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Abstract

We present a new upper bound for the orders of derivatives in the Rosenfeld-Gröbner algorithm
under weighted rankings. This algorithm computes a regular decomposition of a radical differ-
ential ideal in the ring of differential polynomials over a differential field of characteristic zero
with an arbitrary number of commuting derivations. This decomposition can then be used to test
for membership in the given radical differential ideal. In particular, this algorithm allows us to
determine whether a system of polynomial PDEs is consistent.

In the case of one derivation, such a bound was given by Golubitsky, Kondratieva, Moreno
Maza, and Ovchinnikov (2008). The only known bound in the case of several derivations was
given by the authors of the present paper in 2016. The bound was achieved by associating
to the algorithm antichain sequences whose lengths can be bounded using the results of León
Sánchez and Ovchinnikov (2016). In the present paper, the above result by the current authors is
generalized and significantly improved.

Keywords: Polynomial differential equations; differential elimination algorithms;
computational complexity

1. Introduction

The Rosenfeld-Gröbner algorithm is a fundamental algorithm in the algebraic theory of dif-
ferential equations. This algorithm, which first appeared in (Boulier et al., 1995, 2009), takes as
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its input a finite set F of differential polynomials and outputs a representation of the radical dif-
ferential ideal generated by F as a finite intersection of regular differential ideals. The algorithm
has many applications; for example, it can be used to test membership in a radical differential
ideal, and, in conjunction with the differential Nullstellensatz, can be used to test the consistency
of a system of polynomial differential equations. See (Golubitsky et al., 2008) for a history of
the development of the Rosenfeld-Gröbner algorithm and similar decomposition algorithms.

The Rosenfeld-Gröbner algorithm has been implemented in Maple as a part of the
DifferentialAlgebra package. In order to determine the complexity of the algorithm, we
need to (among other things) find an upper bound on the orders of derivatives that appear in all
intermediate steps and in the output of the algorithm. The first step in answering this question
was completed in (Golubitsky et al., 2008), in which an upper bound in the case of a single
derivation and any ranking on the set of derivatives was found. If there are n unknown functions
and the order of the original system is h, the authors showed that an upper bound on the orders
of the output of the Rosenfeld-Gröbner algorithm is h(n − 1)!.

In this paper, we extend this result by finding an upper bound for the orders of derivatives that
appear in the intermediate steps and in the output of the Rosenfeld-Gröbner algorithm in the case
of an arbitrary number of commuting derivations and a weighted ranking on the derivatives. We
first compute an upper bound for the weights of the derivatives involved for an arbitrary weighted
ranking; by choosing a specific weight, we obtain an upper bound for the orders of the deriva-
tives. For this, we construct special antichain sequences in the set Zm

>0×{1, . . . , n} equipped with a
specific partial order. A general analysis of lengths of antichain sequences in the context of PDEs
began in (Pierce, 2014) and continued in (Freitag and León Sánchez, 2016) and (León Sánchez
and Ovchinnikov, 2016). In the case of m > 2, we use results from (León Sánchez and Ovchin-
nikov, 2016) to estimate the lengths of our sequences. For m = 2, we exploit the fact that the
constructed antichain has a special property, and this allows us to obtain better bounds.

We show that an upper bound for the weights of derivatives in the intermediate steps and in
the output of the Rosenfeld-Gröbner algorithm is given by h fL+1, where h is the weight of our in-
put system of differential equations, { f0, f1, f2, . . . } is the Fibonacci sequence {0, 1, 1, 2, 3, 5, . . . },
and L is the maximal possible length of a certain antichain sequence (that depends solely on h,
the number m of derivations, and the number n of unknown functions). Together with the bound
for L, this gives us the final bound.

By choosing a specific weight, we are able to produce an upper bound for the orders of the
derivatives in the intermediate steps and in the output of the Rosenfeld-Gröbner algorithm. Note
that this bound is different from the upper bounds for the effective differential Nullstellensatz
(D’Alfonso et al., 2014; Gustavson et al., 2016a), which are higher and also depend on the
degree of the given system of differential equations. Our result is an improvement of (Gustavson
et al., 2016b) because it allows us to compute sharper order upper bounds with respect to specific
derivations than the previous upper bound did. In addition, our refinement in the case of m = 2
produces significantly improved upper bounds. For example, if n = 2 and h = 3, 4, 5, the
new bound is approximately 11, 842, and 107 times better, respectively, than the upper bounds
produced in (Gustavson et al., 2016b), see Section 6.1.

The paper is organized as follows. In Section 2, we present the background material from dif-
ferential algebra that is necessary to understand the Rosenfeld-Gröbner algorithm. In Section 3,
we describe this algorithm as it is presented in (Hubert, 2003), as well as two necessary auxiliary
algorithms. In Section 4, we prove our main result on the upper bound. In Section 5, we prove
our refined upper bound in the case of m = 2. In Section 6, we calculate the upper bound for
specific values using the results of (León Sánchez and Ovchinnikov, 2016). In Section 7, we give
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an example showing that the lower bound for the orders of derivatives in the Rosenfeld-Gröbner
algorithm is at least double-exponential in the number of derivations.

2. Background on differential algebra

In this section, we present background material from differential algebra that is pertinent to
the Rosenfeld-Gröbner algorithm. For a more in-depth discussion, we refer the reader to (Hubert,
2003; Kolchin, 1973).

Definition 1. A differential ring is a commutative ring R with a collection of m commuting
derivations ∆ = {∂1, . . . , ∂m} on R.

Definition 2. An ideal I of a differential ring is a differential ideal if δa ∈ I for all a ∈ I, δ ∈ ∆.

For a set A ⊆ R, let (A),
√

(A), [A], and {A} denote the smallest ideal, radical ideal, differential
ideal, and radical differential ideal containing A, respectively. If Q ⊆ R, then {A} =

√
[A].

Remark 3. In this paper, as usual, we also use the braces {a1, a2, . . .} to denote the set containing
the elements a1, a2, . . .. Even though this notation conflicts with the above notation for radical
differential ideals (used here for historical reasons), it will be clear from the context which of the
two objects we mean in each particular situation.

In this paper, k is a differential field of characteristic zero with m commuting derivations.
The set of derivative operators is denoted by

Θ :=
{
∂i1

1 · · · ∂
im
m : i j ∈ Z>0, 1 6 j 6 m

}
.

For Y = {y1, . . . , yn} a set of n differential indeterminates, the set of derivatives of Y is

ΘY := {θy : θ ∈ Θ, y ∈ Y}.

Then the ring of differential polynomials over k is defined to be

k{Y} = k{y1, . . . , yn} := k[θy : θy ∈ ΘY].

We can naturally extend the derivations ∂1, . . . , ∂m to the ring k{Y} by defining

∂ j

(
∂i1

1 · · · ∂
im
m yk

)
:= ∂i1

1 · · · ∂
i j+1
j · · · ∂im

m yk.

