
A Bound for Rosenfeld-Gröbner Algorithm 1

Oleg Golubitsky a,3 Marina Kondratieva b Marc Moreno Maza c,4

Alexey Ovchinnikov d,2

aUniversity of Western Ontario
Department of Computer Science

London, Ontario, Canada N6A 5B7
bMoscow State University

Department of Mechanics and Mathematics
Leninskie gory, Moscow, Russia, 119992

cUniversity of Western Ontario
Department of Computer Science

London, Ontario, Canada N6A 5B7
dNorth Carolina State University

Department of Mathematics
Raleigh, NC 27695-8205, USA 5

Abstract

We consider the Rosenfeld-Gröbner algorithm for computing a regular decomposition of a radical
differential ideal generated by a set of ordinary differential polynomials in n indeterminates. For a
set of ordinary differential polynomials F , let M(F) be the sum of maximal orders of differential
indeterminates occurring in F . We propose a modification of the Rosenfeld-Gröbner algorithm,
in which for every intermediate polynomial system F , the bound M(F) 6 (n− 1)!M(F0) holds,
where F0 is the initial set of generators of the radical ideal. In particular, the resulting regular
systems satisfy the bound. Since regular ideals can be decomposed into characterizable compo-
nents algebraically, the bound also holds for the orders of derivatives occurring in a characteristic
decomposition of a radical differential ideal.

Key words: differential algebra, characteristic sets, radical differential ideals, decomposition
into regular components
1991 MSC: 12H05, 13N10, 13P10

Preprint submitted to Journal of Symbolic Computation 25 December 2007

1. Introduction

This paper is about constructive differential algebra. We consider the following bound-
ing problem in it. The input is a set F of ordinary differential polynomials, that is, ordi-
nary algebraic differential equations. The output is a bound for orders of all intermedi-
ate polynomials and the output of the Rosenfeld-Gröbner algorithm, which decomposes
the radical differential ideal generated by F into characterizable components.

So, our main result concerns algorithms dealing with algebraic differential equations.
Many different problems can be attributed to this topic. One can, for instance, test
membership to a radical differential ideal, compute the Kolchin dimensional polynomial.
Generally, there are two radical differential ideal decomposition algorithms, although
they have variations.

The Ritt-Kolchin algorithm (Ritt, 1950, Section V.5 for the ordinary differential case)
and (Kolchin, 1973, Section IV.9 for the partial differential case) computes a prime
decomposition of a radical differential ideal. This algorithm is based on the concept of
characteristic set; it proceeds by computing a sequence of characteristic sets of decreasing
rank and terminates because any such sequence is finite (Ritt, 1950, Section I.5), (Kolchin,
1973, Section I.10).

The Ritt-Kolchin algorithm also relies on the solution of the so-called factorization
problem: given an autoreduced set, determine whether the corresponding algebraic satu-
rated ideal is prime and, if it is not, find two polynomials outside the ideal whose product
belongs to the ideal (Kolchin, 1973, Section IV.9, Problem (a)). Due to the complexity
of the factorization problem, it was desirable to avoid it, which was accomplished by the
Rosenfeld-Gröbner algorithm proposed in (Boulier et al., 1995). Instead of decompos-
ing a given radical differential ideal into prime components, this algorithm represents it
as an intersection of regular differential ideals (Boulier et al., 1995); the correctness of
the algorithm, in addition to the above-mentioned theorems, is provided by the Lazard
Lemma, which states that regular ideals are radical. Different proofs of this lemma can
be found in (Boulier et al., 1997; Morrison, 1999; Hubert, 2000; Boulier et al., 2006).

The Rosenfeld-Gröbner algorithm is the first decomposition algorithm in differential
algebra that has been actually implemented upto our knowledge. It forms an integral
part of the diffalg package in the computer algebra system Maple. Updates of this
package are available at http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg/.

Email addresses: oleg.golubitsky@gmail.com (Oleg Golubitsky), kondrmar@rol.ru (Marina
Kondratieva), moreno@csd.uwo.ca (Marc Moreno Maza), aiovchin@math.uic.edu (Alexey

Ovchinnikov).

