,

(4.1) C ∩ S(GB) = C ∩ (U2 ×U1).

Since S(GB) is closed, U2 ×U1 is open, and C is connected,

C ∩ (U2 ×U1) = � or C ∩ (U2 ×U1) = C.

Since p ∈ C ∩ (U2 × U1), by (4.1), we have C ∩ S(GB) = C, and so
C ⊂ S(GB). Since S(GB) maps bijectively onto π(S(GB)), C also maps
bijectively onto π(C). Since X ⊂ X̃ , the connected component C0 of
π−1(B) ∩ X containing p is a subset of C, so π defines a bijection from C0
to π(C0).

(iii) Since each element of x is algebraic over C[y] modulo I(X), there exists a
representation of I(X) as a triangular set P1, . . . , Pr, . . . with respect to an
ordering of the form

x1 > x2 > . . . > xr > y in some order

so that xi is the leading variable of Pi, 1 6 i 6 r . Since the cardinality
of the generic fiber is one, degxi

Pi = 1 for every i, 1 6 i 6 r (see [45,
page 562]). Since Pi is reduced with respect to Pi+1, . . . , Pr , Pi does not
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depend on any variable in x except for xi. [12, Theorem 2] implies that the
triangular set can be chosen in such a way that the degrees of the coefficients
of Pi as a polynomial with respect to xi do not exceed deg X . We set P to
be the product of the leading coefficients of P1, . . . , Pr and H := Z(P) in
An. Then

deg P 6 r · deg X .

Let p ∈ X\H. Then π(p) is not a zero of P. We observe that P1, . . . , Pr ∈

I(X) since I(X) is a prime ideal. Then the ideal

J := I(X) + I(π(p)) · C[An]

contains a polynomial Pi(x, π(p)) = aixi + bi, where ai ∈ C∗, bi ∈ C,
for every 1 6 i 6 r . Since p is a common zero of all polynomials in J,
−bi
ai

is the value of the xi-th coordinate of p. Since I(π(p)) also contains
a polynomial of the form yj − cj , where cj ∈ C is the value of the yj-th
coordinate of p, for every j, 1 6 j 6 m, the ideal J is simply I(p). �

Lemma 4.4. Let n, m, and r be non-negative integers such that n = m + r ,
X ⊂ An = Ar × Am an irreducible variety, and π : An → Am the projection onto
the second component. Then there exists a proper subvariety Y ⊂ π(X) such that

(i) degY 6 deg X and
(ii) for every p ∈ π(X) \ Y , π−1(p) ∩ X , �.

Proof. If dim π(X) = 0, then the irreducibility of X implies that π(X) is a single
point. Hence, we can choose Y = �. Before finishing the proof, we will first prove
the following.

Claim. Assume that both the generic fiber of π |X and π(X) are not zero-dimensional.
Then there exists a non-empty open subsetU in the space of all hyperplanes in An

such that, for all H ∈ U,
• X 1 H,
• H ∩ X is irreducible, and
• H ∩ X projects dominantly onto π(X).

Proof. In this case, dim X > 2 by [47, Theorem 1.25(ii)], so Bertini’s theorem [3,
III.7.(i)] implies that H ∩ X is irreducible for a generic H. Let U be a non-empty
open subset of π(X) such that, for every p ∈ U,

dim π−1(p) ∩ X > 0.

Such a U exists by [47, Theorem 1.25(ii)]. Since U is dense in π(X), there exists a
set of points p1, . . . , pN ∈ U for some N such that, if a polynomial of degree at most
deg X vanishes at p1, . . . , pN , then it vanishes on π(X). Consider a hyperplane H
such that

(a) H ∩ X is irreducible and
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(b) for every i, 1 6 i 6 N ,

H ∩ π−1(pi) ∩ X , �.

Since conditions (a) and (b) are generic, the conjunction is also generic. Let
Y := π(H ∩ X), then p1, . . . , pN ∈ Y . Since degY 6 deg X , [16, Proposition 3]
implies thatY can be defined by polynomials of degree at most deg X . IfY ( π(X),
then there exists a polynomial of degree at most deg X that vanishes on Y (and, in
particular, at p1, . . . , pN ), but does not vanish on π(X). This is impossible. . �

We now return to the proof of Lemma 4.4. Assume that the generic fiber of π |X
has dimension d. Applying the claim d times, we obtain an affine subspace L such
that X∩L is irreducible, X∩L projects dominantly onto π(X), and the generic fiber
of π |X∩L is finite by [47, Theorem 1.25(ii)]. Applying statement (i) of Lemma 4.3
to X ∩ L, we obtain a subvariety Y ⊂ π(X) of degree at most deg X such that every
point in π(X) \ Y has a preimage in X ∩ L. Then it has a preimage in X . �

Proof of Theorem 4.2. Since θ# are locally identifiable π |Z has finite generic fiber
due to Proposition 3.19. We will construct a polynomial P ∈ C[V#] as follows

• If θ# is globally identifiable, then we set P to be the product of the polyno-
mials P1 and Plift defined below.
(a) Applying statement (iii) of Lemma 4.3 with X = Z and π = π, we

obtain a hypersurface H ⊂ Vio of degree at most |θ# | deg Z . We set P1
to be the defining polynomial of H.

(b) Applying Lemma 4.4 to X = Zh′ and π = π#, we obtain a proper
subvarietyY2 ⊂ Z of degree at most deg Zh′. Since the generic fiber of
π |Z is finite, [47, Theorem 1.25(ii)] implies that dim Z = dim π(Z), so
π(Y2) is a proper subvariety of π(Z). [16, Proposition 3] implies that
π(Y2) can be defined by polynomials of degree at most deg Zh′. We set
Plift to be one of these polynomials that does not vanish everywhere
on Z .