For any θ = ∂i1
1 · · · ∂

im
m ∈ Θ, we define the order of θ to be

ord(θ) := i1 + · · · + im.

For any derivative u = θy ∈ ΘY , we define

ord(u) := ord(θ).

For a differential polynomial f ∈ k{Y} \ k, we define the order of f to be the maximum order of
all derivatives that appear in f . For any finite set A ⊆ k{Y} \ k, we set

H(A) := max{ord( f ) : f ∈ A}. (1)
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For any θ = ∂i1
1 · · · ∂

im
m and positive integers c1, . . . , cm ∈ Z>0, we define the weight of θ to be

w(θ) = w
(
∂i1

1 · · · ∂
im
m

)
:= c1i1 + · · · + cmim.

Note that if all of the ci = 1, then w(θ) = ord(θ) for all θ ∈ Θ. For a derivative u = θy ∈ ΘY ,
we define the weight of u to be w(u) := w(θ). For any differential polynomial f ∈ k{Y} \ k, we
define the weight of f , w( f ), to be the maximum weight of all derivatives that appear in f . For
any finite set A ⊆ k{Y} \ k, we set

W(A) := max{w( f ) : f ∈ A}.

Definition 4. A ranking on the set ΘY is a total order < satisfying the following two additional
properties: for all u, v ∈ ΘY and all θ ∈ Θ, θ , id,

u < θu and u < v =⇒ θu < θv.

A ranking < is called an orderly ranking if for all u, v ∈ ΘY,

ord(u) < ord(v) =⇒ u < v.

Given a weight w, a ranking < on ΘY is called a weighted ranking if for all u, v ∈ ΘY,

w(u) < w(v) =⇒ u < v.

Remark 5. Note that if w
(
∂i1

1 · · · ∂
im
m

)
= i1 + · · · + im (that is, w(θ) = ord(θ)), then a weighted

ranking < on ΘY is in fact an orderly ranking.

From now on, we fix a weighted ranking < on ΘY .

Definition 6. Let f ∈ k{Y} \ k.

• The derivative u ∈ ΘY of highest rank appearing in f is called the leader of f , denoted
lead( f ).

• If we write f as a univariate polynomial in lead( f ), the leading coefficient is called the
initial of f , denoted init( f ).

• If we apply any derivative δ ∈ ∆ to f , the leader of δ f is δ(lead( f )), and the initial of δ f is
called the separant of f , denoted sep( f ).

Given a set A ⊆ k{Y} \ k, we will denote the set of leaders of A by L(A), the set of initials of
A by IA, and the set of separants of A by S A; we then let HA = IA ∪ S A be the set of initials and
separants of A.

For a derivative u ∈ ΘY , we let (ΘY)<u (respectively, (ΘY)6u) be the collection of all deriva-
tives v ∈ ΘY with v < u (respectively, v 6 u). For any derivative u ∈ ΘY , we let A<u (respectively,
A6u) be the elements of A with leader < u (respectively, 6 u), that is,

A<u := A ∩ k[(ΘY)<u] and A6u := A ∩ k[(ΘY)6u].

We can similarly define (ΘA)<u and (ΘA)6u, where

ΘA := {θ f : θ ∈ Θ, f ∈ A}.
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Given f ∈ k{Y} \ k such that deglead( f )( f ) = d, we define the rank of f to be

rank( f ) := lead( f )d.

The weighted ranking < on ΘY determines a pre-order (that is, a relation satisfying all of the
properties of an order, except for the property that a 6 b and b 6 a imply that a = b) on k{Y} \k:

Definition 7. Given f1, f2 ∈ k{Y} \ k, we say that

rank( f1) < rank( f2)

if lead( f1) < lead( f2) or if lead( f1) = lead( f2) and deglead( f1)( f1) < deglead( f2)( f2).

Definition 8. A differential polynomial f is partially reduced with respect to another differential
polynomial g if no proper derivative of lead(g) appears in f , and f is reduced with respect to g
if, in addition,

deglead(g)( f ) < deglead(g)(g).

A differential polynomial is then (partially) reduced with respect to a set A ⊆ k{Y} \ k if it is
(partially) reduced with respect to every element of A.

Definition 9. For a set A ⊆ k{Y} \ k, we say that A is:

• autoreduced if every element of A is reduced with respect to every other element.

• weak d-triangular if L(A) is autoreduced.

• d-triangular if A is weak d-triangular and every element of A is partially reduced with
respect to every other element.

Note that every autoreduced set is d-triangular. Every weak d-triangular set (and thus every
d-triangular and autoreduced set) is finite (Hubert, 2003, Proposition 3.9). Since the set of leaders
of a weak d-triangular set A is autoreduced, distinct elements of A must have distinct leaders. If
u ∈ ΘY is the leader of some element of a weak d-triangular set A, we let Au denote this element.

Definition 10. We define a pre-order on the collection of all weak d-triangular sets, which
we also call rank, as follows. Given two weak d-triangular sets A = {A1, . . . , Ar} and B =

{B1, . . . , Bs}, in each case arranged in increasing rank, we say that rank(A) < rank(B) if either:

• there exists a k 6 min(r, s) such that rank(Ai) = rank(Bi) for all 1 6 i < k and rank(Ak) <
rank(Bk), or

• r > s and rank(Ai) = rank(Bi) for all 1 6 i 6 s.

We also say that rank(A) = rank(B) if r = s and rank(Ai) = rank(Bi) for all 1 6 i 6 r.

We can restrict this ranking to the collection of all d-triangular sets or the collection of all
autoreduced sets.

Definition 11. A characteristic set of a differential ideal I is an autoreduced set C ⊆ I of minimal
rank among all autoreduced subsets of I.

5



Given a finite set S ⊆ k{Y}, let S∞ denote the multiplicative set containing 1 and generated
by S . For an ideal I ⊆ k{Y}, we define the colon ideal to be

I : S∞ := {a ∈ k{Y} : ∃s ∈ S∞ with sa ∈ I}.

If I is a differential ideal, then I : S∞ is also a differential ideal (Kolchin, 1973, Section I.2).

Definition 12. For a differential polynomial f ∈ k{Y} and a weak d-triangular set A ⊆ k{Y},
a differential partial remainder f1 and a differential remainder f2 of f with respect to A are
differential polynomials such that there exist s ∈ S∞A , h ∈ H∞A such that s f ≡ f1 mod [A] and
h f ≡ f2 mod [A], with f1 partially reduced with respect to A and f2 reduced with respect to A.

