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ABSTRACT
We compute an upper bound for the orders of derivatives in
the Rosenfeld-Gröbner algorithm. This algorithm computes
a regular decomposition of a radical differential ideal in the
ring of differential polynomials over a differential field of
characteristic zero with an arbitrary number of commuting
derivations. This decomposition can then be used to test
for membership in the given radical differential ideal. In
particular, this algorithm allows us to determine whether a
system of polynomial PDEs is consistent.

Previously, the only known order upper bound was given
by Golubitsky, Kondratieva, Moreno Maza, and Ovchin-
nikov for the case of a single derivation. We achieve our
bound by associating to the algorithm antichain sequences
whose lengths can be bounded using the results of León
Sánchez and Ovchinnikov.

CCS Concepts
•Computing methodologies → Symbolic and alge-
braic algorithms; Algebraic algorithms;

Keywords
Polynomial differential equations; differential elimination al-
gorithms; computational complexity

1. INTRODUCTION
The Rosenfeld-Gröbner algorithm is a fundamental algo-

rithm in the algebraic theory of differential equations. This
algorithm, which first appeared in [1, 2], takes as its in-
put a finite set F of differential polynomials and outputs a
representation of the radical differential ideal generated by
F as a finite intersection of regular differential ideals. The
Rosenfeld-Gröbner algorithm has many applications; for ex-
ample, it can be used to test membership in a radical differ-
ential ideal, and, in conjunction with the differential Null-
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stellensatz, can be used to test the consistency of a system
of polynomial differential equations. See [6] for a history
of the development of the Rosenfeld-Gröbner algorithm and
similar decomposition algorithms.

The Rosenfeld-Gröbner algorithm has been implemented
in Maple as a part of the DifferentialAlgebra package.
In order to determine the complexity of the algorithm, we
need to (among other things) find an upper bound on the or-
ders of derivatives that appear in all intermediate steps and
in the output of the algorithm. The first step in answer-
ing this question was completed in [6], in which an upper
bound in the case of a single derivation and any ranking on
the set of derivatives was found. If there are n differential
indeterminates and the order of the original system is h, the
authors showed that an upper bound on the orders of the
output of the Rosenfeld-Gröbner algorithm is h(n− 1)!.

In this paper, we extend this result by finding an upper
bound for the orders of derivatives that appear in the inter-
mediate steps and in the output of the Rosenfeld-Gröbner
algorithm in the case of an arbitrary number of commuting
derivations and an orderly ranking on the derivatives. Our
result depends on studying lengths of antichain sequences
in the set Zm

>0 × {1, . . . , n} equipped with a specific partial
order. This analysis began in [12] and continued in [4, 11].

We show that an upper bound for the orders of derivatives
in the intermediate steps and in the output of the Rosenfeld-
Gröbner algorithm is given by hfL+1, where h is the order
of our input system of differential equations, {f0, f1, f2, . . . }
is the Fibonacci sequence {0, 1, 1, 2, 3, 5, . . . }, and L is the
maximal possible length of a certain antichain sequence
(that depends solely on h, the number of derivations, and
the number of differential indeterminates). Note that this is
different from the upper bounds for the effective differential
Nullstellensatz [3, 8], which are higher and also depend on
the degree of the given system of differential equations.

The paper is organized as follows. In Section 2, we present
the background material from differential algebra that is
necessary to understand the Rosenfeld-Gröbner algorithm.
In Section 3, we describe this algorithm as it is presented
in [9], as well as two necessary auxiliary algorithms. In Sec-
tion 4, we prove our main result on the upper bound. In Sec-
tion 5, we calculate the upper bound for specific values using
the results of [11]. In Section 6, we give an example show-
ing that the lower bound for the orders of derivatives in the
Rosenfeld-Gröbner algorithm is at least double-exponential
in the number of derivations.
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2. BACKGROUND ON DIFFERENTIAL
ALGEBRA

In this section, we present background material from dif-
ferential algebra that is pertinent to the Rosenfeld-Gröbner
algorithm. For a more in-depth discussion, we turn the
reader to [9, 10].

Definition 1. A differential ring is a commutative ring
R with a collection of m commuting derivations ∆ =
{∂1, . . . , ∂m} on R.

Definition 2. An ideal I of a differential ring is a differ-
ential ideal if δa ∈ I for all a ∈ I and δ ∈ ∆.

For a set A ⊆ R, we let (A),
√

(A), [A], and {A} denote the
smallest ideal, radical ideal, differential ideal, and radical
differential ideal containing A, respectively. If Q ⊆ R, then
{A} =

√
[A].

Remark 1. In this paper, as usual, we also use the
braces {a1, a2, . . .} to denote the set containing the elements
a1, a2, . . .. Even though this notation conflicts with the
above notation for radical differential ideals (used here for
historical reasons), it will be clear from the context which
of the two objects we mean in each particular situation.