• If θ# is not globally identifiable, then we set P to be the product of the
polynomial Plift defined above and the polynomials P∞ and Pmult defined
below.
(a) Applying statement (i) of Lemma 4.3 with X = Z and π = π, we

obtain a proper subvariety Y1 ⊂ π(Z) of degree at most deg Z . [16,
Proposition 3] implies thatY1 can be defined by polynomials of degree
at most deg Z . We set P∞ to be one of these polynomials that does not
vanish everywhere on π(Z).

(b) Applying statement (ii) of Lemma 4.3 with X = Z and π = π, we
obtain a hypersurface H ⊂ V# of degree at most |θ# |(deg Z − 1). We
set Pmult to be the irreducible defining polynomial of H.
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Summing up the degree bounds, we obtain

deg P 6 max(deg(P1 · Plift), deg(P∞ · Pmult · Plift)) 6
(
2 + |θ# |

)
· deg Zh′ .

In order to prove that P satisfies requirement (iii), we consider a ∈ Z such that
P(a) , 0.

To prove (a) =⇒ (b), assume that the parameters θ# are globally identifiable.
Since P1(a) , 0, the choice of P1 (see statement (iii) of Lemma 4.3) implies that
(4.2) I(Z) + I(π(a)) · C[V#] = I(a).

Since I(Z) = I(Jh′) ∩ C[V#],
(4.3) I(Z) + I(π(a)) · C[V#] ⊂ (Jh′ +I(π(a)) · C[V]) ∩ C[V#].

Since Plift(a) , 0,
π−1

# (a) ∩ Zh′ , �.

Hence, the ideal Jh′ +I(π(a)) · C[V] is proper, and so the right-hand side of (4.3)
is a proper ideal of C[V#]. Since, by (4.2), it contains the maximal ideal I(a), it
coincides with I(a).

The implication (b) =⇒ (c) follows from Z(I(a)) = {a}.
To prove (c) =⇒ (a), we assume that the parameters θ# are not globally identi-

fiable. Denote the cardinality of the generic fiber of π |Z by d > 1. We define

C(a) := π#

(
π−1
io (π(a)) ∩ Zh′

)
.

A direct computation shows that
J := (Jh′ +I(π(a)) · C[V]) ∩ C[V#]

vanishes at all the points of C(a). Thus, if we prove that |C(a)| > 1, this would
imply that the zero set of J in not {a}.

Since Plift(a) , 0 and P ∈ C[Vio], for all b ∈ π−1(π(a)), Plift(b) , 0. Hence, the
choice of Plift implies (see Lemma 4.4) that, for all p ∈ π−1(π(a)) ∩ Z ,

(4.4) π−1
# (p) ∩ Zh′ , �.

Since π−1
# (p) ⊂ π

−1
io (π(p)) and π(a) = π(p), we have π

−1
# (p) ⊂ π

−1
io (π(a)). Hence,

π−1
# (p) ∩ Zh′ ⊂ π

−1
io (π(a)) ∩ Zh′ .

Therefore, using (4.4),

π−1(π(a)) ∩ Z ⊂ π#

(
π−1
io (π(a)) ∩ Zh′

)
.

Thus,
|C(a)| > |π−1(π(a)) ∩ Z |.

Let B1 and B2 be closed balls in Vio centered at π(a) such that
• π−1(B1) ∩ Z is compact and
• π defines a bijection between the connected component of π−1(B2) ∩ Z
containing a and its image.



32 H. HONG, A. OVCHINNIKOV, G. POGUDIN, AND C. YAP

The existence of such B1 and B2 is implied by statements (i) and (ii) of Lemma 4.3
because Pmult(a) , 0 and P∞(a) , 0 . We set B = B1 ∩ B2. Let C(B) be the set of
connected components of π−1(B) ∩ Z . Since π−1(B) ∩ Z is compact, the set C(B)
is finite. Let D be the union of all C ∈ C(B) such that

C ∩ π−1(π(a)) ∩ Z = �.

Suppose that D , �. Since D is compact, π(D) is compact, therefore, closed.
Moreover, π(a) < π(D). Let B′ be a closed ball centered at π(a) such that π(D) ∩
B′ = �. We have B′ ⊂ B and, for every C ∈ C(B′),

C ∩ π−1(π(a)) ∩ Z , �.

If D = �, we set B′ = B. Assume that

|π−1(π(a)) ∩ Z | = 1.

Hence, π−1(B′) ∩ Z has exactly one connected component. Therefore, for every
p′ ∈ π(Z) ∩ B′, we have

|π−1(p′) ∩ Z | = 1.
Since π(Z) ∩ B′ is Zariski dense in π(Z), we arrive at a contradiction with the
assumption that the generic fiber is of cardinality d > 1. Hence, |C(a)| > 1. �

Notation 4.5. Recall that Q is the common denominator of f and g. Let d0 =

max(deg Qg, deg Q f ).

The following statement (with Theorem 4.2 and Proposition 3.20) is used in our
design of Algorithm 1.

Proposition 4.6. For all h′ ∈ Zm>0 and P ∈ Rh′ such that P does not vanish
everywhere on Zh′, there exists a polynomial P̃ ∈ C[θ, uin(h′)] such that

• deg P̃ 6 (1 + d0 · (2 max h′ − 1)) · deg P and
• for all θ̃ and ũin(h′),

P̃(θ̃, ũin(h′)) , 0 =⇒ P does not vanish at π−1
ip (θ̃, ũin(h′)) ∩ Zh′,

where πip is the projection from the space with coordinates
(µ, xst(h′), yh′, uin(h′)) to the space with coordinates (θ, uin(h′)) =
(µ, x1, . . . , xn, uin(h′)).