We denote a differential partial remainder of f with respect to A by pd-red( f , A) and a dif-
ferential remainder of f with respect to A by d-red( f , A). There are algorithms to compute
pd-red( f , A) and d-red( f , A) for any f and A (Hubert, 2003, Algorithms 3.12 and 3.13). These
algorithms have the property that

rank(pd-red( f , A)), rank(d-red( f , A)) 6 rank( f );

since we have a weighted ranking, this implies that

w(pd-red( f , A)), w(d-red( f , A)) 6 w( f ).

Definition 13. Two derivatives u, v ∈ ΘY are said to have a common derivative if there exist
φ, ψ ∈ Θ such that φu = ψv. Note this is the case precisely when u = θ1y and v = θ2y for some
y ∈ Y and θ1, θ2 ∈ Θ.

Definition 14. If u = ∂i1
1 · · · ∂

im
m y and v = ∂

j1
1 · · · ∂

jm
m y for some y ∈ Y, we define the least common

derivative of u and v, denoted lcd(u, v), to be

lcd(u, v) = ∂
max(i1, j1)
1 · · · ∂

max(im, jm)
m y,

otherwise we set lcd(u, v) = 0 and, for any weight w, define w(0) = −1.

Definition 15. For f , g ∈ k{Y} \ k, we define the ∆-polynomial of f and g, denoted ∆( f , g), as
follows. If lead( f ) and lead(g) have no common derivatives, set ∆( f , g) = 0. Otherwise, let
φ, ψ ∈ Θ be such that

lcd(lead( f ), lead(g)) = φ(lead( f )) = ψ(lead(g)),

and define

∆( f , g) := sep(g)φ( f ) − sep( f )ψ(g).

Definition 16. A pair (A,H) is called a regular differential system if:

• A is a d-triangular set

• H is a set of differential polynomials that are all partially reduced with respect to A

• S A ⊆ H∞
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• for all f , g ∈ A, ∆( f , g) ∈ ((ΘA)<u) : H∞, where u = lcd(lead( f ), lead(g)).

Definition 17. Any ideal of the form [A] : H∞, where (A,H) is a regular differential system, is
called a regular differential ideal.

Every regular differential ideal is a radical differential ideal (Hubert, 2003, Theorem 4.12).

Definition 18. Given a radical differential ideal I ⊆ k{Y}, a regular decomposition of I is a finite
collection of regular differential systems {(A1,H1), . . . , (Ar,Hr)} such that

I =

r⋂
i=1

[Ai] : H∞i .

Due to the Rosenfeld-Gröbner algorithm, every radical differential ideal in k{Y} has a regular
decomposition.

Definition 19. A d-triangular set C is called a differential regular chain if it is a characteristic
set of [C] : H∞C ; in this case, we call [C] : H∞C a characterizable differential ideal.

Definition 20. A characteristic decomposition of a radical differential ideal I ⊆ k{Y} is a repre-
sentation of I as an intersection of characterizable differential ideals.

As we will recall in Section 3, every radical differential ideal also has a characteristic decom-
position.

3. Rosenfeld-Gröbner algorithm

Below we reproduce the Rosenfeld-Gröbner algorithm from (Hubert, 2003, Section 6). This
algorithm relies on two others, called auto-partial-reduce and update, which we also include.
We include these two auxiliary algorithms because, in Section 4, we will study their effect on the
growth of the weights of derivatives in Rosenfeld-Gröbner.

Rosenfeld-Gröbner takes as its input two finite subsets F,K ∈ k{Y} and outputs a finite set
A of regular differential systems such that

{F} : K∞ =
⋂

(A,H)∈A

[A] : H∞, (2)

whereA = ∅ if 1 ∈ {F} : K∞.
If we have a decomposition of {F} : K∞ as in (2), we can compute, using only algebraic

operations, a decomposition of the form

{F} : K∞ =
⋂
C∈C

[C] : H∞C , (3)

where C is finite and each C ∈ C is a differential regular chain (Hubert, 2003, Algorithms 7.1
and 7.2). This means that an upper bound on

⋃
(A,H)∈AW(A ∪ H) from (2) will also be an upper

bound on
⋃

C∈CW(C) from (3).
Rosenfeld-Gröbner has many immediate applications. For example, if K = {1}, then

{F} : K∞ = {F}, so in this case, Rosenfeld-Gröbner computes a regular decomposition of {F},
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which then also gives us a characteristic decomposition of {F} by the discussion in the previous
paragraph.

The weak differential Nullstellensatz says that a system of polynomial differential equations
F = 0 is consistent (that is, has a solution in some differential field extension of k) if and only if
1 < [F] (Kolchin, 1973, Section IV.2). Thus, since Rosenfeld-Gröbner(F,K) = ∅ if and only if
1 ∈ {F} : K∞, we see that F = 0 is consistent if and only if Rosenfeld-Gröbner(F, {1}) , ∅.

More generally, Rosenfeld-Gröbner and its extension for computing a characteristic decom-
position of a radical differential ideal allow us to test for membership in a radical differential
ideal, as follows. Suppose we have computed a characteristic decomposition

{F} =
⋂
C∈C

[C] : H∞C .

Now, a differential polynomial f ∈ k{Y} is contained in {F} if and only if f ∈ [C] : H∞C for all
C ∈ C; this latter case is true if and only if d-red( f ,C) = 0, which can be tested using (Hubert,
2003, Algorithm 3.13).

Rosenfeld-Gröbner, auto-partial-reduce, and update rely on the following tuples of differ-
ential polynomials:

Definition 21. A Rosenfeld-Gröbner quadruple (or RG-quadruple) is a 4-tuple (G,D, A,H) of
finite subsets of k{Y} such that:

• A is a weak d-triangular set, HA ⊆ H, D is a set of ∆-polynomials, and

• for all f , g ∈ A, either ∆( f , g) = 0 or ∆( f , g) ∈ D or

∆( f , g) ∈ (Θ(A ∪G)<u) : H∞u ,

where u = lcd(lead( f ), lead(g)) and Hu = HA<u ∪ (H \ HA) ∩ k[(ΘY)<u].

Remark 22. The RG-quadruple that is output by update satisfies additional properties that we
do not list, as they are not important for our analysis. For more information, we refer the reader
to (Hubert, 2003, Algorithm 6.10)

4. Order upper bound for arbitrary m

Given finite subsets F,K ⊆ k{Y}, let

h =W(F ∪ K). (4)

Our goal is to find an upper bound for

W

 ⋃
(A,H)∈A

(A ∪ H)

 ,
where A = Rosenfeld-Gröbner(F,K), in terms of h, m (the number of derivations), and n (the
number of differential indeterminates). By then choosing a specific weight, we can find an upper
bound forH

(⋃
(A,H)∈A(A ∪ H)

)
in terms of m, n, andH(F ∪ K).

