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ABSTRACT
We study integrability conditions for systems of parame-
terized linear difference equations and related properties of
linear differential algebraic groups. We show that isomon-
odromicity of such a system is equivalent to isomonodromic-
ity with respect to each parameter separately under a lin-
early differentially closed assumption on the field of differen-
tial parameters. Due to our result, it is no longer necessary
to solve non-linear differential equations to verify isomon-
odromicity, which will improve efficiency of computation
with these systems. Moreover, it is not possible to further
strengthen this result by removing the requirement on the
parameters, as we show by giving a counterexample. We
also discuss the relation between isomonodromicity and the
properties of the associated parameterized difference Galois
group.

Categories and Subject Descriptors
I.1.2 [Computing methodologies]: Symbolic and alge-
braic manipulation—Algebraic algorithms

General Terms
Algorithms, Theory

Keywords
Differential algebra, difference algebra, integrability condi-
tions, difference Galois theory, differential algebraic groups

1. INTRODUCTION
In this paper, we improve the algorithm that verifies if

a system of linear difference equations with differential pa-
rameters is isomonodromic (Definition 1). Given a system of
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difference equations, it is natural to ask if its solutions sat-
isfy extra differential equations. For example, it is a famous
result of Hölder [19] that the gamma function Γ satisfying
the linear difference equation

y(x+ 1) = xy(x)

satisfies no polynomial differential equations with rational
coefficients. This was also recently shown in [13] using pa-
rameterized difference Galois theory (see also [12, 15, 17,
16, 18, 14, 38, 11, 31, 36]). To explain the results of our
paper, consider a decision procedure whose input consists
of a field K with commuting automorphisms φ1, . . . , φq and
derivations ∂1, . . . , ∂m and a system of difference equations

φ1(Y ) = A1Y, . . . , φq(Y ) = AqY, (1)

where Ai ∈ GLn(K). Its output consists of such additional
linear differential equations

∂1Y = B1Y, . . . , ∂mY = BmY, (2)

where Bi ∈Mn(K), if they exist, for which there exists an
invertible matrix solution of (1) that satisfies (2) as well. For
solutions of (1) to possibly exist, the Ai’s must satisfy the
integrability conditions (4). Moreover, existence of the Bi’s
above is equivalent to the existence of Bi’s satisfying another
large collection of integrability conditions (6) and (7). Such
systems (1) are called isomonodromic in analogy with dif-
ferential equations [33, 34]. Isomonodromy problems for q-
difference equations and their relations with the q-difference
Painlevé equations were studied in [22, 23].

In our main result, Theorem 1, we show that (7), which are
non-linear differential equations, do not have to be verified
to check the existence of the Bi’s. More precisely, we prove
that the existence of Bi’s satisfying (6) implies the existence
of new matrices that satisfy both (6) and (7).

Since, due to our result, we only need to check the exis-
tence of solutions (that have entries in the ground field K)
of a system of linear difference equations, a complexity esti-
mate for verifying whether a system of difference equations is
isomonodromic becomes possible. For this, a full complexity
analysis for finding a rational solution of an inhomogeneous
linear difference equation is sufficient, which we expect to
appear in the near future. For linear differential equations
there are already such results [2].

Our main result, Theorem 1, has a restriction on the field
of constants. Namely, we require that this field be linearly
differentially closed with respect to all but, possibly, one of
the derivations (Definition 2). However, if this restriction



were not imposed, then the conclusion of Theorem 1 would
not hold, as our Example 3 shows. Moreover, we also conjec-
ture that this restriction is necessary and leave the discovery
of a proof for future research.

A similar problem but for systems of differential equations
was considered in [10], motivated by the classical results [20,
21]. Differential categories developed in [9] formed the main
technical tool in [10]. On the contrary, our proofs are writ-
ten in elementary terms, which makes them more accessible.
Moreover, from our proof, one can produce an algorithm
that, given a common solution of (6), computes a common
solution of both (6) and (7).

Given a system of linear difference equations with param-
eters, parameterized difference Galois theory [13] associates
a linear differential algebraic group [3, 4, 32, 6, 35, 27, 28],
which is called the parameterized difference Galois group
and is a group of matrices whose entries satisfy a system of
polynomial differential equations. In addition to our main
result, we also show in Proposition 2 how isomonodromicity
can be characterized using the Galois group. This extends
the corresponding result of [13], as our version does not re-
quire the constants to be differentially closed.

Our main result has further applications. In parame-
terized differential Galois theory [5], there are several al-
gorithms for computing the Galois groups. For 2 × 2 sys-
tems, they are given in [1, 7]. An algorithm, more general
in terms of the order of the system, [30, 29] uses the differ-
ential analogues [10] of our results to make the computation
more efficient. Our results may prove useful in the design of
an algorithm for computing parameterized difference Galois
groups, as it has happened in the differential case.