In this paper, k is a differential field of characteristic zero
with m commuting derivations. The set of derivative oper-
ators is denoted by

Θ :=
{
∂i1

1 · · · ∂
im
m : ij ∈ Z>0, 1 6 j 6 m

}
.

For Y = {y1, . . . , yn} a set of n differential indeterminates,
the set of derivatives of Y is

ΘY := {θy : θ ∈ Θ, y ∈ Y }.

Then the ring of differential polynomials over k is defined to
be

k{Y } = k{y1, . . . , yn} := k[θy : θy ∈ ΘY ].

We can naturally extend the derivations ∂1, . . . , ∂m to the
ring k{Y } by defining

∂j
(
∂i1

1 · · · ∂
im
m yk

)
:= ∂i1

1 · · · ∂
ij+1

j · · · ∂im
m yk.

For any θ = ∂i1
1 · · · ∂im

m ∈ Θ, we define the order of θ to be

ord(θ) := i1 + · · ·+ im.

For any derivative u = θy ∈ ΘY , we define

ord(u) := ord(θ).

For a differential polynomial f ∈ k{Y } \ k, we define the
order of f to be the maximum order of all derivatives that
appear in f . For any finite set A ⊆ k{Y } \ k, we set

H(A) := max{ord(f) : f ∈ A}. (1)

Definition 3. An orderly ranking on the set ΘY is a total
order < satisfying the following three additional properties:
for all u, v ∈ ΘY and all θ ∈ Θ, θ 6= id,

1. u < θu

2. if u < v, then θu < θv

3. if ord(u) < ord(v), then u < v.

For a derivative u ∈ ΘY , we let (ΘY )<u (respectively,
(ΘY )6u) be the collection of all derivatives v ∈ ΘY with
v < u (respectively, v 6 u).

From now on, we fix an orderly ranking.

Definition 4. Let f ∈ k{Y } \ k.

• The derivative u ∈ ΘY of highest rank appearing in f is
called the leader of f , denoted lead(f).

• If we write f as a univariate polynomial in lead(f),
the leading coefficient is called the initial of f , denoted
init(f).

• If we apply any derivative δ ∈ ∆ to f , the leader of δf is
δ(lead(f)), and the initial of δf is called the separant of
f , denoted sep(f).

Given a set A ⊆ k{Y }\k, we will denote the set of leaders
of A by L(A), the set of initials of A by IA, and the set of
separants of A by SA; we then let HA = IA ∪ SA be the set
of initials and separants of A. For any derivative u ∈ ΘY ,
we let A<u (respectively, A6u) be the elements of A with
leader < u (respectively, 6 u), that is,

A<u := A ∩ k[(ΘY )<u] and A6u := A ∩ k[(ΘY )6u].

We can similarly define (ΘA)<u and (ΘA)6u, where

ΘA := {θf : θ ∈ Θ, f ∈ A}.

Given f ∈ k{Y }\k such that deglead(f)(f) = d, we define
the rank of f to be

rank(f) := lead(f)d.

The orderly ranking < on ΘY determines a pre-order (that
is, a relation satisfying all of the properties of an order,
except for the property that a 6 b and b 6 a imply that
a = b) on k{Y } \ k, as follows.

Definition 5. Given f1, f2 ∈ k{Y } \ k such that
deglead(f1)(f1) = d1 and deglead(f2)(f2) = d2, we say that

rank(f1) < rank(f2)

if lead(f1) < lead(f2) or if lead(f1) = lead(f2) and d1 < d2.

Definition 6. A differential polynomial f is partially re-
duced with respect to another differential polynomial g if no
proper derivative of lead(g) appears in f , and f is reduced
with respect to g if, in addition,

deglead(g)(f) < deglead(g)(g).

A differential polynomial is then (partially) reduced with
respect to a set A ⊆ k{Y } \ k if it is (partially) reduced
with respect to every element of A.

Definition 7. For a set A ⊆ k{Y } \ k, we say that A is:

• autoreduced if every element of A is reduced with respect
to every other element.

• weak d-triangular if L(A) is autoreduced.

• d-triangular if A is weak d-triangular and every element
of A is partially reduced with respect to every other ele-
ment.



Note that every autoreduced set is d-triangular. Every
weak d-triangular set (and thus every d-triangular and au-
toreduced set) is finite (see [9, Proposition 3.9]). Since the
set of leaders of a weak d-triangular set A is autoreduced,
distinct elements of A must have distinct leaders. If u ∈ ΘY
is the leader of some element of a weak d-triangular set A,
we let Au denote this element.