We approach this problem as follows. Every (A,H) ∈ A is formed by applying auto-partial-
reduce to a 4-tuple (∅,∅, A′,H′) ∈ S. Thus, it suffices:
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Algorithm: Rosenfeld-Gröbner, (Hubert, 2003, Algorithm 6.11)
Data: F, K finite subsets of k{Y}
Result: A setA of regular differential systems such that:

• A is empty if it has been detected that 1 ∈ {F} : K∞

• {F} : K∞ =
⋂

(A,H)∈A
[A] : H∞ otherwise

S := {(F,∅,∅,K)};
A := ∅;
while S , ∅ do

(G,D, A,H) := an element of S;
S̄ = S \ (G,D, A,H);
if G ∪ D = ∅ then
A := A∪ auto-partial-reduce(A,H);

else
p := an element of G ∪ D;
Ḡ, D̄ := G \ {p},D \ {p};
p̄ := d-red(p, A);
if p̄ = 0 then
S̄ := S̄ ∪ {(Ḡ, D̄, A,H)};

else
if p̄ < k then

p̄i := p̄ − init( p̄) rank(p̄) p̄s := deglead( p̄)( p̄) p̄ − lead( p̄) sep(p̄);
S̄ := S̄ ∪ {update(Ḡ, D̄, A,H, p̄), (Ḡ ∪ { p̄s, sep( p̄)}, D̄, A,H ∪
{init( p̄)}), (Ḡ ∪ { p̄i, init( p̄)}, D̄, A,H)};

end
end

end
S := S̄;

end
returnA;
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Algorithm: auto-partial-reduce, (Hubert, 2003, Algorithm 6.8)
Data: Two finite subsets A,H of k{Y} such that (∅,∅, A,H) is an RG-quadruple
Result:
• The empty set if it is detected that 1 ∈ [A] : H∞

• Otherwise, a set with a single regular differential system (B,K) with L(A) = L(B),
HB ⊆ K, and [A] : H∞ = [B] : K∞

B := ∅;
for u ∈ L(A) increasingly do

b := pd-red(Au, B);
if rank(b) = rank(Au) then

B := B ∪ {b};
else

return (∅);
end

end
K := HB ∪ {pd-red(p, B) : p ∈ H \ HA};
if 0 ∈ K then

return (∅);
else

return {(B,K)};
end

Algorithm: update (Hubert, 2003, Algorithm 6.10)
Data:
• A 4-tuple (G,D, A,H) of finite subsets of k{Y}

• A differential polynomial p reduced with respect to A such that (G ∪ {p},D, A,H) is an
RG-quadruple

Result: A new RG-quadruple (Ḡ, D̄, Ā, H̄)
u := lead(p);
GA := {a ∈ A | lead(a) ∈ Θu};
Ā := A \GA;
Ḡ := G ∪GA;
D̄ := D ∪ {∆(p, a) | a ∈ Ā} \ {0};
H̄ := H ∪ {sep(p), init(p)};
return (Ḡ, D̄, Ā ∪ {p}, H̄);

10



• to bound how auto-partial-reduce increases the weight of a collection of differential poly-
nomials (it turns out to not increase the weight), and

• to bound W(G ∪ D ∪ A ∪ H) for all (G,D, A,H) added to S throughout the course of
Rosenfeld-Gröbner.

We accomplish the latter by determining when the weight of a tuple (G,D, A,H) added to S is
larger than the weights of the previous elements of S and boundingW(G ∪ D ∪ A ∪ H) in this
instance, and then bounding the number of times we can add such elements to S.

There is a sequence (Gi,Di, Ai,Hi) corresponding to each regular differential system (A,H)
in the output of Rosenfeld-Gröbner, where N = N(A,H), such that (Gi+1,Di+1, Ai+1,Hi+1)
is obtained from (Gi,Di, Ai,Hi) during the while loop, (G0,D0, A0,H0) = (F,∅,∅,K), and
(A,H) = auto-partial-reduce(AN ,HN).

We begin with an auxiliary result, which is an analogue of the first property from (Golubitsky
et al., 2009, Section 5.1).

Lemma 23. For every f ∈ Ai and i < j, there exists g ∈ A j such that lead( f ) ∈ Θ lead(g). In
particular, if p is reduced with respect to A j, then p is reduced with respect to Ai for all i < j.

Proof. It is sufficient to consider the case j = i + 1. If (Gi+1,Di+1, Ai+1,Hi+1) was obtained from
(Gi,Di, Ai,Hi) without applying update, then Ai = Ai+1. Otherwise, either f ∈ Ai \GAi (we use
the notation from update), or f ∈ GAi . In the former case, f ∈ Ai+1 as well, so we can set g = f .
In the latter case, lead( f ) ∈ Θ lead(p), so we can set g = p.

We define a partial order 4 on the set of derivatives ΘY as follows. For u, v ∈ ΘY , we say
that u 4 v if there exists θ ∈ Θ such that θu = v. Note that this implies that u and v are both
derivatives of the same y ∈ Y .

Definition 24. An antichain sequence in ΘY is a sequence of elements S = {s1, s2, . . . } ⊆ ΘY
that are pairwise incomparable in this partial order.

Given a sequence {(Gi,Di, Ai,Hi)}Ni=0 as above (where N = N(A,H) for some regular differential
system (A,H) in the output of Rosenfeld-Gröbner), we will construct an antichain sequence
S = {s1, s2, . . .} ⊆ ΘY inductively going along the sequence {(Gi,Di, Ai,Hi)}. Suppose S j−1 =

{s1, . . . , s j−1} has been constructed after considering (G0,D0, A0,H0), . . . , (Gi−1,Di−1, Ai−1,Hi−1),
where S 0 = ∅. A 4-tuple (Gi,Di, Ai,Hi) can be obtained from the tuple (Gi−1,Di−1, Ai−1,Hi−1)
in two ways:

(1) We did not perform update. In this case, we do not append a new element to S .

(2) We performed update with respect to a differential polynomial p̄. If there exists sk ∈ S j−1
such that lead(p̄) 4 sk, we do not append a new element to S j−1. Otherwise, let s j =

lead(p̄) and define S j = {s1, . . . , s j}. In the latter case, we set k j = i. We also set k0 = 0.

Lemma 25. The sequence {s j} constructed above is an antichain in ΘY and, for all j > 1,

w(s j) 6 max
(
h,max

l<k< j
w (lcd(sl, sk))

)
, (5)

where h is defined in (4).

11



Proof. Let i < j. Assume that s j < si. Then, p is not reduced with respect to Aki , which
contradicts Lemma 23. On the other hand, the case s j 4 si is impossible by the construction of
the sequence, so {s j} is an antichain sequence.

We denote the maximal j ∈ Z>0 such that k j 6 i by anti-ki. For every j > 1, we set

F j = max
(
h,max

l<k< j
w (lcd(sl, sk))

)
,

and F0 = 0. For all i > 0, let us set j = anti-ki and prove by induction on i that

(1) W
(

i⋃
t=0

(Gt ∪ Dt ∪ Ht)
)
6 F j+1;

(2) W
(

i⋃
t=0

At

)
6 F j;

(3) For every g ∈
i⋃

t=0
At, there exists j0 6 j such that s j0 ∈ Θ lead(g).