Also note that the algorithm in [30] performs simultane-
ous prolongations with respect to all derivations, which gives
a linear growth of algebraic indeterminates to be dealt with.
On the other hand, if one performs prolongations with re-
spect to each derivation separately, there is no such growth.
The results of our paper, as well as [10], describe a situation
in which one can deal with each derivation separately. We
hope that more such situations will be discovered in the fu-
ture to speed up the algorithms that compute parameterized
differential and difference Galois groups.

The paper is organized as follows. We introduce our no-
tation and review the basic notions of differential and dif-
ference algebra in §2. The integrability conditions are intro-
duced in §3.1. Our main result is described in §3.2. In §3.3,
we demonstrate how isomonodromicity is reflected in the
associated parameterized difference Galois group. An ex-
ample showing that assumption 1 cannot be removed from
our main result, Theorem 1, is given in §3.4.

2. BASIC DEFINITIONS
We will start with the basic definitions and notation of

differential and difference algebra. A ∆-ring is a com-
mutative associative ring with unit 1 together with a set
∆ = {∂1, . . . , ∂m} of commuting derivations ∂i : R→ R such
that

∂i(a+ b) = ∂i(a) + ∂i(b), ∂i(ab) = ∂i(a)b+ a∂i(b)

for all a, b ∈ R. For example, Q is a {∂}-field with the
unique zero derivation. For every f ∈ C(x), there exists a
unique derivation ∂ : C(x) → C(x) with ∂(x) = f , turning

C(x) into a {∂}-field. Let

Θ =
˘
∂i11 · . . . · ∂

im
m | ij > 0

¯
.

Since ∂i acts on R, there is a natural action of Θ on R. Let
R and B be ∆-rings. If B ⊃ R, then B is a ∆-R-algebra if,
for all i, 1 6 i 6 m, the action of ∂i on B extends the action
of ∂i on R. Let Y = {y1, . . . , yn} be a set of variables and

ΘY :=
˘
θyj

˛̨
θ ∈ Θ, 1 6 j 6 n

¯
.

The ring of differential polynomials R{Y }∆ in differential
indeterminates Y over R is R[ΘY ] with the derivations ∂i
that extends the ∂i-action on R as follows:

∂i (θyj) := (∂i · θ)yj , 1 6 j 6 n.

An ideal I in a ∆-ring R is called a differential ideal if ∂i(a) ∈
I for all a ∈ I, 1 6 i 6 m.

Let k be a ∆-field of characteristic zero. In what follows,
Mn(k) denotes the set of n × n matrices with entries in k
and GLn(k) are the invertible matrices in Mn(k).

A Φ-ring R is a commutative associative ring with unit
1 and a set Φ = {φ1, . . . , φq} of commuting automorphisms
φi : R→ R. A {Φ,∆}-ring R is a Φ-ring and a ∆-ring such
that, for all φ ∈ Φ and ∂ ∈ ∆, φ∂ = ∂φ.

Example 1. We will list a few examples of {Φ,∆}-rings:

1. R = Q(x1, . . . , xm) with Φ = {φ1, . . . , φm} and ∆ =
{∂1, . . . , ∂m} defined by

φi(f)(x1, . . . , xm) = f(x1, . . . , xi + 1, . . . , xm), f ∈ R,
∂i = ∂/∂xi, 1 6 i 6 m.

2. R = Q(x, y) with Φ = {φ} and ∆ = {∂1, ∂2} defined
by

φ(f)(x, y) = f(xy, y), ∂1 = x∂/∂x, ∂2 = ∂/∂y.

3. MAIN RESULT
We will start by introducing integrability conditions in
§3.1 and then show our main result in §3.2. Applications of
the parameterized difference Picard–Vessiot theory to this
will be discussed in §3.3. §3.4 contains an example showing
that the conclusion of Theorem 1 does not hold if one drops
the linearly differentially closed assumption 1.

3.1 Integrability conditions
Let K be a {Φ,∆}-field of characteristic zero and

A1, . . . , Aq ∈ GLn(K).

Consider the system of difference equations

φ1(Y ) = A1Y, . . . , φq(Y ) = AqY. (3)

If L ⊃ K is a Φ-field extension and Z ∈ GLn(L) satisfies (3)
then, for all i, j, 1 6 i, j 6 q, we have

φj(Ai)AjZ = φj(φi(Z)) = φi(φj(Z)) = φi(Aj)AiZ.