Proof. Consider the ranking on Rh′ defined in the proof of Lemma 3.2. We will
define a linear operator r : Rh′ → Rh′. Consider a monomial m ∈ Rh′. Let v be
the leading variable of m, so m = v · m̃. Then

r(m) :=


(
Qx(j+1)

i − (Qx ′i − Fi)
(j)

)
m̃, v = x(j+1)

i ,(
Qy
(j)
i − (Qyi − Gi)

(j)
)

m̃, v = y
(j)
i ,

Q · m, otherwise.
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By the definition of r(P) and Jh′,

(4.5) QP − r(P) ∈ Jh′ for every P ∈ Rh′ .

We introduce the following weight function w by
w

(
u(i)

)
= 0, i > 0,

w
(
x(i)j

)
= max(0, 2i − 1), 1 6 j 6 n, i > 0,

w
(
y
(i)
j

)
= 2i + 1, 1 6 j 6 m, i > 0,

w(µi) = 0, µi in µ,

(extending w multiplicatively to monomials and as the max to sums of monomials).
A direct computation shows that

r(P) , QP =⇒ w(P) > w(r(P)).

Thus, there exists a finite sequence P0, . . . , Pq such that

P0 = P, Pi+1 = r(Pi) , QPi for all 0 6 i < q, and r(Pq) = QPq .

We set P̃ := Pq. Since w(P) 6 deg P · (2 ·max h′ − 1), we have

q 6 deg P · (2 ·max h′ − 1).

Therefore,

deg P̃ 6 deg P + deg P · d0 · (2 ·max h′ − 1) = (1 + d0 · (2 ·max h′ − 1)) · deg P.

Since r(P̃) = QP̃, we have P̃ ∈ C[θ, uin(h′)]. Due to (4.5), we have

Qq · P − P̃ ∈ Jh′ .

Therefore, for all θ̃, ũin(h′), and p ∈ π−1
ip

(
θ̃, ũin(h′)

)
∩ Zh′, we have

P̃
(
θ̃, ũin(h′)

)
= Qq (

θ̃, ũin(h′)
)
· P(p).

Hence, if P̃
(
θ̃, ũin(h′)

)
, 0, then P(p) , 0. �

5 Algorithm

In this section, by integrating Theorems 3.16 and 4.2 and Propositions 3.20
and 4.6, we provide a probabilistic algorithm for checking global identifiability (Al-
gorithm 1) and prove its correctness (Theorem 5.5).

Remark 5.1. Note that the input-output specification of Algorithm 1 states that θg is
equal, with probability at least p, to the set of all globally identifiable parameters in
θ` . Let us state it more formally. Let θga stand for the set of all globally identifiable
parameters in θ` . Imagine running the algorithm n times with the same input. Let
cn stand for the number of runs with the correct output, that is, θg = θga. Then the
following is guaranteed

lim
n→∞

cn
n
> p.
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Notation 5.2. In the steps of Algorithm 1, we use Notation 3.12 and

u =
(
u, u(1), . . . , u(s)

)
, where s = |θ |.

Remark 5.3. In Step 4 of Algorithm 1, we check the consistency of a system of
equations and inequations. This can be done in many different ways. We list a few.
Method (i) For each θ ∈ θ` , check the inconsistency of the following system of

equations

Ê t ∪
{
z · Q̂ − 1,w(θ − θ̂) − 1

}
,

where z and w are new variables introduced for the Rabinowitsch
trick. This can be done by using, for instance, Gröbner bases.

Method (ii) For each θ ∈ θ` , check

(5.1) θ − θ̂ ∈ Ideal
(
Ê t ∪ {z · Q̂ − 1}

)
.

This can be done by using, for instance, Gröbner bases. Due to
Theorem 4.2, condition (5.1) is equivalent to the consistency con-
dition from Step 4 of Algorithm 1 under assumption (5.7) on the
sampled point made in the proof of Theorem 5.5 for the index i of
this particular θ.

Method (iii) Check it directly using regular chains, which also allows inequations
(see, e.g., [56, Section 2.2]). In practice, we observed that this
method is generally slower than Method (i) and Method (ii) for the
problems that we considered.

Method (iv) Use homotopy continuation methods (for example, in Bertini [6]) as
follows
(a) Take a square subsystem Ê ts = 0 from the over-determined sys-

tem Ê t = 0 and find all of its roots using homotopy continuation;
(b) Let S be the set of all the roots of Ê ts = 0 that are also roots of

Ê t = 0 and are not roots of Q̂ = 0;
(c) For each parameter θ ∈ θ` , we put θ into θg if and only if the

θ-coordinate of every point in S is equal to θ̂.
However the number of paths in problems of moderate size (like

Examples 6.1 and 6.2) is too large for practical computation.

Example 5.4. We will illustrate the steps of the algorithm on a system of small
size.

In: Σ :=


x ′ = µ2x + µ1,

y = x2,

x(0) = x∗.
θ` := {µ1, µ2, x∗} (one can show that these parameters are locally iden-

tifiable)
p := 0.8
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Algorithm 1: Global_Identifiability

In: Σ: an algebraic differential model
given by rational functions f (x, µ, u) and g(x, µ, u)

θ`: a subset of θ = µ ∪ x∗ with every parameter in θ` locally identifiable
p: an element of (0, 1)

Out: θg: a subset of θ` that is equal, with probability at least p, to the set of
all globally identifiable parameters in θ` (see Remark 5.1)

1 [Construct the maximal system E of algebraic equations]
(a) s← |θ |, Q← the common denominator of f and g

(b) Xi0 ← x(0)i − x∗i for 1 6 i 6 n

(c) Xi j ←
(
Qx ′i −Q fi

) (j−1) for 1 6 i 6 n and 1 6 j 6 s
(d) Yi j ← (Qyi −Qgi)

(j) for 1 6 i 6 m and 0 6 j 6 s
(e) E ← the set of all Xi j and Yi j computed in Steps 1b, 1c, and 1d.