In the base case i = 0 = k0, we have

W(G0 ∪ D0 ∪ H0) = h = F1 and W(A0) =W(∅) = 0 = F0.

There are two distinct cases for i + 1:

(1) Case i + 1 < k j+1 (so anti-ki+1 = j). Then, (Gi+1,Di+1, Ai+1,Hi+1) was obtained from
(Gi,Di, Ai,Hi) in one of the following ways:

(a) We did not perform update. In this case, Ai+1 = Ai and

W(Gi+1 ∪ Di+1 ∪ Hi+1) 6W(Gi ∪ Di ∪ Hi).

(b) We performed update with respect to a differential polynomial p such that lead(g) ∈
Θ lead(p) for some g ∈

⋃i
t=0 At. In this case,

W(Ai+1) 6W

 i⋃
t=0

At

 .
Moreover, due to the third inductive hypothesis, there exists j0 6 j such that s j0 ∈

Θ lead(g) ⊂ Θ lead(p), and this proves the third hypothesis for i + 1. Then, for all
q ∈ At (t 6 i) with s j1 ∈ Θ lead(q) for some j1 6 j,

w(∆(p, g)) 6 w(lcd(lead(g), lead(q))) 6 w(lcd(s j0 , s j1 )) 6 F j+1.

Since Di+1 \Di consists of some of these polynomials, Gi+1 \Gi ⊆ Ai, and Hi+1 \Hi =

{sep(p), init(p)}, then

W(Gi+1 ∪ Di+1 ∪ Hi+1) 6 F j+1.

12



(2) Case i + 1 = k j+1 (so now anti-ki+1 = j + 1). We performed update with respect to a
differential polynomial p that is a result of reduction of some p̃ ∈ Gi ∪ Di with respect to
Ai. Then

W(Ai+1) 6 max(W(Ai),w(p)) 6 F j+1.

The third inductive hypothesis is satisfied since lead p = s j+1. Moreover, for every g ∈
i⋃

t=0
At with s j0 ∈ Θ lead(g) for some j0 6 j,

w(lcd(lead(g), lead(p))) 6 w
(
lcd(s j0 , s j+1)

)
6 F j+2. (6)

Since Di+1 \ Di consists of some of these polynomials, Gi+1 \ Gi ⊆ Ai, and Hi+1 \ Hi =

{sep(p), init(p)}, we have

W(Gi+1∪Di+1 ∪ Hi+1) 6 max(W(Gi ∪ Di ∪ Hi), F j+2) = F j+2.

Since w(s j) 6W(Ak j ) 6 F j, this completes the proof of Lemma 25.

Corollary 26. Let {si} be an antichain sequence satisfying (5). Then for all j > 1, w(s j) 6 h f j,
where { f j} is the Fibonacci sequence.

Proof. We will prove the statement by induction on j. For j = 1, 2, the right-hand side of the
bound in Lemma 25 is equal to h 6 h f j. Consider j > 2. In this case,

w(s j) 6 max
(
h,max

l<k< j
w (lcd(sl, sk))

)
.

We have

w (lcd(sl, sk)) 6 w(sl) + w(sk) 6 h f j−1 + h f j−2 = h f j.

Hence, w(s j) 6 max(h, h f j) = h f j.

Let n = {1, . . . , n}. Define the degree of an element ((i1, . . . , im), k) ∈ Zm
>0×n to be i1 +. . .+im.

Given a weight w
(
∂i1

1 · · · ∂
im
m

)
= c1i1 + . . . + cmim on Θ, define a map from the set of derivatives

ΘY to the set Zm
>0 × n by

∂i1
1 · · · ∂

im
m yk 7→ ((c1i1, . . . , cmim), k).

Note the degree of the image of θy in Z>0 × n is equal to the weight of θy in ΘY .
Under this map, the partial order 4 on ΘY determines a partial order 4 on Zm

>0 × n by saying

((i1, . . . , im), k) 4 (( j1, . . . , jm), l) ⇐⇒ k = l and ir 6 jr for all r, 1 6 r 6 m.

Thus, every antichain sequence of ΘY determines an antichain sequence of Zm
>0 × n. Every

antichain sequence of Zm
>0 × n (and thus of ΘY) is finite (Pierce, 2014, Lemma 4.4).

Given an increasing function f : Z>0 → Z>0, we say that f bounds the degree growth of an
antichain sequence S = {s1, . . . , sk} ⊆ Zm

>0 × n if deg(si) 6 f (i) for all 1 6 i 6 k. By (Pierce,
2014, Lemma 4.9), there is an upper bound on the length of an antichain sequence of Zm

>0 × n

with degree growth bounded by f , and this bound depends only on m, n, and f . Let Ln
f ,m be the

maximal length of an antichain sequence of Zm
>0 × n with degree growth bounded by f .
13



Theorem 27. Let F,K ⊆ k{Y} be finite subsets with h = W(F ∪ K), L = Ln
f ,m, and A =

Rosenfeld-Gröbner(F,K), where f (i) = h fi. Then

W

 ⋃
(A,H)∈A

(A ∪ H)

 6 h fL+1.

Proof. Since w(pd-red(p, B)) 6 w(p) for any p ∈ k{Y} and weak d-triangular set B, we have
W(B ∪ K) 6 W(A ∪ H), where {(B,K)} = auto-partial-reduce(A,H). Hence, it suffices to
boundW(G ∪D∪ A∪H) whenever the tuple (G,D, A,H) is added to S in Rosenfeld-Gröbner.

By Corollary 26 and the correspondence between antichain sequences of ΘY and Zm
>0 × n,

we obtain an antichain sequence of Zm
>0 × n of degree growth bounded by h fi, so the length of

this sequence (and thus the sequence from Lemma 25) is at most L.
In the proof of Lemma 25, it is shown that for all i 6 N, for j := anti-ki, we have

W

 i⋃
t=1

(Gt ∪ Dt ∪ At ∪ Ht)

 6 F j+1.

Since the largest possible j is the length of the antichain sequence (and this j is equal to anti-kN),
for every (Gi,Di, Ai,Hi), we have

W(Gi ∪ Di ∪ Ai ∪ Hi) 6 FL+1.

We bound FL+1 in the same way as in Corollary 26:

FL+1 6 max
(
h, max

l<k<L+1
w (lcd(sl, sk))

)
6 h fL−1 + h fL = h fL+1.