Therefore, we obtain

φj(Ai)Aj = φi(Aj)Ai (4)

Moreover, if, in addition, L is a {Φ,∆}-field extension of K
and there exist B1, . . . , Bm ∈Mn(K) such that

∂1(Z) = B1Z, . . . , ∂m(Z) = BmZ, (5)



then

φj(Bi)AjZ = φj(∂i(Z)) =

= ∂i(φj(Z)) = ∂i(Aj)Z +AjBiZ

and

∂j(Bi)Z +BiBjZ = ∂j(∂i(Z)) =

= ∂i(∂j(Z)) = ∂i(Bj)Z +BjBiZ,

which imply that

φj(Bi) = ∂i(Aj)A
−1
j +AjBiA

−1
j , 1 6 i 6 m, 1 6 j 6 q, (6)

and

∂j(Bi)− ∂i(Bj) = [Bj , Bi], 1 6 i, j 6 m. (7)

Therefore, (4), (6), and (7) are necessary conditions for
the existence of a common invertible matrix solution of (3)
and (5) with entries in a field L (see Definition 6.6(d) in
[13]). They are also sufficient. Indeed, let

L = K(x11, . . . , xnn),

∂i((xrs)) = Bi(xrs), 1 6 i 6 m,

and

φj((xrs)) = Aj(xrs), 1 6 j 6 q.

Then (4), (6), and (7) imply that L is a {Φ,∆}-field.

Definition 1. The system of linear difference equations

φ1(Y ) = A1Y, . . . , φq(Y ) = AqY

with A1, . . . , Aq ∈ GLn(K) satisfying (4) is called isomon-
odromic if there exist B1, . . . , Bm ∈ Mn(K) satisfying (6)
and (7).

Connections to analytic interpretations of isomonodromy
can be found, e.g., in §5 of [5] and §6.2 of [10]. We will need
the following definition in §3.2 (which is a weaker restriction
than differentially closed) to state the main result.

Definition 2. For ∆′ = {δ1, . . . , δs} ⊂ ∆, a ∆-field k is
called linearly ∆′-closed if, for all n > 1 and B1, . . . , Bs ∈
Mn(k) such that

δi(Bj)− δj(Bi) = [Bi, Bj ], 1 6 i, j 6 s,

there exists Z ∈ GLn(k) such that

δ1(Z) = B1Z, . . . , δs(Z) = BsZ.

3.2 Statement and proof of the main result
In this section, we will state and prove our main result,

Theorem 1, which allows us to reduce the number of integra-
bility conditions to be tested. For this, we need to impose a
restriction on the fields we consider, which we will describe
now. Note that, if this restriction were not added, the con-
clusion of Theorem 1 would no longer be true (see §3.4).

Assumption 1. Let K be a {Φ,∆}-field such that, after
some renumbering of ∂1, . . . , ∂m, for all k, 1 6 k 6 m− 1,

KΦ := {a ∈ K | φ(a) = a, φ ∈ Φ}

is linearly {∂1, . . . , ∂k}-closed.

Example 2. Let U be a linearly closed ∂1-field and K :=
U(x), the field of rational functions in x, with Φ = {φ} and
∆ = {∂/∂x, ∂1}, where φ(f)(x) = f(x + 1), f ∈ K, and
∂1(x) = 0. Then KΦ = U with {∂/∂x, ∂1}, and K satisfies
assumption 1 with the renumbering {∂1, ∂/∂x}.

Theorem 1. Let K satisfy assumption 1. Then, for
all A1, . . . , Aq ∈ GLn(K) satisfying (4), if there ex-
ist B1, . . . , Bm ∈ Mn(K) satisfying (6), then there exist
D1, . . . , Dm ∈ Mn(K) such that all integrability conditions
are satisfied, that is,

φj(Di) = ∂i(Aj)A
−1
j +AjDiA

−1
j , 1 6 i 6 m, 1 6 j 6 q,

∂i(Dj)− ∂j(Di) = [Di, Dj ], 1 6 i, j 6 m. (8)

Proof. This will be done by induction. Suppose that a
renumbering from assumption 1 has been performed. Let
there exist B1, . . . , Bm such that (6) is satisfied and let k 6
m. Suppose that there exist

D1, . . . , Dk−1

that satisfy both (6) and (7) (k− 1 is substituted for m and
the Di’s are substituted for the Bi’s). We claim that there
exists E ∈Mn(K) such that

(D1, . . . , Dk−1, Bk + E)

satisfies both (6) and (7) (under the substitution as above),
so that we can take

(D1, . . . , Dk) := (D1, . . . , Dk−1, Bk + E)

to satisfy (8) by induction. In order to show that Bk + E
satisfies (6) and (7), we need to show that

φj(Bk + E) = ∂k(Aj)A
−1
j +Aj(Bk + E)A−1

j (9)

and

∂i(Bk + E)− ∂k(Di) = [Di, Bk + E] (10)

for all i and j, 1 6 j 6 q, 1 6 i < k. However, expanding
the left-hand side of (9) using (6), we see that

φj(Bk + E) = φj(Bk) + φj(E) =

= ∂k(Aj)A
−1
j +AjBkA

−1
j + φj(E).