Definition 8. We define a pre-order on the collection of all
weak d-triangular sets, which we also call rank, as follows.
Given two weak d-triangular sets A = {A1, . . . , Ar} and
B = {B1, . . . , Bs}, in each case arranged in increasing rank,
we say that rank(A) < rank(B) if either:

• there exists a k 6 min(r, s) such that rank(Ai) =
rank(Bi) for all 1 6 i < k and rank(Ak) < rank(Bk),
or

• r > s and rank(Ai) = rank(Bi) for all 1 6 i 6 s.

We also say that rank(A) = rank(B) if r = s and rank(Ai) =
rank(Bi) for all 1 6 i 6 r.

We can restrict this ranking to the collection of all d-
triangular sets or the collection of all autoreduced sets.

Definition 9. A characteristic set of a differential ideal I
is an autoreduced set C ⊆ I of minimal rank among all
autoreduced subsets of I.

Given a finite set S ⊆ k{Y }, denote by S∞ the multi-
plicative set containing 1 and generated by S. For an ideal
I ⊆ k{Y }, we define the colon ideal to be

I : S∞ := {a ∈ k{Y } : ∃s ∈ S∞ with sa ∈ I}.

If I is a differential ideal, then I : S∞ is also a differential
ideal (see [10, Chapter I, Section 2]).

Definition 10. Given a differential polynomial f ∈ k{Y }
and a weak d-triangular set A ⊆ k{Y }, a differential par-
tial remainder f1 and a differential remainder f2 of f with
respect to A are differential polynomials such that there ex-
ist s ∈ S∞A and h ∈ H∞A such that sf ≡ f1 mod [A] and
hf ≡ f2 mod [A], with f1 partially reduced with respect to
A and f2 reduced with respect to A.

We denote a differential partial remainder of f with re-
spect to A by pd-red(f,A) and a differential remainder of f
with respect to A by d-red(f,A). There are algorithms to
compute pd-red(f,A) and d-red(f,A) for any f and A (see
[9, Algorithm 3.12 & Algorithm 3.13]). These algorithms
have the property that

rank(pd-red(f,A)), rank(d-red(f,A)) 6 rank(f);

since we have an orderly ranking, this implies that

ord(pd-red(f,A)), ord(d-red(f,A)) 6 ord(f).

Definition 11. Two derivatives u, v ∈ ΘY are said to have
a common derivative if there exist φ, ψ ∈ Θ such that φu =
ψv. Note this is the case precisely when u = θ1y and v = θ2y
for some y ∈ Y and θ1, θ2 ∈ Θ.

Definition 12. If u = ∂i1
1 · · · ∂im

m y and v = ∂j1
1 · · · ∂jm

m y
for some y ∈ Y , we define the least common derivative of u
and v, denoted lcd(u, v), to be

lcd(u, v) = ∂
max(i1,j1)
1 · · · ∂max(im,jm)

m y.

Definition 13. For f, g ∈ k{Y } \ k, we define the ∆-
polynomial of f and g, denoted ∆(f, g), as follows. If lead(f)
and lead(g) have no common derivatives, set ∆(f, g) = 0.
Otherwise, let φ, ψ ∈ Θ be such that

lcd(lead(f), lead(g)) = φ(lead(f)) = ψ(lead(g)),

and define

∆(f, g) := sep(g)φ(f)− sep(f)ψ(g).

Definition 14. A pair (A,H) is called a regular differential
system if the following four conditions hold:

• A is a d-triangular set

• H is a set of differential polynomials that are all partially
reduced with respect to A

• SA ⊆ H∞

• for all f, g ∈ A,

∆(f, g) ∈ ((ΘA)<u) : H∞,

where u = lcd(lead(f), lead(g)).

Definition 15. Any ideal of the form [A] : H∞, where
(A,H) is a regular differential system, is called a regular
differential ideal.

Every regular differential ideal is a radical differential ideal
(see [9, Theorem 4.12]).

Definition 16. Given a radical differential ideal I ⊆
k{Y }, a regular decomposition of I is a finite collection
of regular differential systems {(A1, H1), . . . , (Ar, Hr)} such
that

I =

r⋂
i=1

[Ai] : H∞i .

Due to the Rosenfeld-Gröbner algorithm, every radical dif-
ferential ideal in k{Y } has a regular decomposition.

Definition 17. A d-triangular set C is called a differential
regular chain if it is a characteristic set of [C] : H∞C ; in this
case, we call [C] : H∞C a characterizable differential ideal.

Definition 18. A characteristic decomposition of a radical
differential ideal I ⊆ k{Y } is a representation of I as an
intersection of characterizable differential ideals.

As we will recall in Section 3, every radical differential
ideal also has a characteristic decomposition.

3. ROSENFELD-GRÖBNER
ALGORITHM

Below we reproduce the Rosenfeld-Gröbner algorithm
from [9, Section 6]. This algorithm relies on two others,
called auto-partial-reduce and update, which we also in-
clude. We need to include these two auxiliary algorithms
because, in Section 4, we will study their effect on the growth
of the orders of derivatives in the Rosenfeld-Gröbner algo-
rithm.