Since every (G,D, A,H) added to S is equal to (Gi,Di, Ai,Hi) for some i,

W

 ⋃
(A,H)∈A

(A ∪ H)

 6 max
(
h, max

l<k<L+1
w (lcd(sl, sk))

)
6 h fL+1. (7)

We can use Theorem 27 to bound the orders of the output Rosenfeld-Gröbner. Let F,K ⊆
k{Y} be two finite subsets, and define a weight w on Θ such that

W(F ∪ K) = H(F ∪ K). (8)

This can always be done by letting w(θ) = ord(θ) for all derivatives θ, but there are sometimes
other weights that lead to equation (8) being satisfied.

Example 28. We provide examples of differential polynomials f that arise as part of systems of
PDEs for which it is possible to construct a nontrivial weight w such that w( f ) = ord( f ). We
note that we are not applying Rosenfeld-Gröbner to these examples; we simply present them to
demonstrate that there are nontrivial weights satisfying equation (8).

(1) Consider the heat equation

ut − α · (uxx + uyy) = 0, f (u) := ∂tu − α · (∂2
xu + ∂2

yu) ∈ k{u},
14



where u(x, y, t) is the unknown, α is a positive constant, and k{u} has derivations
{∂x, ∂y, ∂t}. If we define a weight w on Θ by

w
(
∂i

x∂
j
y∂

k
t

)
= i + j + 2k,

then w( f ) = 2 = ord( f ).

(2) Consider the K-dV equation

φt + φxxx + 6φφx = 0, f (φ) := ∂tφ + ∂3
xφ + 6φ∂xφ ∈ k{φ},

where φ(x, t) is the unknown and k{φ} has derivations {∂x, ∂t}. Define a weight w on Θ by

w
(
∂i

x∂
j
t

)
= i + 3 j,

so that w( f ) = 3 = ord( f ).

Using Theorem 27, and (8), we obtain the following order bound for the output of Rosenfeld-
Gröbner:

Corollary 29. Let F,K ⊆ k{Y} be finite subsets with h = H(F ∪ K), L = Ln
f ,m, A =

Rosenfeld-Gröbner(F,K), where f (i) = h fi with { fi} the Fibonacci sequence. Let w
(
∂i1

1 · · · ∂
im
m

)
=

c1i1 + · · ·+ cmim be a weight defined on Θ such thatW(F ∪K) = H(F ∪K). Then, for all g ∈ A,

ord(g, ∂i) 6
h fL+1

ci

5. Refined bound for m = 2

In this section we give a refined weight bound for the Rosenfeld-Gröbner algorithm for the
case of two derivations. Let c1 and c2 be positive integers and w be the weight defined by

w
(
∂a

1∂
b
2

)
= c1a + c2b.

Proposition 30. Let h > 0 and an antichain {s1, . . . , sL} in Θy, where si = ∂
si,1

1 ∂
si,2

2 y, 1 6 i 6 L,
be such that

w(s j) 6 max
(
h,max

l<k< j
w(lcd(sl, sk))

)
. (9)

Then either, for every i, 1 6 i 6 L, we have

c1si,1 6 fh+2 − 1 and c2si,2 6 fh+3 − 2

or, for every i, 1 6 i 6 L, we have

c2si,2 6 fh+2 − 1 and c1si,1 6 fh+3 − 2.

15



Proof. We will prove the proposition by induction on h. If h = 0, then L = 1, s1,1 = s1,2 = 0, so

c1s1,1 = 0 6 f2 − 1 and c2s1,2 = 0 6 f3 − 2.

Now consider h > 1. First note that for all r > 1 and all c > 0,

fr + c 6 fr+c. (10)

This can be seen by applying, for all r > 1, fr + 1 6 fr+1, c times. Assume that, for every j,
1 6 j 6 L, s j,1 > 0. In particular, this means that h > w(s1) > c1. The antichain sequence
{s̃1, . . . , s̃L}, where

s̃ j = ∂
s j,1−1
1 ∂

s j,2

2 y, 1 6 j 6 L,

satisfies the inductive hypothesis for h− c1 in place of h. Thus, we have the following two cases:

(1) For every j, 1 6 j 6 L,

c1 s̃ j,1 6 fh−c1+2 − 1 and c2 s̃ j,2 6 fh−c1+3 − 2.

This implies that for every j, 1 6 j 6 L,

c1s j,1 = c1(s̃ j,1 + 1) 6 fh−c1+2 + c1 − 1 6 fh+2 − 1

(the latter inequality follows from (10)), and

c2s j,2 = c2 s̃ j,2 6 fh−c1+3 − 2 6 fh+3 − 2.

(2) For every j, 1 6 j 6 L,

c1 s̃ j,1 6 fh−c1+3 − 2 and c2 s̃ j,2 6 fh−c1+2 − 1.

This implies that for every j, 1 6 j 6 L,

c1s j,1 = c1(s̃ j,1 + 1) 6 fh−c1+3 + c1 − 2 6 fh+3 − 2

(by (10)), and

c2s j,2 = c2 s̃ j,2 6 fh−c1+2 − 1 6 fh+2 − 1.

The same argument works for the case in which s j,2 > 0 for every j, 1 6 j 6 L.
Hence, without loss of generality, we can assume that there exist j1, j2, a, and b such that

1 6 j1 < j2 6 L, s j1 = ∂a
1y, s j2 = ∂b

2y, and there is no j < j2 with s j,1 = 0. We construct an
antichain sequence {s̃1, . . . , s̃ j2−1} by the formula

s̃i = ∂
s̃i,1

1 ∂
s̃i,2

2 y, s̃i,1 = si,1 − 1, s̃i,2 = si,2;

this satisfies the inductive hypothesis for h − c1 in place of h. Again, we have two cases:

(1) For every i, 1 6 i < j2, c1 s̃i,1 6 fh−c1+2 − 1 and c2 s̃i,2 6 fh−c1+3 − 2.

(2) For every i, 1 6 i < j2, c1 s̃i,1 6 fh−c1+3 − 2 and c2 s̃i,2 6 fh−c1+2 − 1.
16



In particular,

c1a 6 max( fh−c1+2 − 1, fh−c1+3 − 2) + c1 = fh−c1+3 + c1 − 2 6 fh+2 − 1,

the latter inequality is due to (10). In both cases, due to (10),

max
l<k< j2

w (lcd(sl, sk)) 6 fh−c1+2 − 1 + fh−c1+3 + c1 − 2 = fh−c1+4 + c1 − 3 6 fh+3 − 2.

Due to (10), fh+3 − 2 > h + f3 − 2 = h. Hence

c2b 6 max
(
h, max

l<k< j2
w (lcd(sl, sk))

)
6 fh+3 − 2.

Since, for all i, 1 6 i 6 L,

c1si,1 6 c1a and c2si,2 6 c2b

by the definition of an antichain sequence, the proof is complete.

Similarly to Theorem 27, we can prove the following.

Corollary 31. Let F,K ⊆ k{y} (with respect to two derivations) be finite subsets with h =W(F∪
K) andA = Rosenfeld-Gröbner(F,K). Then

W

 ⋃
(A,H)∈A

(A ∪ H)

 6 fh+4 − 3.