Moreover, rearranging the terms in (10), we see that we need
to find E ∈ Mn(K) such that the following two conditions
are satisfied:

φj(E) = AjEA
−1
j (11)

and

∂i(E) + [E,Di] = ∂k(Di)− ∂i(Bk) + [Di, Bk] (12)

for all i and j, 1 6 j 6 q, 1 6 i < k. We now show that

∂k(Di)− ∂i(Bk) + [Di, Bk]

satisfies (11) as an equation in E. We have:

φj(∂k(Di)− ∂i(Bk) + [Di, Bk]) =

= φj(∂k(Di))− φj(∂i(Bk)) + φj(DiBk)− φj(BkDi) =

= ∂k(φj(Di))− ∂i(φj(Bk))+

+ φj(Di)φj(Bk)− φj(Bk)φj(Di) =

= ∂k
`
∂i(Aj)A

−1
j

´
+ ∂k

`
AjDiA

−1
j

´
−

− ∂i
`
∂k(Aj)A

−1
j

´
− ∂i

`
AjBkA

−1
j

´
+

+
`
∂i(Aj)A

−1
j +AjDiA

−1
j

´`
∂k(Aj)A

−1
j +AjBkA

−1
j

´
−

−
`
∂k(Aj)A

−1
j +AjBkA

−1
j

´`
∂i(Aj)A

−1
j +AjDiA

−1
j

´
.



Using the relation

∂d
`
A−1
j

´
= −A−1

j ∂d(Aj)A
−1
j ,

and after we expand and cancel out terms, we are left with

Aj∂k(Di)A
−1
j −Aj∂i(Bk)A−1

j +

+AjDiBkA
−1
j −AjBkDiA

−1
j =

= Aj(∂k(Di)− ∂i(Bk) + (DiBk −BkDi))A−1
j

as desired.
For any Z ∈Mn(K) satisfying (11), we now show that

∂i(Z) + [Z,Di]

also satisfies (11) for 1 6 j 6 q, 1 6 i < k. Indeed,

φj(∂i(Z) + [Z,Di]) =

= ∂i(φj(Z)) + φj(Z)φj(Di)− φj(Di)φj(Z) =

= ∂i
`
AjZA

−1
j

´
+
`
AjZA

−1
j

´`
∂i(Aj)A

−1
j +AjDiA

−1
j

´
−

−
`
∂i(Aj)A

−1
j +AjDiA

−1
j

´`
AjZA

−1
j

´
=

= ∂i(Aj)ZA
−1
j +Aj∂i(Z)A−1

j +AjZ∂i
`
A−1
j

´
+

+AjZA
−1
j ∂i(Aj)A

−1
j +AjZDiA

−1
j −

− ∂i(Aj)ZA−1
j −AjDiZA

−1
j =

= Aj∂i(Z)A−1
j +AjZDiA

−1
j −AjDiZA

−1
j =

= A(∂i(Z) + [Z,Di])A
−1
j .

Since the set S of solutions of (11) inside Mn(K) is a finite-
dimensional vector space over KΦ, say, dimKΦS = p, there
exists a KΦ-basis of S and Ci,s ∈Mp

`
KΦ
´

for s = 1, 2, such
that Ci2 represents

∂k(Di)− ∂i(Bk) + [Di, Bk]

in this basis and Ci1 is such that the differential operator
defined by

∂i(Z) + [Z,Di],

when restricted to the matrices from S, has the form

∂i(Y ) + Ci1Y = Ci2 (13)

for all i, 1 6 i < k. We will now show that these equations
are consistent, that is, they have a common solution with
entries in some ∆-field extension of KΦ. For this, it is suffi-
cient to show that (12) are consistent. By Proposition IV.6.3
of [25], to prove this, it is sufficient to show that (12) and
the inductive hypothesis for (8) imply

∂i(∂j(E)) = ∂j(∂i(E)), 1 6 i, j < k. (14)

To do this, first note that (12) implies that

∂j∂i(E) = ∂j∂k(Di)− ∂j∂i(Bk) + ∂j [Di, Bk + E]

and

∂i∂j(E) = ∂i∂k(Dj)− ∂i∂j(Bk) + ∂i[Dj , Bk + E]

Since ∂j∂i(Bk) = ∂i∂j(Bk) and ∂j∂k(Di) = ∂k∂j(Di) and,
by the inductive hypothesis for (8),

∂j∂i(E)− ∂i∂j(E) = ∂k (∂j(Di)− ∂i(Dj)) +

+ ∂j ([Di, Bk + E])− ∂i ([Dj , Bk + E]) =

= ∂k ([Dj , Di]) + ∂j ([Di, Bk + E])− ∂i ([Dj , Bk + E]) =

= ∂k ([Dj , Di]) + [[Dj , Di], Bk + E] +

+ [Di, ∂j(Bk + E)]− [Dj , ∂i(Bk + E)].