The Rosenfeld-Gröbner algorithm takes as its input two
finite subsets F,K ∈ k{Y } and outputs a finite set A of
regular differential systems such that

{F} : K∞ =
⋂

(A,H)∈A

[A] : H∞, (2)

where A = ∅ if 1 ∈ {F} : K∞.
If we have a decomposition of {F} : K∞ as in (2), we can

compute, using only algebraic operations, a decomposition
of the form

{F} : K∞ =
⋂
C∈C

[C] : H∞C , (3)

where C is finite and each C ∈ C is a differential regular
chain (see [9, Algorithm 7.1 & Algorithm 7.2]). This means
that an upper bound on

⋃
(A,H)∈AH(A ∪ H) from (2) will

also be an upper bound on
⋃

C∈CH(C) from (3).
The Rosenfeld-Gröbner algorithm has many immediate

applications. For example, if K = {1}, then {F} : K∞ =
{F}, so in this case, the Rosenfeld-Gröbner algorithm com-
putes a regular decomposition of {F}, which then also gives
us a characteristic decomposition of {F} by the discussion
in the previous paragraph.

The weak differential Nullstellensatz says that a system of
polynomial differential equations F = 0 is consistent (that
is, has a solution in some differential field extension of k)
if and only if 1 /∈ [F ] (see [10, Chapter IV, Section 2]).
Thus, since Rosenfeld-Gröbner(F,K) = ∅ if and only if 1 ∈
{F} : K∞, we see that F = 0 is consistent if and only if
Rosenfeld-Gröbner(F, {1}) 6= ∅.

More generally, the Rosenfeld-Gröbner algorithm and its
extension for computing a characteristic decomposition of
a radical differential ideal allow us to test for membership
in a radical differential ideal, as follows. Suppose we have
computed a characteristic decomposition

{F} =
⋂
C∈C

[C] : H∞C .

Now, a differential polynomial f ∈ k{Y } is contained in {F}
if and only if f ∈ [C] : H∞C for all C ∈ C; this latter case
is true if and only if d-red(f, C) = 0, which can be tested
using [9, Algorithm 3.13].

The Rosenfeld-Gröbner algorithm and its two auxiliary
algorithms auto-partial-reduce and update rely on the fol-
lowing tuples of differential polynomials:

Definition 19. A Rosenfeld-Gröbner quadruple (or RG-
quadruple) is a 4-tuple (G,D,A,H) of finite subsets of k{Y }
such that:

• A is a weak d-triangular set

• HA ⊆ H

• D is a set of ∆-polynomials

• for all f, g ∈ A, either ∆(f, g) = 0 or ∆(f, g) ∈ D or

∆(f, g) ∈ (Θ(A ∪G)<u) : H∞u ,

where u = lcd(lead(f), lead(g)) and

Hu = HA<u ∪ (H \HA) ∩ k[(ΘY )<u].

Remark 2. The RG-quadruple that is output by the up-
date algorithm satisfies additional properties that we do not
list, as they are not important for our analysis. For more
information, we refer the reader to [9, Algorithm 6.10]

Algorithm: Rosenfeld-Gröbner, [9, Algorithm 6.11]

Data: F , K finite subsets of k{Y }
Result: A set A of regular differential systems such

that:

• A is empty if it has been detected that 1 ∈ {F} : K∞

• {F} : K∞ =
⋂

(A,H)∈A
[A] : H∞ otherwise

S := {(F,∅,∅,K)};
A := ∅;
while S 6= ∅ do

(G,D,A,H) := an element of S;

S̄ = S \ (G,D,A,H);
if G ∪D = ∅ then
A := A ∪ auto-partial-reduce(A,H);

else
p := an element of G ∪D;

Ḡ, D̄ := G \ {p}, D \ {p};
p̄ := d-red(p,A);
if p̄ = 0 then
S̄ := S̄ ∪ {(Ḡ, D̄, A,H)};

else
if p̄ /∈ k then

p̄i := p̄− init(p̄) rank(p̄)
p̄s := deglead(p̄)(p̄)p̄− lead(p̄) sep(p̄);

S̄ := S̄ ∪ {update(Ḡ, D̄, A,H, p̄), (G ∪
{p̄s, sep(p̄)}, D̄, A,H ∪ {init(p̄)}), (Ḡ ∪
{p̄i, init(p̄)}, D̄, A,H)};

end

end

end

S := S̄;

end
return A;

Algorithm: auto-partial-reduce, [9, Algorithm 6.8]

Data: Two finite subsets A,H of k{Y } such that
(∅,∅, A,H) is an RG-quadruple

Result:

• The empty set if it is detected that 1 ∈ [A] : H∞

• Otherwise, a set with a single regular differential
system (B,K) with L(A) = L(B), HB ⊆ K, and
[A] : H∞ = [B] : K∞