Proof. We will use inequality (7) from the proof of Theorem 27. In particular, it states that

W

 ⋃
(A,H)∈A

(A ∪ H)

 6 max
(
h, max

l<k<L+1
w (lcd(sl, sk))

)
,

where L is the length of the corresponding antichain {s1, . . . , sL}. By Proposition 30,

max
(
h, max

l<k<L+1
w (lcd(sl, sk))

)
6 fh+2 − 1 + fh+3 − 2 = fh+4 − 3.

Proposition 30 also allows us to significantly improve the bound from (Gustavson et al.,
2016b) for m = 2 and arbitrary n. We define the number b(n, h) recursively by

b(1, h) = h+1, b(2, h) = fh+4−1+h, b(n, h) = h fb(n−1,h)+1 +b(n−1, h)+1 for n > 2. (11)

The proof of the following proposition is similar to the proof of (Freitag and León Sánchez, 2016,
Lemma 3.8).

Proposition 32. For every antichain sequence {s1, . . . , sL} in ΘY (with respect to two deriva-
tions), where Y = {y1, . . . , yn}, satisfying

w(s j) 6 max
(
h,max

l<k< j
w (lcd(sl, sk))

)
, (12)

we have L 6 b(n, h).
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Proof. We will prove the proposition by induction on n. For n = 1, it follows from (Freitag and
León Sánchez, 2016, Lemma 3.7).

Assume that n > 1. For every i, 1 6 i 6 n, let

gi := min{ j | s j ∈ Θyi}.

Reordering the y’s if necessary, we can assume that g1 < g2 < . . . < gn.
First, we separately consider the case n = 2. By the definition of g2, the sequence

{s1, . . . , sg2−1} is an antichain sequence in Θy1. Proposition 30 implies that, for every i < j < g2,

w(lcd(si, s j)) 6 fh+4 − 3,

so w(sg2 ) 6 fh+4 − 3. Hence, due to (Freitag and León Sánchez, 2016, Lemma 3.7), since
ord(s) 6 w(s),

Θy2 ∩ {s1, . . . , sL} 6 fh+4 − 2.

Thus, in total, there are at most h + 1 + fh+4 − 2 = b(2, h) of them.
Now let n > 2. For every l, 3 6 l 6 n, the antichain sequence {s1, . . . , sgl−1} satisfies the

inductive hypothesis. Hence, its length, gl − 1, does not exceed b(l− 1, h), so gl 6 b(l− 1, h) + 1.
Thus, due to Corollary 26, for every l, 3 6 l 6 n, there exists an element of {s1, . . . , sL} ∩ Θyl

of weight at most h fgl 6 h fb(l−1,h)+1. Thus, the length of the antichain sequence can be bounded
using (Freitag and León Sánchez, 2016, Lemma 3.7) as

L 6 (h + 1) + ( fh+4 − 2) +

n∑
l=3

(h fb(l−1,h)+1 + 1) = b(n, h).

Corollary 33. Let F,K ⊆ k{Y} (with respect to two derivations) be finite subsets with h =

W(F ∪ K) andA = Rosenfeld-Gröbner(F,K). Then

W

 ⋃
(A,H)∈A

(A ∪ H)

 6 h fb(n,h)+1.

Proof. The proof is the same as for Theorem 27 with b(n, h) from Proposition 32 as a bound for
the length of the antichain sequence.

6. Specific values

6.1. m = 2
When m = 2, we can use the results of Corollaries 31 and 33 to bound the weight of the

output of the Rosenfeld-Gröbner algorithm.
If W(F ∪ K) = H(F ∪ K) = h, we can use Corollary 29 to produce perhaps sharper

bounds for the order of the elements of Rosenfeld-Gröbner(F,K) with respect to particu-
lar derivations. In the examples that follow, we calculate upper bounds for ord(g, ∂1) for
g ∈ Rosenfeld-Gröbner(F,K), where w

(
∂i1

1 · · · ∂
im
m

)
= c1i1 + . . . + cmim with c1 equal to ei-

ther 2 or 3. We note that in the tables that follow, “N/A” appears whenever we cannot have the
given initial order h with given ci as part of the weight function.
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(1) Assume m = 2 and n = 1. Then by Corollary 31, the weights of the output polynomials
are bounded by fh+4 − 3, which results in the following table:

h 1 2 3 4 5 6 7 8 9 10
fh+4 − 3 2 4 10 18 31 52 86 141 230 374

ord(g, ∂1), c1 = 2 N/A 2 5 9 15 26 43 70 115 187
ord(g, ∂1), c1 = 3 N/A N/A 3 6 10 17 28 47 76 124

(2) Assume that m = 2 and n is arbitrary. Then by Corollary 33, the weights of the output
polynomials are bounded by h fb(n,h)+1, with b(n, h) defined by (11). This results in the
following table:

n h b(n, h) h fb(n,h)+1 ord(g, ∂1), c1 = 2 ord(g, ∂1), c1 = 3
2 1 5 8 N/A N/A
2 2 9 110 55 N/A
2 3 15 2,961 1,480 987
2 4 24 300, 100 150, 050 100, 033
2 5 38 316, 229, 930 158, 114, 965 105, 409, 976
3 1 14 610 N/A N/A

(3) Below is a table comparing the new weight upper bound h fb(n,h)+1 for m = 2 (via Corol-
lary 33) to the previous order upper bound f (Ln

f ,2 + 1), where f (i) = h fi, given in (Gus-
tavson et al., 2016b) for some specific values of n and h. As discussed in Corollary 29,
given a specific weight w such that W(F ∪ K) = H(F ∪ K) and a weight upper bound,
we can produce order upper bounds with respect to each derivation that are no greater than
the weight upper bound.

n h Old: f (Ln
f ,2 + 1) New: h fb(n,h)+1

1 3 15 10
1 6 126 52
1 9 801 141
1 12 4,524 984
1 15 23,955 4,178
2 1 8 8
2 2 178 110
2 3 32,838 2,961
2 4 252, 983, 944 300,100
2 5 6 1016 316, 229, 930
3 1 610 610
3 2 6 1040 6 1026

6.2. m > 2
For an arbitrary number of derivations (m > 2), by Theorem 27, the weight of the output

polynomials of the Rosenfeld-Gröbner algorithm is bounded above by h fL+1 = f (L + 1), where
f (i) = h fi and L = Ln

f ,m. In order to apply this result, we need to be able to effectively compute
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Ln
f ,m. (Pierce, 2014) only proved the existence of this number, without an analysis of how to

construct it. (Freitag and León Sánchez, 2016) constructed an upper bound for m = 1, 2. The
first analysis for the case of arbitrary m appears in (León Sánchez and Ovchinnikov, 2016).