Now, substituting the expression for ∂i(E) from (12), and
similarly for ∂j(E),

∂j∂i(E)− ∂i∂j(E) = ∂k ([Dj , Di]) + [[Dj , Di], Bk + E] +

+ [Di, ∂j(Bk)]− [Dj , ∂i(Bk)]+

+ [Di, ∂k(Dj)− ∂j(Bk) + [Dj , Bk + E]]−
− [Dj , ∂k(Di)− ∂i(Bk) + [Di, Bk + E]] .

Rearranging terms,

∂j∂i(E)− ∂i∂j(E) = ∂k ([Dj , Di]) + [Di, ∂k(Dj)]−
− [Dj , ∂k(Di)] + [[Dj , Di], Bk + E] +

+ [Di, [Dj , Bk + E]]− [Dj , [Di, Bk + E]] +

+ [Di, ∂j(Bk)]− [Dj , ∂i(Bk)]+

+ [Dj , ∂i(Bk)]− [Di, ∂j(Bk)] =

= 0 + [[Dj , Di], Bk + E] + [Di, [Dj , Bk + E]]−
− [Dj , [Di, Bk + E]] + 0 = 0

by the Jacobi identity. Therefore, (14) holds and, thus, (13)
is consistent.

Since KΦ is linearly {∂1, . . . , ∂k−1}-closed, there exists a
solution F ∈ Mp

`
KΦ
´

to (13), which implies the existence
of E ∈Mn(K) satisfying (11) and (12). Thus,

(D1, . . . , Bk + E)

satisfies both (6) and (7).

3.3 Using difference Picard–Vessiot theory
In this section, we will see in Proposition 2 how isomon-

odromicity can be detected using the methods of parame-
terized difference Picard–Vessiot (PPV) theory [13] in light
of Theorem 1.

Recall that a ∆-field U is called differentially closed if any
system of polynomial differential equations with coefficients
in U having a solution with entries in some ∆-extension of U
already has a solution with entries in U (for various equiv-
alent versions of this definition, see Definition 3.2 in [5],
Definition 4 in [37], and the references given there). Recall
also that every ∆-field k is contained in some differentially
closed ∆-field U .

Definition 3. A Kolchin-closed subset W of Un defined
over k is the set of common zeroes of a system of differential
algebraic equations with coefficients in k, that is, there exist
f1, . . . , fr ∈ k{Y } such that

W = {a ∈ Un | f1(a) = . . . = fr(a) = 0} .

Its coordinate ring is defined to be

k{W} := k{Y }/{f1, . . . , fr},

where {f1, . . . , fr} denotes the radical differential ideal gen-
erated by f1, . . . , fr.

Definition 4. (Ch. II, §1, p. 905 of [3]) A linear differential
algebraic group (LDAG) defined over k is a Kolchin-closed
subgroup G of GLn(U), over k that is, an intersection of a

Kolchin-closed subset of Un
2

over k with GLn(U), which is
closed under the group operations.

We will now briefly recall difference PPV theory. Let K be
a {Φ,∆}-field and A1, . . . , Aq ∈Mn(K) be given. Contrary
to [13], we do not assume KΦ to be differentially closed. A



parameterized Picard-Vessiot ring (PPV-ring) R of K asso-
ciated with (3) is a {Φ,∆}-K-algebra R with no {Φ,∆}-
ideals such that there exists a Z ∈ GLn(R) satisfying (3),
(Quot(R))Φ = KΦ, and R is ∆-generated over K by the
entries of Z and 1/ detZ (that is, R = K{Z, 1/detZ}).

KΦ is a ∆-field and, if it is differentially closed, a PPV-
ring associated with (3) always exists and is unique up to
∆-K-isomorphism (Propositions 6.14 and 6.16 of [13]). If
R = K{Z, 1/detZ} is a PPV-ring of K, one defines the
parameterized Picard–Vessiot group (PPV-group), denoted
by Gal(R/K), of R over K to be

G := {σ : R→ R | σ is an automorphism,

σδ = δσ for all δ ∈ {Φ,∆}, and

σ(a) = a, a ∈ K}.

For any g ∈ G, one can show that there exists a matrix
Cg ∈ GLn

`
KΦ
´

such that

g(Z) = ZCg,

and the map σ 7→ Cg is an isomorphism of G onto a dif-
ferential algebraic subgroup of GLn

`
KΦ
´
. One can also

give a functorial definition of Gal (as on pages 368–369
of [13]) turning Gal into a functor from KΦ-∆-algebras to
groups: A 7→ Gal(A) (each g ∈ Gal(A) becomes {Φ,∆}-
automorphism R⊗KΦ A→ R⊗KΦ A), that is, the A-points
of Gal (see also page 420 of [32]). We will need the functorial
definition of Gal in the proof of Proposition 2.