2 [Truncate the system E , obtaining E t ]
(a) d0 ← max(deg Q f , deg Qg, deg Q)
(b) D1 ← 2d0s(n + 1)(1 + 2d0s)/(1 − p)
(c) θ̂, û ← random vectors of integers from [1,D1] and Q(θ̂, û0) , 0
(d) Find the unique solution of the triangular system E

[
θ ← θ̂, u ← û

]
(in which each equation is linear in its leader) for all the variables.
Denote the x(j)i - and y

(j)
i -components of the solutions by x̂i j and ŷi j .

(e) Let α ← (1, . . . , 1) ∈ Zn>0, β ← (0, . . . , 0) ∈ Z
m
>0, E t ← {X10, . . . , Xn0}

(f) While there exists k such that
the rank of Jacθ,xα

(
E t ∪ {Ykβk }

)
at

(
θ̂, x̂α, ŷβ, û

)
is equal to |E t | + 1

(i) Add Yk,βk to E t and then increment βk
(ii) While x(j)i appears in E t ∪

{
Y1β1, . . . ,Ymβm

}
but Xi j < E t ,

add Xi j to E t

(iii) Set αi ← max
P∈E t

ordxi P + 1 for every 1 6 i 6 n

(g) While for some 1 6 i 6 m all x-variables in Yi(βi+1) belong to xα,
add Yi(βi+1) to E t and increment βi

3 [Randomize some variables in E t , obtaining Ê t ]

(a) D2 ← 6|θ` |
( ∏
P∈E t

deg P
)
(1 + 2d0 max β)/(1 − p)

(b) θ̂, û ← random vectors of integers from [1,D2] and Q(θ̂, û0) , 0
(c) Find the unique solution of the triangular system E t

[
θ ← θ̂, u ← û

]
(in which each equation is linear in its leader) for all the variables.
Denote the x(j)i - and y

(j)
i -components of the solutions by x̂i j and ŷi j .

(d) Ê t ← E t
[
yβ ← ŷβ, u ← û

]
, Q̂← Q[u ← û]

4 [Determine θg from Ê t ]
(a) θg ←

{
θ ∈ θ`

�� the system Ê t = 0 & Q̂ , 0 & θ , θ̂ is inconsistent
}
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1. [Construct the maximal system E of algebraic equations]
(a) s← 3, Q← 1

Since there is only one state variable and only one output variable, from
now on, we will drop the first index from X and Y for brevity, for instance
X0 and Y0 instead X1,0 and Y1,0, etc.

(b) X0 ← x − x∗

(c) X1 ← x(1) − µ2x − µ1, X2 ← x(2) − µ2x(1), X3 ← x(3) − µ2x(2)

(d) Y0 ← y − x2, . . . ,Y3 ← y(3) − 2xx(3) − 6x(1)x(2)

(e) E ← {X0, . . . , X3,Y0, . . . ,Y3}.
2. [Truncate the system E , obtaining E t ]

(a) d0 ← deg(µ2x + µ1) = 2.
(b) D1 ← 1560
(c) (µ̂1, µ̂2, x̂∗) ← (1210, 896, 453)
(d) Solve the triangular system

E
[
θ ← θ̂, u ← û

]
= E

[
µ1 ← µ̂1, µ2 ← µ̂2, x∗ ← x̂∗

]
y(3) − 2xx(3) − 6x(1)x(2) = 0, x(3) − 896x(2) = 0,

y(2) − 2xx(2) − 2(x(1))2 = 0, x(2) − 896x(1) = 0,

y(1) − 2xx(1) = 0, x(1) − 896x − 1210 = 0,

y − x2 = 0, x − 453 = 0.

iteratively: first the right column from the bottom to the top, then the left
column. We obtain

x̂0 ← 453 ŷ0 ← 205209
x̂1 ← 407098 ŷ1 ← 368830788
x̂2 ← 364759808 ŷ2 ← 661929949256
x̂3 ← 326824787968 ŷ3 ← 1187061187802112

(e) α ← (1), β ← (0), E t ← {X0}.
(f) Iteration 1: Since α = (0) and

Jac(µ1,µ2,x∗,x)(X0,Y0) =

(
0 0 −1 1
0 0 0 −2x

)
at (µ̂1, µ̂2, x̂∗, x̂0) has rank equal to the number or rows, we add Y0 to E t and
set β ← (1). Since Y1 involves x(1), we add X1 to E t and set α ← (2).
Iteration 2: Since

Jac(µ1,µ2,x∗,x,x(1))
(X0, X1,Y0,Y1) =

©­­­«
0 0 −1 1 0
−1 −x 0 −µ2 1
0 0 0 −2x 0
0 0 0 −2x(1) −2x

ª®®®¬
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at (µ̂1, µ̂2, x̂∗, x̂0, x̂1) has rank equal to the number of rows, we add Y1 to E t

and set β ← (2). Since Y2 involves x(2), we add X2 to E t and set α ← (3).
Carrying out similar computations, we obtain a Jacobian with rank equal
to the number of rows in the next iteration, but obtain a Jacobian with rank
less than the number or rows in the following iteration, so we stop the while
loop. We obtain α = (4), β = (3), and E t = {X0, X1, X2, X3,Y0,Y1,Y2}.