B := ∅;
for u ∈ L(A) increasingly do

b := pd-red(Au, B);
if rank(b) = rank(Au) then

B := B ∪ {b};
else

return (∅);
end

end
K := HB ∪ {pd-red(p,B) : p ∈ H \HA};
if 0 ∈ K then

return (∅);
else

return {(B,K)};
end



Algorithm: update, [9, Algorithm 6.10]

Data:

• A 4-tuple (G,D,A,H) of finite subsets of k{Y }

• A differential polynomial p reduced with respect to A
such that (G ∪ {p}, D,A,H) is an RG-quadruple

Result: A new RG-quadruple (Ḡ, D̄, Ā, H̄)
u := lead(p);
GA := {a ∈ A | lead(a) ∈ Θu};
Ā := A \GA;

Ḡ := G ∪GA;

D̄ := D ∪ {∆(p, a) | a ∈ Ā} \ {0};
H̄ := H ∪ {sep(p), init(p)};
return (Ḡ, D̄, Ā ∪ {p}, H̄);

4. ORDER UPPER BOUND
Given finite subsets F,K ⊆ k{Y }, let h = H(F ∪ K)

(see (1)). Our goal is to find an upper bound for

H

 ⋃
(A,H)∈A

(A ∪H)

 ,

where A = Rosenfeld-Gröbner(F,K), in terms of h, m (the
number of derivations), and n (the number of differential
indeterminates).

We approach this problem as follows. Every (A,H) ∈ A
is formed by applying the algorithm auto-partial-reduce to
a 4-tuple (∅,∅, A′, H ′) ∈ S. Thus, it suffices:

• to bound how auto-partial-reduce increases the order of a
collection of differential polynomials (it turns out to not
increase the order), and

• to bound H(G∪D∪A∪H) for all (G,D,A,H) added to
S throughout the course of the Rosenfeld-Gröbner algo-
rithm.

We accomplish the latter by determining when the order of
a tuple (G,D,A,H) added to S is larger than the orders of
the previous elements of S and bounding H(G∪D∪A∪H)
in this instance, and then bounding the number of times we
can add such elements to S.

There is a sequence {(Gi, Di, Ai, Hi)}Ni=0 corresponding to
each regular differential system (A,H) in the output of the
Rosenfeld-Gröbner algorithm, where N = N(A,H), such that
(Gi+1, Di+1, Ai+1, Hi+1) is obtained from (Gi, Di, Ai, Hi)
during the while loop, (G0, D0, A0, H0) = (F,∅,∅,K), and
(A,H) = auto-partial-reduce(AN , HN ).

We begin with an auxiliary result, which is an analogue
of the first property from [7, Section 5.1].

Lemma 1. For every f ∈ Ai and i < j, there exists
g ∈ Aj such that lead(f) ∈ Θ lead(g). In particular, if p
is reduced with respect to Aj, then p is also reduced with
respect to Ai for all i < j.

Proof. It is sufficient to consider the case j = i + 1. If
(Gi+1, Di+1, Ai+1, Hi+1) was obtained from (Gi, Di, Ai, Hi)
without applying the update operation, then Ai = Ai+1.
Otherwise, either f ∈ Ai \ GAi (we use the notation from
the update algorithm), or f ∈ GAi . In the former case,
f ∈ Ai+1 as well, so we can set g = f . In the latter case,
lead(f) ∈ Θ lead(p), so we can set g = p.

We define a partial order 4 on the set of derivatives ΘY
as follows. For u, v ∈ ΘY , we say that u 4 v if there exists
θ ∈ Θ such that θu = v. Note that this implies that u and
v are both derivatives of the same y ∈ Y .

Definition 20. An antichain sequence in ΘY is a sequence
of elements S = {s1, s2, . . . } ⊆ ΘY that are pairwise incom-
parable in this partial order.

Given a sequence {(Gi, Di, Ai, Hi)}Ni=0 as above (where
N = N(A,H) for some regular differential system (A,H) in
the output of the Rosenfeld-Gröbner algorithm), we will con-
struct an antichain sequence S = {s1, s2, . . .} ⊆ ΘY induc-
tively going along the sequence {(Gi, Di, Ai, Hi)}.

Suppose Sj−1 = {s1, . . . , sj−1} has been constructed after
considering (G0, D0, A0, H0), . . . , (Gi−1, Di−1, Ai−1, Hi−1),
where S0 = ∅. A 4-tuple (Gi, Di, Ai, Hi) can be obtained
from the tuple (Gi−1, Di−1, Ai−1, Hi−1) in two ways:

1. We did not perform the update operation. In this case,
we do not append a new element to S.

2. We performed update with respect to some differen-
tial polynomial p. If there exists sk ∈ Sj−1 such that
lead(p) 6 sk, we do not append a new element to
Sj−1. Otherwise, we let sj = lead(p) and define Sj =
{s1, . . . , sj}. In the latter case, we set kj = i.