Proposition 2.9 of [13] gives a criterion for isomonodromic-
ity via PPV theory, but requires KΦ to be differentially
closed. This is an obstacle for potential applications, and
our version of this result, Proposition 3, avoids it. More-
over, several recent results [9, 39] on differential PPV theory,
in which the constants are not required to be differentially
closed (weaker assumptions are made there), indicate that
their difference analogues could be constructed using [24].
This encourages us to extend the result of [13] by not re-
quiring that KΦ be differentially closed.

Proposition 2. Let the system of difference equations (3)
be such that difference integrability conditions (4) are satis-
fied. Assume also that there exists a PPV-ring of K for (3)
and G is its PPV Galois group.

Then (3) is isomonodromic if and only if, for all i, 1 6
i 6 m, there exists Di ∈Mn

`
KΦ
´

satisfying

∂u(Dv)− ∂v(Du) = [Du, Dv], 1 6 u, v 6 m (15)

such that, for all r and s, 1 6 r, s 6 n, the following equation
is in the defining ideal of G:

∂i(xrs) + [(xrs), Di] = 0. (16)

Moreover, if (16) is in the defining ideal of G, then there
exists a finitely generated ∆-field extension F of KΦ and
Ci ∈ GLn(F ) such that, for all r and s, 1 6 r, s 6 n,

∂i
`
C−1
i (xrs)Ci

´
= 0 (17)

is in the defining ideal of G, that is, G is conjugate over F
to a group of matrices with ∂i-constant entries.

Proof. Let R be a PPV-ring of K for (3) and Z ∈
GLn(R) be a fundamental solution matrix.

Let there exist Bi ∈ GLn(K) such that (6) and (7) are
satisfied. For all j, 1 6 j 6 q, we have

φj
`
∂i(Z)−BiZ

´
= ∂i(φj(Z))− φj(Bi)φj(Z) =

= ∂i(AZ)−
`
∂i(A)A−1 +ABiA

−1´AZ = A(∂i(Z)−BiZ).

Therefore, since RΦ = KΦ, there exists Di ∈Mn

`
KΦ
´

such
that

∂i(Z) = BiZ − ZDi.
Therefore,

∂j(∂i(Z)) = ∂j(Bi)Z +Bi(BjZ − ZDj)+
+ (BjZ − ZDj)Di + Z∂j(Di), (18)

∂i(∂j(Z)) = ∂i(Bj)Z +Bj(BiZ − ZDi)+
+ (BiZ − ZDi)Dj + Z∂i(Dj). (19)

Hence, by (7), we have

Z∂j(Di)− ZDjDi = Z∂i(Dj)− ZDiDj ,

which implies (15) since Z is invertible. Now, for every KΦ-
∆-algebra L and g ∈ G(L), let Cg ∈ GLn(L) be such that
g(Z) = ZCg. Then, on the one hand,

g(∂i(Z)) = g(BZ − ZDi) = BZCg − ZCgDi.

On the other hand,

g(∂i(Z)) = ∂i(g(Z)) = ∂i(ZCg) = BZCg−ZDiCg+Z∂i(Cg).

Therefore, for all g ∈ G, we have

∂i(Cg) + [Cg, Di] = 0, 1 6 i 6 m,

showing (16). To show that (17) is in the defining ideal of
G, let F be the ∆-field generated over KΦ by the entries of
an invertible solution C of

∂i(Y ) = DiY, 1 6 i 6 m,

inside of a differential closure of KΦ ((15) is satisfied). Then,

∂i
`
C−1CgC

´
= −C−1DiCC

−1CgC−
− C−1[Cg, Di]C + C−1CgDiC = 0.

Suppose now that, for all KΦ-∂-algebras L and g ∈ G(L),

∂i(Cg) + [Cg, Di] = 0, 1 6 i 6 m,

where Cg := Z−1g(Z), and (15) is satisfied. Let

Bi := ∂(Z)Z−1 + ZDiZ
−1.

Then, for all g ∈ G(L),

g(Bi) = ∂i(ZCg)C
−1
g Z−1 + ZCgDiC

−1
g Z−1 =

= ∂i(Z)Z−1 − Z[Cg, Di]C
−1
g Z−1 + ZCgDiC

−1
g Z−1 = Bi.

Hence, by Lemma 6.19 of [13], Bi ∈ GLn(K). Moreover, for
all j, 1 6 j 6 q, we have

φj(Bi) = ∂i(φj(Z))(φj(Z))−1 + φj(Z)Di(φj(Z))−1 =

= ∂i(AjZ)(AjZ)−1 +AjZDi(AjZ)−1 =

= ∂i(Aj)A
−1
j +Aj∂i(Z)Z−1A−1

j +AjZDiZ
−1A−1

j =

= ∂i(Aj)A
−1
j +AjBiA

−1
j ,

showing (6). To show (7), we proceed as in (18) and (19).