(g) We add Y3 to E t , set β ← (4).
3. [Randomize some variables in E t , obtaining Ê t ]

(a) D2 ← 195840
(b) (µ̂1, µ̂2, x̂∗) ← (2440, 171852, 68794)
(c) We perform the same computation as in Step 2.d, but with the new numbers,

and thus find numerical values ŷ0, ŷ1, ŷ2, ŷ3.
(d) Ê t ← E t

[
y ← ŷ0, y

(1) ← ŷ1, y
(2) ← ŷ2, y

(3) ← ŷ3
]
, Q̂← 1

4. [Determine θg from Ê t ]
This can be done in several ways as described in Remark 5.3.
• Following Method (i) from Remark 5.3, we compute a Gröbner basis for
each of the following

Ê t ∪ {z − 1, (µ1 − 2440)w − 1}, Ê t ∪ {z − 1, (µ2 − 171852)w − 1},

Ê t ∪ {z − 1, (x∗ − 68794)w − 1}.

with respect to a monomial ordering (any choice). A computation shows
that only the second Gröbner basis contains 1. Thus µ2 is globally identi-
fiable, and µ1 and x∗ are not.
• Following Method (ii) from Remark 5.3, we compute the reduced Gröbner
basis of Ê t ∪ {z − 1} with respect to (we make this particular choice here
just to obtain a concrete answer) the degree reverse lexicographic ordering
with the ordering µ1 > µ2 > x∗ > x > . . . > x(3) > z on the variables:

z − 1, 171852x(2) − x(3),

29533109904x(1) − x(3), 174575955769228371456x − 34397x(3),

µ2 − 171852, 43643988942307092864µ1 − 305x(3),

(x(3))2 − 3491519115384567429122, x∗ − x,

Observe that the Gröbner basis contains µ2 − 171852 but does not contain
x∗ − 68794 or µ1 − 2440. Thus, µ2 is globally identifiable and µ1 and x∗

are not.
Out: θg ← {µ2}

Theorem 5.5. Algorithm 1 produces correct output with probability at least p.

Proof. In our probability analysis of random vectors θ̂ and û sampled in steps 2c
and 3b, we will use the following observation. For all polynomials P,Q ∈ C[θ, u]
such that Q , 0 and for every sample set of vectors (θ̂, û), the probability of
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P(θ̂, û) , 0 given that Q(θ̂, û) , 0 is greater than or equal to the probability of
P(θ̂, û)Q(θ̂, û) , 0.

We claim that the value of β right before Step 2g will satisfy the requirements
for h of Theorem 3.16 with probability at least 1+p

2 . We run Algorithm 1 replacing
checking of the rank of the Jacobian in Step 2f with checking the fact that Zβ+1k
projects dominantly to the (yβ+1k , uin(β+1k ))-coordinates. Denote the number of
iterations of the while loop in Step 2f by q. For all i, 1 6 i 6 q, we denote
the values of β and E t after the i-th such iteration by βi and E t

i , respectively,
where βi := (βi1, . . . , βim). Let β0 and E t

0 denote the initial values. Due to the
construction, βq satisfies the requirements for h of Theorem 3.16.

Comparing Step 2(f)ii of Algorithm 1 and Step (b) of Notation 3.13, we see
that, for every β,

(5.2) E t t
{
Y1,β1, . . . ,Ym,βm

}
= Sβ+1 t

{
X10, . . . , Xn0

}
This and Notation 3.13 imply that

(5.3)
E t =Sβ t

{
X10, . . . , Xn0

}
t

{
Xi j ∈ Sβ+1

�� x(j)i does not appear in Sβ, 0 < j, 1 6 i 6 m
}
.

Proposition 3.20 together with (5.3) imply that, for all k, 1 6 k 6 m, if Zβ+1k
does not project dominantly to the (yβ+1k , uin(β+1k ))-coordinates, then the Jacobian
condition of the while loop in Step 2f is also false.

Let P1 denote a (|E t
q |+1)×(|E t

q |+1)-minor of the Jacobian ofSβq
with respect

to (µ, xαq ) that is nonzero modulo J βq
. Decomposition (5.3) implies that there

exists a (|E t
q | + 1) × (|E t

q | + 1)-minor in the Jacobian of E t
q with respect to (θ, xαq )

with the determinant equal to QaP1 for some a. If Q · P1 does not vanish after the
substitution

(5.4) xαq ← x̂αq, yβq
← ŷβq

, u ← û, θ ← θ̂,

then Jacθ,xαq
(E t

q) has rank |E t
q | + 1 at (θ̂, x̂αq, ŷβq

). Since E t
i ⊂ E t

q for every
1 6 i 6 q, the corresponding Jacobian of E t

i has rank |E
t
i | + 1 at the corresponding

point for 1 6 i 6 q. Thus, with this choice of (θ̂, û), the value of β right before
Step 2g will be βq and, therefore, satisfy the requirements for h of Theorem 3.16.

We will bound the probability of non-vanishing of QP1 after substitution (5.4).
Let βq = (βq1, . . . , βqm). Corollary 3.21 implies that βq1 + . . . + βqm 6 s, so
| Sβq

| 6 s + ns. Hence,
deg P1 6 s(n + 1)d0.