We also set k0 = 0.

Theorem 1. The sequence {sj} is an antichain sequence
in ΘY and, for all j > 1,

ord(sj) 6 hfj ,

where {fj} is the Fibonacci sequence.

Proof. Let i < j. Assume that sj < si. Then, p is not
reduced with respect to Aki , which contradicts Lemma 1.
On the other hand, the case sj 4 si is impossible by the con-
struction of the sequence, so {sj} is an antichain sequence.

We denote by anti-k i the maximal j ∈ Z>0 such that
kj 6 i. For all i > 0, let us set j = anti-k i and prove by
induction on i that

1. H
(

i⋃
t=0

(Gt ∪Dt ∪Ht)

)
6 hfj+1;

2. H
(

i⋃
t=0

At

)
6 hfj ;

3. For all distinct elements of
i⋃

t=0

At, the orders of the least

common derivatives of their leaders do not exceed hfj+1.

In the base case i = 0 = k0, we have

H(G0 ∪D0 ∪H0) = h = hf1

and

H(A0) = H(∅) = 0 = hf0.

There are two distinct cases for i+ 1:

1. Case i+ 1 < kj+1 (so we have anti-k i+1 = j).

Then, (Gi+1, Di+1, Ai+1, Hi+1) was obtained from
(Gi, Di, Ai, Hi) in one of the following ways:



(a) We did not perform the update operation. In this
case, Ai+1 = Ai and

H(Gi+1 ∪Di+1 ∪Hi+1) 6 H(Gi ∪Di ∪Hi).

(b) We performed the update operation with respect
to a differential polynomial p such that lead(f) ∈
Θ lead(p) for some f ∈

⋃i
t=0 At. In this case,

H(Ai+1) 6 H

(
i⋃

t=0

At

)
.

Then, for all g ∈ At (t 6 i),

ord(∆(p, g)) 6 ord(lcd(lead(g), lead(f))),

which is bounded by hfj+1 due to the third induc-
tive hypothesis. Since Di+1 \ Di consists of some of
these polynomials, Gi+1 \Gi ⊆ Ai, and Hi+1 \Hi =
{sep(p), init(p)}, then

H(Gi+1 ∪Di+1 ∪Hi+1) 6 H(Gi ∪Di ∪Hi).

2. Case i+ 1 = kj+1 (so now anti-k i+1 = j + 1). We per-
formed the update operation with respect to a differen-
tial polynomial p, which is a result of reduction of some
p̃ ∈ Gi ∪Di with respect to Ai. Then

H(Ai+1) 6 max(H(Ai), ord(p)) 6 hfj+1.

Moreover, for every g ∈
i⋃

t=0

At,

ord(lcd(lead(g), lead(p))) 6 hfj + hfj+1 = hfj+2.

Since Di+1 \ Di consists of some of these polynomials,
Gi+1 \ Gi ⊆ Ai, and Hi+1 \ Hi = {sep(p), init(p)}, we
have

H(Gi+1∪Di+1 ∪Hi+1)

6 max(H(Gi ∪Di ∪Hi), hfj+2) = hfj+2.

Since ord(sj) 6 H(Akj ) 6 hfj , this completes the proof.

Let n = {1, . . . , n}. The set of derivatives ΘY is in one-
to-one correspondence with the set Zm

>0 × n by associating

∂i1
1 · · · ∂im

m yk ∈ ΘY to ((i1, . . . , im), k) ∈ Zm
>0× n. We define

the degree of an element of Zm
>0 × n to be the order of its

corresponding element of ΘY .
Under this correspondence, the partial order 4 on ΘY

determines a partial order 4 on Zm
>0 × n by saying

((i1, . . . , im), k) 4 ((j1, . . . , jm), l) if and only if k = l and
ir 6 jr for all 1 6 r 6 m. Thus there is a one-to-one cor-
respondence between the set of antichain sequences of ΘY
and the set of antichain sequences of Zm

>0 × n. Every an-
tichain sequence of Zm

>0 × n (and thus of ΘY ) is finite; see
[12, Lemma 4.4].

Given an increasing function f : Z>0 → Z>0, we say that
f bounds the degree growth of an antichain sequence S =
{s1, . . . , sk} ⊆ Zm

>0 × n if deg(si) 6 f(i) for all 1 6 i 6 k. In
[12, Lemma 4.9], it is shown that there is an upper bound on
the length of an antichain sequence of Zm

>0 × n with degree
growth bounded by f , and this upper bound depends solely
on m, n, and f . We let Ln

f,m be the maximal length of an
antichain sequence of Zm

>0 × n with degree growth bounded
by f .

Theorem 2. Let F,K ⊆ k{Y } be finite subsets with h =
H(F ∪ K), let A = Rosenfeld-Gröbner(F,K), and let L =
Ln
f,m, where f(i) = hfi with {fi} the Fibonacci sequence.