Remark 1. It follows from Theorem 1 that, if K satisfies
assumption 1, then one can remove requirement (15) from
the statement of Proposition 2.



3.4 Example
We will now give an example that shows that the linearly

differentially closed restriction in the statement of Theo-
rem 1 cannot be waived.

Example 3. This example is based on Example 6.7 from
[10], but requires a modification described below. Starting

with K := Q(t1, t2) (the algebraic closure), ∆ := {∂t1 , ∂t2},
and Φ = {φ} with φ acting as identity on K, we let

F := K
`
φi∂j1t1 ∂

j2
t2
Ik, j1, j2 > 0, i ∈ Z, k = 1, 2

´
,

be the field of {φ, ∂t1 , ∂t2}-rational functions in the difference-
differential indeterminates I1 and I2 over K. Notice that K
is neither ∂t1 - nor ∂t2 -linearly closed as ∂ti(y) = y has no
non-zero solutions in K, i = 1, 2. Let S be a PPV-ring of F
for the difference equation

φ(y)− y = (φ(I1)− I1) · I2, (20)

L := Quot(S), and I ∈ L be a solution of (20) (the existence
of S is shown as in Proposition 5.4 of [10], in particular,

L = Quot
`
F{x}∆

‹
[D1(x)− a1, . . . , Dr(x)− ar]

´
,

where

φ(x) := x+ (φ(I1)− I1) · I2,

a1, . . . , ar ∈ F , and the Di’s are some homogeneous linear
∆-operators, possibly, all equal to zero). We now show that
there are no a ∈ F and non-zero homogeneous linear ∆-
operator D with coefficients in k such that

φ(a)− a = D((φ(I1)− I1) · I2). (21)

For this, let P
Q
∈ F be such that P and Q are relatively

prime polynomials. Then φ(P )
φ(Q)

− P
Q

is a polynomial if and

only if Q is a non-zero constant. Indeed, suppose

φ(P )

φ(Q)
− P

Q
= R,

with R ∈ F is a polynomial. Rearranging the terms, we
have

φ(P ) = φ(Q)R+
φ(Q)P

Q
.

Since φ(P ) is a polynomial and P and Q are relatively prime,
φ(Q)
Q

must be a polynomial. Let φ(Q) = QR̃, R̃ ∈ F a
polynomial. Suppose that Q is nonconstant and take a term
of maximal total degree in Q. The corresponding term of
φ(Q) is of the same degree and is a term of maximal degree

in φ(Q). Thus, R̃ must be constant and, therefore, Q must
be a constant multiple of φ(Q). But this is only possible if
Q is a constant. The other direction is automatic.

Now we prove the claim. If a ∈ F and D satisfy (21), since
the right-hand side of (21) is a polynomial, by the above, a
is also a polynomial. Then,

φ(a)− a = D ((φ(I1)− I1) · I2) = D̃ (φ(I1)− I1) · I2 +R,

where D̃ is another ∆-operator with coefficients in K and
R ∈ F a polynomial with no terms containing φi(I2), i ∈ Z
(including I2 itself). Thus, φ(a) or a has a term of the form
c · I2, with c a polynomial in F not containing I2. Suppose
this term is in a (the other case can be treated similarly).
Then it can be seen by induction that φ(a) must have a term
φn(cI2) for all n ∈ N, which contradicts φ(a) ∈ F .

Since K is algebraically closed, Proposition 3.1 and the
descent argument from the proof of Corollary 3.2 of [13]
imply that the elements

∂i1t1∂
i2
t2
I ∈ L, i1, i2 > 0,

are algebraically independent over F . Let K ⊂ L be the
{Φ,∆}-subfield generated by

φ(Ik)− Ik, ∂t1Im, ∂t2Im, k = 1, 2,

J1 := ∂t1I − ∂t1I1 · I2 − I2/t1,
J2 := ∂t2I − ∂t2I1 · I2 + I1/t2.

Since I satisfies (20) and J1, J2 ∈ K, for all (i, j1, j2) 6=
(0, 0, 0), we have

(φ− id)i∂j1t1 ∂
j2
t2

(I) ∈ K(I1, I2).

Indeed, we will show this by induction on the triples
(i, j1, j2), i, j1, j2 > 0 ordered degree-lexicographically. We
denote the nth triple by an, with a1 = (0, 0, 1). For n = 1,

(φ− id)0∂0
t1∂t2(I) = ∂t2(I) =

= J2 + ∂t2(I1) · I2 − I1/t2 ∈ K(I1, I2).