Applying Proposition 4.6 to P1 with this degree bound, we obtain P̃1 ∈ C[θ, u]
such that,

• deg P̃1 6 d0s(n + 1)(1 + d0(2s − 1)) and
• for all θ̃ and ũ, P̃1

(
θ̃, ũ

)
, 0 implies that P1 does not vanish at π−1

ip (θ̃, ũ) ∩
Zβq

.
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Since the coordinates of (θ̂, û) are sampled from 1 to D1, the Demillo-Lipton-
Schwartz-Zippel lemma (see [57, Proposition 98]) implies that Q(θ̂, û)P̃1(θ̂, û) , 0
with probability at least

1 −
d0s(n + 1)(1 + d0(2s − 1)) + d0

D1
= 1 −

D1(1 − p) − d2
0 s(n + 1) + d0

2D1

> 1 −
1 − p

2
=

1 + p
2

.

The claim is proved.
The values of α, β, and E t right after Step 2 of Algorithm 1 have the following

properties:
(a) α = αq;
(b) β − βq ∈ Z

m
>0;

(c) E t ⊃ E t
q ∪ {Y1βq1, . . . ,Ymβqm }.

By (5.2) applied to βq and by (c), after Step 2, we have

E t ⊃ Sβq+1 t
{

X10, . . . , Xn0
}
.

By (a), Sβ and Sβq+1 contain the same polynomials of the form Xi, j . Hence, by
the construction of Sβ (see Step (b) of Notation 3.13) and Step 2g of Algorithm 1,

(5.5) E t = Sβ t
{

X10, . . . , Xn0
}
.

Consider i, 1 6 i 6 |θ` |. Let P2,i be a polynomial whose existence is proven
in Theorem 4.2 applied to θ# = (θ`i ), h

′ = β, and h = βq (see (b)). Consider

a :=
(
µ̂, x̂α, ŷβ, û

)
. Then (5.5) implies that the projection of the Zariski closure of

the zero set of Ê t = 0 & Q̂ , 0 to the (µ, xα, yβ, u)-coordinates is the zero set of
the ideal

J β +I(πio(a)) · C[µ, xα, yβ, u].

Hence, θ`i will be added to θg if and only if

(5.6) Z
((
J β +I(πio(a)) · C[µ, xα, yβ, u]

)
∩ C[θ`i ]

)
=

{
θ̂`i

}
.

The choice of P2,i implies that (5.6) is equivalent to the fact that θ`i is globally
identifiable under the assumption that P2,i(a) , 0. Thus, if

(5.7) P2,i(a) , 0,

then the decision of Algorithm 1 regarding global identifiability of θ`i will be
correct.

Let P2 :=
|θ` |∏
i=1

P2,i. Then P2(a) , 0 implies that the output of Algorithm 1 is

correct. Proposition 4.6 applied to
|θ` |∏
i=1

P2,i provides a polynomial P̃2 ∈ C[θ, u] such
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that, for all θ̃ and ũ, P̃2
(
θ̃, ũ

)
, 0 implies that P2 does not vanish at π−1

ip (θ̃, ũ) ∩ Zβ .
Using the Bézout bound and the degree bound from Theorem 4.2, we obtain

deg QP̃2 6 3
��θ` �� deg Zβ · (1 + 2d0 max β) 6 3

��θ` �� ( ∏
P∈E t

deg P

)
(1 + 2d0 max β).

Since the coordinates of (θ̂, û) are sampled from 1 to D2, the Demillo-Lipton-
Schwartz-Zippel lemma (see [57, Proposition 98]) implies that the point (θ̂, û) is
not a zero of QP̃2 with probability at least

1 −
deg QP̃2

D2
> 1 −

D2(1 − p)
2D2

=
1 + p

2
Thus, with probability at least

1 −
((

1 −
1 + p

2

)
+

(
1 −

1 + p
2

))
= 2 ·

1 + p
2
− 1 = p,

the output of Algorithm 1 is correct. �

6 Performance

In this section, we discuss the performance of an implementation of Algorithm 1
using both basic and challenging examples taken from the literature and also discuss
how several other existing software packages perform at these examples. Briefly,
Table 6.1 below shows that our running time compares favorably to existing software
for several challenging problems taken from the literature. More details may be
found in our companion paper [19].

We begin by giving a brief descriptions of the implementation of Algorithm 1
and three other software packages that are available to us.
Algorithm 1: The current implementation of Algorithm 1 is done on the com-

puter algebra system Maple 2017. It takes advantage of parallel computing
because (1) the built-in Maple function for computing Gröbner bases is
parallelized at the thread level and (2) while usingMethod (i) for Step 4, we
naturally compute eachGröbner basis in a separate process. The implemen-
tation and examples used in this paper are contained in SIAN v0.5 (available
at https://github.com/pogudingleb/SIAN/releases/tag/v0.5).
Note that the algorithm for Gröbner basis computation in Maple is also
Monte Carlo with the probability of error at most 10−18, so this probability
should be subtracted from the probability of success of our implementation.

DAISY: This is software written in Reduce [7]. For comparison, we used ver-
sion 1.9. DAISY takes as an input a positive integer SEED, which is used
for sampling random points. We used the default value 35. In our ex-
periments, the software did not appear to compute in parallel. Since the
core of the algorithm is a computation of a characteristic set decomposition

https://github.com/pogudingleb/SIAN/releases/tag/v0.5


GLOBAL IDENTIFIABILITY OF DIFFERENTIAL MODELS 41

of a radical differential ideal, it is not clear how the algorithm could be
efficiently parallelized.

COMBOS: This is a web-based application [32]. For some of the examples below
we received an error message saying “Model may have been entered in-
correctly or cannot be solved with COMBOS algorithms”. We will denote
such cases by ∗∗ in Table 6.1.