Then

H

 ⋃
(A,H)∈A

(A ∪H)

 6 hfL+1.

Proof. Since ord(pd-red(p,B)) 6 ord(p) for any p ∈
k{Y } and weak d-triangular set B, this means that

H(B ∪K) 6 H(A ∪H),

where {(B,K)} = auto-partial-reduced(A,H). Hence, it
suffices to bound H(G ∪ D ∪ A ∪ H) whenever the tuple
(G,D,A,H) is added to S in the Rosenfeld-Gröbner algo-
rithm.

By Theorem 1 and the correspondence between antichain
sequences of ΘY and Zm

>0 × n, we obtain an antichain se-
quence of Zm

>0 × n of degree growth bounded by f(i), so the
length of this sequence (and thus the sequence from Theo-
rem 1) is at most L.

In the proof of Theorem 1, it is shown that for all i 6 N ,
for j := anti-k i, we have

H

(
i⋃

t=1

(Gt ∪Dt ∪At ∪Ht)

)
6 hfj+1.

Since the largest possible j is the length of the an-
tichain sequence (and this j is equal to anti-kN ), for every
(Gi, Di, Ai, Hi), we have

H(Gi ∪Di ∪Ai ∪Hi) 6 hfL+1.

Since every (G,D,A,H) added to S is equal to
(Gi, Di, Ai, Hi) for some i, this completes the proof.

5. SPECIFIC VALUES
In order to apply Theorem 2, we need to be able to effec-

tively compute Ln
f,m. [12] only proves the existence of this

number, without an analysis of how to construct it. [4] con-
structs an upper bound for m = 1, 2. The first analysis for
the case of arbitrary m appears in [11].

Let f : Z>0 → Z>0 be an increasing function. Let us de-
fine a function Ψf,m : Z>0 × Zm

>0 → Z>0 by the following
relations:

Ψf,m(i, (0, . . . , 0, um)) = i,

Ψf,m(i− 1, (u1, . . . , ur, 0, . . . , 0, um))

= Ψf,m(i, (u1, . . . , ur−1, f(i)−f(i−1)+um+1, 0, . . . , 0))

if r < m− 1, ur > 0, and

Ψf,m(i− 1, (u1, . . . , um))

= Ψf,m(i, (u1, . . . , um−1 − 1, f(i)− f(i− 1) + um + 1))

if um−1 > 0.

Proposition 1 ([11, Corollary 3.10]).
The maximal length of an antichain sequence in Zm

>0 with
degree growth bounded by f does not exceed

Ψf,m(1, (f(1), 0, . . . , 0)).



Let us also define the sequence ψ0, ψ1, . . . by the relations
ψ0 = 0 and

ψi+1 = Ψfi,m(1, (fi(1), 0, . . . , 0)) + ψi,

where fi(x) = f(x+ ψi).

Proposition 2 ([11, Corollary 3.14]). The
maximal length of an antichain sequence in Zm

>0 × n with
degree growth bounded by f does not exceed ψn.

Now, let us apply this technique to the function f(i) =
hfi. We then have, by Theorem 2, that an upper bound on
the orders of the output of the Rosenfeld-Gröbner algorithm
will be f(Ln

f,m + 1). In general, we cannot construct a for-
mula for Ln

f,m for arbitrary h,m, n that improves upon the
one given in Proposition 2; however, we can compute Ln

f,m

for some specific values of h,m, n.

1. Assume that n = 1 and m = 2. Then, the maximal
length of an antichain sequence does not exceed h + 1.
In this case, the orders of the resulting polynomials are
bounded by the single-exponential estimate, coming from
the standard formula for the Fibonacci numbers,

hfh+2 =
h√
5

((
1 +
√

5

2

)h+2

−
(

1−
√

5

2

)h+2
)
.

This results in the following table:

h 1 2 3 4 5 6 7
hfh+2 2 6 15 32 65 126 238

2. Assume that m = 2 and n is arbitrary. Then, the maxi-
mal length of an antichain sequence does not exceed bn,
where bn satisfies b1 = h+ 1 and bn+1 = hfbn+1 + bn + 1,
which results in the following table:

n h bn hfbn+1

2 1 5 8
2 2 10 178
2 3 20 32,838
2 4 38 252, 983, 944

2 5 72 ≤ 1016

3 1 14 610

3 2 189 ≤ 1040

3 3 32,859 ≤ 106868

3. Assume that m = 3 and n = 1. We can construct
the maximal length antichain sequence of Z3

>0 using the
methods of [11], resulting in the following sequence:

(h, 0, 0), (h−1, 1, 0), (h−1, 0, h+1), (h−2, 2h+2, 0), . . . ,

(h−2, 0, hf2h+6−(h−2)), . . . , (h−i, hfci−1+1−(h−i), 0), . . . ,

(h−i, 0, hfci−(h−i)), . . . , (0, hfch−1+1, 0), . . . , (0, 0, hfch),

where the sequence ci is given by c0 = 1 and for 1 6 i 6 h,

ci = ci−1 + 1 + hfci−1+1 − (h− i).