Supposing that the result holds for an−1, and letting an =
(i, j1, j2), first note that, for n > 2,

an−1 =

8<: (i, j1, j2 − 1) if j2 6= 0
(i, j1 − 1, j2) if j2 = 0 and j1 6= 0
(i− 1, j1, j2) if j1 = j2 = 0 and i 6= 0

In the first case, if an−1 = (i, j1, j2 − 1), let

(φ− id)i∂j1t1 ∂
j2−1
t2

(I) =
P (I1, I2)

Q(I1, I2)
∈ K(I1, I2),

where P,Q ∈ K[I1, I2] and Q 6= 0. Then

(φ− id)i∂j1t1 ∂
j2
t2

(I) = ∂t2

„
P (I1, I2)

Q(I1, I2)

«
=

=
∂t2 (P (I1, I2)) ·Q(I1, I2)− P (I1, I2) · ∂t2 (Q(I1, I2))

Q(I1, I2)2
,

which is in K(I1, I2) since ∂t2(Ik) ∈ K, k = 1, 2. In the
second case, when an−1 = (i, j1−1, j2), it is similarly shown
that

(φ− id)i∂j1t1 ∂
j2
t2

(I) ∈ K(I1, I2).

In the third case, when an−1 = (i− 1, j1, j2),

(φ− id)i∂j1t1 ∂
j2
t2

(I) = (φ− id)

„
P (I1, I2)

Q(I1, I2)

«
=

=
P (φ(I1), φ(I2))

Q(φ(I1), φ(I2))
− P (I1, I2)

Q(I1, I2)
∈ K(I1, I2),

since φ(Ik) − Ik ∈ K, k = 1, 2. When i < 0, a similar
argument applies. Thus,

L = K(I1, I2, I).

It follows from Lemma 3.6 of [8] (see also [26, 25]) that
I1, I2, I are algebraically independent over K using a char-
acteristic set argument with respect to any difference-
differential ranking with I > I1 > I2 and φ > ∂t1 > ∂t2 (the
corresponding characteristic set C will have leaders that are
strictly greater than I in ranking and, therefore, no polyno-
mial in I, I1, I2 can be reduced to zero with respect to C).
Put

fi := φ(Ii)− Ii ∈ K, i = 1, 2



and consider the equation

φ(Y ) = AY, A :=

0@1 f1 0
0 1 f2

0 0 1

1A . (22)

Then

S :=

0@1 I1 I
0 1 I2
0 0 1

1A
is a fundamental matrix for equation (22). Hence, L is a
PPV extension of K for equation (22). Let U be the differ-
ential algebraic group of matrices of the form

g(u1, u2, v) =

0@1 u1 v
0 1 u2

0 0 1

1A
and G be its differential algebraic subgroup defined by the
equations:

∂tiuj = 0, i = 1, 2, j = 1, 2, ∂t1v =
1

t1
u2, ∂t2v = − 1

t2
u1.

If we let

D1 :=

0@0 1/t1 0
0 0 0
0 0 0

1A and D2 :=

0@0 0 0
0 0 1/t2
0 0 0

1A ,

then the defining equations for G turn into

∂ti(xrs) + [(xrs), Di], i = 1, 2. (23)

Note that Gal(L/K) is a differential algebraic subgroup in
U , where U acts on S by multiplication from the right. For
all g(u1, u2, v) ∈ G, we have

g(u1, u2, v)(∂ti(Ii)) = ∂ti(g(u1, u2, v)(Ii)) =

= ∂ti(Ii + ui) = ∂ti(Ii),

g(u1, u2, v)(φ(Ii)− Ii) = φ(Ii + ui)− Ii − ui =

= φ(Ii)− Ii, i = 1, 2,

g(u1, u2, v)(J1) = ∂t1(I + I1u2 + v)−
− ∂t1(I1 + u1)(I2 + u2)− (I2 + u2)/t1 = J1,

g(u1, u2, v)(J2) = ∂t2(I + I1u2 + v)−
− ∂t2(I1 + u1)(I2 + u2) + (I1 + u1)/t2 = J2.

Therefore, K ⊂ LG. Since

k{G} ∼= k[u1, u2, v] and tr. degK L = 3

by the above, we have Gal(L/K) = G (see Lemma 6.19 and
Proposition 6.26 in [13]). Therefore, by Example 4.7 of [10]
and Proposition 2, equation (22) is not isomonodromic. On
the other hand, by (23) and Proposition 2, equation (22) is
isomonodromic with respect to each ∂ti , i = 1, 2, separately
with the corresponding matrices given by

Bi := S ·Di · S−1 + ∂tiS · S
−1, i = 1, 2,

that is,

B1 =

0@0 1/t1 + ∂t1I1 J1

0 0 ∂t1I2
0 0 0

1A ,

B2 =

0@0 ∂t2I1 J2

0 0 1/t2 + ∂t2I2
0 0 0

1A .
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