GenSSI 2.0: This is a package written in Matlab [26]. The algorithm uses solve
function fromMatlab to solve systems of algebraic equations symbolically.
For large examples (such as, for example, Examples 6.1 and 6.2), such a
symbolic solution does not exists. In such cases, the solve function returns
an empty set of solutions together with a warning “Warning: Unable to find
explicit solution.” This means that there might be solutions but they could
not be found by Matlab. The algorithm is unable to conclude whether
the parameters are globally identifiable due to this Matlab failure (see
Examples 6.1 and 6.2). We will denote such cases by ∗ in Table 6.1.

We ran the program on a computer with 96 CPUs, 2.4 GHz each, under a
Linux operating system (CentOS 6.9). The runtime is the elapsed time. The
sequential time is the total CPU time spent by all threads of all processes during
the computation. The former is measured as the real part of the output of the
Linux time command. The latter is estimated as the sum of the user and sys parts
of the output of the time command. We report the runtimes in Table 6.1 and the
sequentual times in the text afterwards.

We determine locally identifiable parameters using software from [46]. In all
our examples, it took less than 5 seconds; this is negligible compared to the other
timings.

We ran Algorithm 1 and DAISY on all examples from [7, 43, 41, 39]. The
runtimes of both programs were below 1 minute.1 Thus, from now on, we will
elaborate on several (four) more challenging problems taken from literature [5, 9,
10, 13, 25, 27] and compare the performance of Algorithm 1 and the three other
software packages (DAISY, COMBOS, GenSSI 2.0) on them.

Table 6.1 summarizes the runtimes. In the table, our timing is the best of timings
obtained by performing Step 4 of Algorithm 1 by Method (i) and Method (ii) from
Remark 5.3.

Example 6.1. The following system of ODEs corresponds to a chemical reaction
network [10, Eq. 3.4], which is a reduced fully processive, n-site phosphorylation

1 The example built in [39, Section 6] looks challenging since it involves 42 state variables and
parameters. However, it is actually not challenging since it can be straightforwardly divided into
several non-challenging problems: one can first analyze the identifiability of the parameters that
appear in the first equation (using only this first equation) and then add the other equations one-by-
one to analyze the remaining parameters. The corresponding computation for the first equation takes
less than 1 minute for both programs, and the computations for the other equations can be done after
that even by hand.
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Table 6.1. Runtimes (in minutes) on challenging problems

Example GenSSI 2.0 COMBOS DAISY Algorithm 1
Example 6.1 ∗ ∗∗ > 6,000 < 1
Example 6.2 ∗ 85 30 3
Example 6.3 > 12,000 ∗∗ > 6,600 48
Example 6.4 > 12,000 ∗∗ > 7,800 993
∗: GenSSI 2.0 returns “Warning: Unable to find explicit solution.”

∗∗: COMBOS returns “Model may have been entered incorrectly or cannot be solved
with COMBOS algorithms.”

network. 

Ûx1 = −µ1x1x2 + µ2x4 + µ4x6,

Ûx2 = −µ1x1x2 + µ2x4 + µ3x4,

Ûx3 = µ3x4 + µ5x6 − µ6x3x5,

Ûx4 = µ1x1x2 − µ2x4 − µ3x4,

Ûx5 = µ4x6 + µ5x6 − µ6x3x5,

Ûx6 = −µ4x6 − µ5x6 + µ6x3x5

Setting the outputs y1 = x2 and y2 = x3, we obtain a system of the form (2.1).
We run Algorithm 1 setting θ` := {µ1, . . . , µ6, x∗1, . . . , x∗6} (a calculation shows
that these parameters are locally identifiable). The intermediate results are the
following:

• the system E consists of 104 equations in 116 variables;
• D1 = 4,204,800;
• β = (7, 7), α = (6, 7, 7, 6, 6, 6);
• D2 = 4,936,445,783 · 1011;
• the system Ê t consists of 52 equations in 50 variables.

The algorithm returns that all the parameters are globally identifiable with proba-
bility at least 99%. If we perform the last step of Algorithm 1 using Method (i)
from Remark 5.3, the runtime is 0.4 minutes (the estimated sequential time is 0.9
minutes). If we use Method (ii), the runtime is 0.4 minutes (the estimated se-
quential time is 0.9 minutes). The timings for both methods are similar, and the
improvement by computing in parallel is not that significant because the Gröbner
bases computations are relatively easy in this case compared to the other steps of
the algorithm.

• DAISY did not output any result in 100 hours.
• COMBOS returned “Model may have been entered incorrectly or cannot
be solved with COMBOS algorithms”.
• GenSSI 2.0 constructed a polynomial system that could not be solved
symbolically by Matlab. Matlab returned “Warning: Unable to find
explicit solution.” and an empty set of solutions. As a result, the algorithm
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reports that x∗2 and x∗3 are globally identifiable and the other parameters
are locally identifiable. It was not able to determine whether these other
parameters are globally identifiable.

Example 6.2. The following version of SIWR is an extension of the SIR model,
see [25, Eq. 3]: 

Ûs = µ − βI si − βW sw − µs + αr,
Ûi = βW sw + βI si − γi − µi,
Ûw = ξ(i − w),
Ûr = γi − µr − αr

where s, i, and r stand for the fractions of the population that are susceptible,
infectious, and recovered, respectively. The variable w represents the concentration
of the bacteria in the environment. The scalars α, βI, βW, γ, µ, ξ are unknown
parameters. Following [25], we assume that we can observe y1 = κ1i, where
κ1 is one more unknown parameter. We will also assume that one can measure
the total population s + i + r , so y2 = s + i + r . We run Algorithm 1 setting
θ` := {α, βI, βW, γ, µ, ξ, κ1, s∗, i∗,w∗, r∗} (it was show in [25] that they are locally
identifiable). The intermediate results are the following:

• the system E consists of 66 equations in 77 variables;
• D1 = 2,653,200;
• β = (10, 8), α = (9, 10, 9, 8);
• D2 = 1,744,556,312 · 1012;
• the system Ê t consists of 54 equations in 47 variables.