As a result, we see that the maximal length of an an-
tichain sequence is equal to ch.

Below is a table of some maximal lengths Ln
f,m and orders

f(Ln
f,m + 1), where f(i) = hfi, for m = 3, 4, and 5:

m n h length6 order6
3 1 1 3 3
3 1 2 10 178

3 1 3 712 10150

3 2 1 433,494,480 1090,594,990

4 1 1 5 8
5 1 1 20 10,946

6. ORDER LOWER BOUND
This section gives a lower bound for the orders of the

output of the Rosenfeld-Gröbner algorithm, coming from the
lower bound for degrees of elements of a Gröbner basis from
[14]. To be specific, we show that for m,h sufficiently large,
there is a collection of r differential polynomials F ⊆ k{y} of
order at most h, where k is equipped with m derivations, r ∼
m/2, and k is constant with respect to all of the derivations,
such that if A = Rosenfeld-Gröbner(F, {1}), then

H

 ⋃
(A,H)∈A

(A ∪H)

 > h2r

. (4)

The arguments presented here are standard, and we include
them for completeness. We first note the following standard
fact about differential ideals generated by linear differential
polynomials.

Proposition 3. Suppose F,K ⊆ k{Y } are composed
of linear differential polynomials. Then the output of
Rosenfeld-Gröbner(F,K) is either empty or consists of a
single regular differential system (A,H) with A and H both
composed of linear differential polynomials.

Suppose now we apply the Rosenfeld-Gröbner algorithm
to (F, {1}), where F consists of linear differential polynomi-
als, in order to obtain a regular decomposition of {F}. Since
every element of F is linear, [F ] is a prime differential ideal,
so by Proposition 3, we have

[F ] = {F} = [A] : H∞

for some regular differential system (A,H), with A and H
both composed of linear differential polynomials. Since ev-
ery element of A is linear, after simply performing scalar
multiplications and addition, A can be transformed to an
autoreduced set Ā without affecting the leaders and orders
of elements of A. Since (A,H) is a regular differential sys-
tem, Ā is a characteristic set of [F ]. As a result, it suffices
to find a lower bound on the orders of elements of linear
characteristic sets in k{Y }.

There is a well-studied one-to-one correspondence between
polynomials in k[x1, . . . , xm] and homogeneous linear differ-
ential polynomials in k{y} with m derivations and k a field
of constants via∑

ci1,...,imx
i1
1 · · ·x

im
m ↔

∑
ci1,...,im∂

i1
1 · · · ∂

im
m y. (5)

Any orderly ranking on Θy then determines a graded mono-
mial order on k[x1, . . . , xm].

Given a polynomial f ∈ k[x1, . . . , xm], let f̃ ∈ k{y}
be its corresponding differential polynomial under (5). By
the discussion above, if we have a collection of polynomials
f1, . . . , fr ∈ k[x1, . . . , xm], we can construct a characteris-

tic set C = {C1, . . . , Cs} of [f̃1, . . . , f̃r] ⊆ k{y} consisting
of homogeneous linear differential polynomials, and so each
Ci ∈ k{y} is in fact equal to g̃i for some gi ∈ k[x1, . . . , xm].



Proposition 4 (cf. [13, page 352],[5]).
With the notation above, {g1, . . . , gs} ⊆ k[x1, . . . , xm] is a
Gröbner basis of the ideal I = (f1, . . . , fr).

By Proposition 4, we can thus find a lower bound for the
orders of the output of the Rosenfeld-Gröbner algorithm via
a lower bound for the degrees of elements of a Gröbner basis,
as we do in the following example.

Example 1. This example demonstrates the lower bound
(4) for the orders of the output of the Rosenfeld-Gröbner
algorithm. In [14, Section 8], for m,h sufficiently large, a
collection of m algebraic polynomials f1, . . . , fr of degree at
most h in m algebraic indeterminates, with r ∼ m/2, is
constructed such that any Gröbner basis of (f1, . . . , fr) with
respect to a graded monomial order has an element of degree
at least h2r

.
As a result of the previous discussion, we have a collec-

tion of differential polynomials F = f̃1, . . . , f̃r ∈ k{y} of
order h with m derivations such that any linear charac-
teristic set of [f̃1, . . . , f̃r] will contain a differential polyno-

mial of order at least h2r

. Since in this case {(A,H)} =
Rosenfeld-Gröbner(F, {1}) can be transformed into a lin-
ear characteristic set without affecting the orders of the el-
ements, this means that

H(A ∪H) > h2r

.
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