Let f : Z>0 → Z>0 be an increasing function. Let us define a function Ψ f ,m : Z>0 × Zm
>0 →

Z>0 by the following relations:

Ψ f ,m(i, (0, . . . , 0, um)) = i,
Ψ f ,m(i − 1, (u1, . . . , ur, 0, . . . , 0, um))

= Ψ f ,m(i, (u1, . . . , ur − 1, f (i) − f (i − 1) + um + 1, 0, . . . , 0)), r < m − 1, ur > 0,
Ψ f ,m(i − 1, (u1, . . . , um))

= Ψ f ,m(i, (u1, . . . , um−1 − 1, f (i) − f (i − 1) + um + 1)), um−1 > 0.

Proposition 34 ((León Sánchez and Ovchinnikov, 2016, Corollary 3.10)). The maximal length
of an antichain sequence in Zm

>0 with degree growth bounded by f does not exceed

Ψ f ,m(1, ( f (1), 0, . . . , 0)).

Let us also define the sequence ψ0, ψ1, . . . by the relations ψ0 = 0 and

ψi+1 = Ψ fi,m(1, ( fi(1), 0, . . . , 0)) + ψi, fi(x) := f (x + ψi).

Proposition 35 ((León Sánchez and Ovchinnikov, 2016, Corollary 3.14)). The maximal length
of an antichain sequence in Zm

>0 × n with degree growth bounded by f does not exceed ψn.

Now, let us apply this technique to the function f (i) = h fi. Then, by Theorem 27, an upper
bound on the weights of the output of Rosenfeld-Gröbner will be f (Ln

f2,m
+ 1). In general, we

do not have a formula for Ln
f ,m for arbitrary h,m, n that improves the one given in Proposition 35;

however, we can compute Ln
f ,m for some specific values of h,m, n.

(1) Assume that m = 3 and n = 1. We can construct the maximal length antichain sequence
of Z3

>0 using the methods of (León Sánchez and Ovchinnikov, 2016) and the function
f (i) = h fi, resulting in the following sequence:

(h, 0, 0), (h − 1, 1, 0), (h − 1, 0, h + 1), (h − 2, 2h + 2, 0), . . . ,
(h − 2, 0, h f2h+6 − (h − 2)), . . . , (h − i, h fci−1+1 − (h − i), 0), . . . ,

(h − i, 0, h fci − (h − i)), . . . , (0, h fch−1+1, 0), . . . , (0, 0, h fch ),

where the sequence ci is given by c0 = 1 and for 1 6 i 6 h,

ci = ci−1 + 1 + h fci−1+1 − (h − i).

As a result, we see that the maximal length of an antichain sequence is equal to ch.

(2) Below is a table of some maximal lengths Ln
f ,m and weights f (Ln

f ,m + 1), where f (i) = h fi,
for m = 3, 4, and 5:

m n h length weight
3 1 1 3 3
3 1 2 10 178
4 1 1 5 8
5 1 1 20 10,946
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7. Order lower bound

This section gives a lower bound for the orders of the output of Rosenfeld-Gröbner, coming
from the lower bound for degrees of elements of a Gröbner basis from (Yap, 1991). To be
specific, we show that for m, h sufficiently large, there is a set of r differential polynomials
F ⊆ k{y} of order at most h, where k is equipped with m derivations, r ∼ m/2, and k is constant
with respect to all of the derivations, such that ifA = Rosenfeld-Gröbner(F, {1}), then

H

 ⋃
(A,H)∈A

(A ∪ H)

 > h2r
. (13)

The arguments presented here are standard, and we include them for completeness. We first note
the following standard fact about differential ideals generated by linear differential polynomials.

Proposition 36. Suppose F,K ⊆ k{Y} are composed of linear differential polynomials. Then
the output of Rosenfeld-Gröbner(F,K) is either empty or consists of a single regular differential
system (A,H) with A and H both composed of linear differential polynomials.

Suppose now we apply Rosenfeld-Gröbner to (F, {1}), where F consists of linear differential
polynomials, in order to obtain a regular decomposition of {F}. Since every element of F is
linear, [F] is a prime differential ideal, so by Proposition 36, we have

[F] = {F} = [A] : H∞

for some regular differential system (A,H), with A and H both composed of linear differential
polynomials. Since every element of A is linear, after performing scalar multiplications and
addition, A can be transformed to an autoreduced set Ā without affecting the leaders and orders
of elements of A. Since (A,H) is a regular differential system, Ā is a characteristic set of [F]. So,
it suffices to find a lower bound on the orders of elements of linear characteristic sets in k{Y}.

There is a well-studied one-to-one correspondence between polynomials in k[x1, . . . , xm] and
homogeneous linear differential polynomials in k{y}with m derivations and k a field of constants:

∑
ci1,...,im xi1

1 · · · x
im
m ↔

∑
ci1,...,im∂

i1
1 · · · ∂

im
m y. (14)

Any orderly ranking on Θy then determines a graded monomial order on k[x1, . . . , xm].
Given a polynomial f ∈ k[x1, . . . , xm], let f̃ ∈ k{y} be its corresponding differential polyno-

mial under (14). By the discussion above, if we have a collection of polynomials f1, . . . , fr ∈
k[x1, . . . , xm], we can construct a characteristic set C = {C1, . . . ,Cs} of [ f̃1, . . . , f̃r] ⊆ k{y} con-
sisting of homogeneous linear differential polynomials, and so each Ci ∈ k{y} is in fact equal to
g̃i for some gi ∈ k[x1, . . . , xm].

Proposition 37 (cf. (Wu, 2005, page 352),(Gerdt, 2005)). With the notation above, {g1, . . . , gs} ⊆

k[x1, . . . , xm] is a Gröbner basis of the ideal I = ( f1, . . . , fr).

By Proposition 37, we can thus find a lower bound for the orders of the output of Rosenfeld-
Gröbner via a lower bound for the degrees of elements of a Gröbner basis, as we do in the
following example.
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Example 38. This example demonstrates the lower bound (13) for the orders of the output of
Rosenfeld-Gröbner. In (Yap, 1991, Section 8), for m, h sufficiently large, a collection of m
algebraic polynomials f1, . . . , fr of degree at most h in m algebraic indeterminates, with r ∼ m/2,
is constructed such that any Gröbner basis of ( f1, . . . , fr) with respect to a graded monomial
order has an element of degree at least h2r

.
As a result of the previous discussion, we have a collection of differential polynomials

F = f̃1, . . . , f̃r ∈ k{y} of order h with m derivations such that any linear characteristic set
of [ f̃1, . . . , f̃r] will contain a differential polynomial of order at least h2r

. Since in this case
{(A,H)} = Rosenfeld-Gröbner(F, {1}) can be transformed into a linear characteristic set with-
out affecting the orders of the elements, this means that

H(A ∪ H) > h2r
.
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