The algorithm returns that all parameters are globally identifiable with probability
at least 99%. If we perform the last step of Algorithm 1 using Method (i) from
Remark 5.3, the runtime is 3 minutes (the estimated sequential time is 77 minutes).
If we use Method (ii), the runtime is 15 minutes (the estimated sequential time is
114 minutes). Unlike in Example 6.1, in this case, the Gröbner bases computations
are the most time-consuming part of the algorithm. Because of this, the paral-
lelization of the Gröbner bases computations in Maple gives almost 8 times speed
up while using Method (ii). Combined with performing different Gröbner bases
computations in parallel while using Method (i), it gives an almost 25 times speed
up.

• DAISY took 30 minutes to output the correct result.
• COMBOS took 85 minutes to output the correct result.
• GenSSI 2.0 constructed a polynomial system that could not be solved sym-
bolically by Matlab. Matlab returned “Warning: Explicit solution could
not be found” and an empty set of solutions. Because of this, the algorithm
was not able to determine if the parameters are globally identifiable.
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Example 6.3. Consider the model of NFκB regulatory module proposed in [27]
(see also [5] and [9, Case 6]) defined by the following system [9, Equation 27]
(6.1)

Ûx1 = kprod − kdegx1 − k1x1u,
Ûx2 = −k3x2 − kdegx2 − a2x2x10 + t1x4 − a3x2x13 + t2x5 + (k1x1 − k2x2x8)u,
Ûx3 = k3x2 − kdegx3 + k2x2x8u,
Ûx4 = a2x2x10 − t1x4,

Ûx5 = a3x2x13 − t2x5,

Ûx6 = c6ax13 − a1x6x10 + t2x5 − i1x6,

Ûx7 = i1kvx6 − a1x11x7,

Ûx8 = c4x9 − c5x8,

Ûx9 = c2 + c1x7 − c3x9,

Ûx10 = −a2x2x10 − a1x10x6 + c4ax12 − c5ax10 − i1ax10 + e1ax11,

Ûx11 = −a1x11x7 + i1akvx10 − e1akvx11,

Ûx12 = c2a + c1ax7 − c3ax12,

Ûx13 = a1x10x6 − c6ax13 − a3x2x13 + e2ax14,

Ûx14 = a1x11x7 − e2akvx14,

Ûx15 = c2c + c1cx7 − c3cx15

In the above system, u is the input function, x1, . . . , x15 are the state variables, and
the rest are scalar parameters. The outputs are y1 = x2, y2 = x10 + x13, y3 = x9,
y4 = x1 + x2 + x3, y5 = x7, and y6 = x12. The values of some of the parameters are
known from the existing literature (see [5, Table 1]), so we run Algorithm 1 with

θ` = (t1, t2, c3a, c4a, c5, k1, k2, k3, kprod, kdeg, i1, e2a, i1a, x∗1, . . . , x∗14).

The intermediate results are the following:
• the system E consists of 588 equations in 623 variables;
• D1 = 80,640,000;
• β = (8, 7, 6, 7, 6, 6), α = (7, 8, 7, 7, 7, 6, 6, 7, 6, 7, 6, 6, 7, 6, 1);
• D2 = 1,856,032,379 · 1024;
• the system Ê t consists of 134 equations in 121 variables.

The algorithm returns that all parameters are globally identifiable with probability
at least 99%. If we perform the last step of Algorithm 1 using Method (i) from Re-
mark 5.3, the runtime is 48 minutes (the estimated sequential time is 926 minutes).
If we use Method (ii), the runtime is 190 minutes (the estimated sequential time is
1,830 minutes).

• DAISY did not output any result in 110 hours.
• COMBOS returned “Model may have been entered incorrectly or cannot
be solved with COMBOS algorithms”.
• GenSSI 2.0 did not output any result in 200 hours.
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A version of this problem was solved by GenSSI-like method in [5] under an
additional assumption on the initial conditions [5, p. 9], which we do not make.

Example 6.4. Consider the following model arising in pharmacokinetics [13]:

(6.2)


Ûx1 = a1(x2 − x1) −

kaVmx1
kcka+kc x3+kax1

,

Ûx2 = a2(x1 − x2),

Ûx3 = b1(x4 − x3) −
kcVmx3

kcka+kc x3+kax1
,

Ûx4 = b2(x3 − x4).

The only output is y = x1. Despite having moderate size, the global identifiability
of (6.2) is out of reach for all software tools we are aware of, see also [9, Case 2].
We consider a simplified version of (6.2) with the additional assumption a1 = a2.
We run Algorithm 1 with

θ` = {a1, b1, b2, ka, kc,Vm, x∗1, . . . , x∗4}.

The intermediate results are the following:

• the system E consists of 55 equations in 65 variables;
• D1 = 3,240,000;
• β = (11), α = (11, 10, 10, 9);
• D2 = 1,923,937,761 · 1013;
• the system Ê t consists of 51 equations in 50 variables.

The algorithm returns that all parameters are globally identifiable with probability
at least 99%. If we perform the last step of Algorithm 1 using Method (i) from
Remark 5.3, the runtime is 993 minutes (the estimated sequential time is 11,944
minutes). If we use Method (ii), the runtime is 6,042 minutes (the estimated
sequential time is 112,000 minutes).

• DAISY did not output any result in 130 hours.
• COMBOS returned “Model may have been entered incorrectly or cannot
be solved with COMBOS algorithms”.
• GenSSI 2.0 did not output any result in 200 hours.
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