URLs: http://publish.uwo.ca/~ogolubit/ (Oleg Golubitsky), http://shade.msu.ru/~kondra m/

(Marina Kondratieva), http://www.csd.uwo.ca/~moreno/ (Marc Moreno Maza),

http://www.math.uic.edu/~aiovchin/ (Alexey Ovchinnikov).
1 The work was partially supported by the Russian Foundation for Basic Research, project no. 05-01-

00671.
2 This author was also partially supported by NSF Grant CCR-0096842.
3 This author was also partially supported by NSERC Grant PDF-301108-2004.
4 This author was also partially supported by NSERC Grant RGPIN Algorithms and software for

triangular decompositions of algebraic and differential systems.
5 Current address: University of Illinois at Chicago, Department of Mathematics, Statistics, and Com-

puter Science, 851 S. Morgan Street, Chicago, IL 60607-7045, USA

2

A more efficient implementation of this algorithm in C language by F. Boulier can be
found at the website http://www.lifl.fr/∼boulier/BLAD/.

Various improvements of the Rosenfeld-Gröbner algorithm have been proposed in
(Boulier et al., 1997; Boulier, 1999; Boulier et al., 2001; Hubert, 2000, 2003, 2004;
Bouziane et al., 2001). They all avoid the factorization problem and for this reason are
called factorization-free. However, no theoretical bound for the computational complexity
of any of these algorithms is known.

We make the first step towards the goal of estimating this complexity: we bound the
orders of all differential polynomials appearing in the computations. The main results of
this work are proven only for the ordinary case. In order to obtain our bound in Propo-
sition 14, we have modified this algorithm (see Algorithms 3 and 5) a little bit. The main
idea is to perform differential reduction very carefully. We do this in Algorithm 2. Then,
Theorem 17 allows us to use any differential reduction and if the orders of polynomials
increase too much we just truncate them (see Algorithm 4).

It would be good to have a bound that would tell us how many times we need to
differentiate the original system in the beginning of the algorithm, so that the rest of
the computation can be performed by a purely algebraic decomposition algorithm, for
instance (Wang, 1993) or (Moreno Maza, 1999). Since for algebraic decomposition algo-
rithms complexity estimates are known (see Szántó (1999)), such a bound would yield
a complexity estimate for the differential decomposition as well. In this paper, however,
we do not provide such a bound and, moreover, conjecture that it would have solved the
Ritt problem (Ritt, 1950). We leave the discovery of such bound and/or the proof of this
conjecture for future research.

The paper is organized as follows. We give an introduction into differential algebra
in Section 2. Then we describe the original Rosenfeld-Gröbner algorithm in Section 3.
Section 4 is devoted to the bound on the orders of derivatives computed by a modified
version of the Rosenfeld-Gröbner algorithm.

2. Definitions and notation

Differential algebra studies systems of polynomial partial differential equations from
the algebraic point of view. The approach is based on the concept of differential ring
introduced by Ritt. Recent tutorials on the constructive theory of differential ideals
are presented in (Boulier, 2000, 2006; Hubert, 2003; Sit, 2002). A differential ring is a
commutative ring with the unity endowed with a set of derivations ∆ = {δ1, . . . , δm},
which commute pairwise. The case of ∆ = {δ} is called ordinary. If R is an ordinary
differential ring and y ∈ R, we denote δky by y(k).

Construct the multiplicative monoid Θ =
{
δk11 δk22 · · · δkm

m

∣∣ ki > 0
}

of derivative oper-
ators. Let Y = {y1, . . . , yn} be a set whose elements are called differential indeterminates.
The elements of the set ΘY = {θy | θ ∈ Θ, y ∈ Y } are called derivatives. Derivative
operators from Θ act on derivatives as θ1(θ2yi) = (θ1θ2)yi for all θ1, θ2 ∈ Θ and 1 6 i 6 n.

The ring of differential polynomials in differential indeterminates Y over a differential
field k is a ring of commutative polynomials with coefficients in k in the infinite set of
variables ΘY (see Kolchin (1973); Kondratieva et al. (1999); Ritt (1950)). This ring is
denoted k{y1, . . . , yn} or k{Y }. We consider the case of char k = 0 only. An ideal I in
k{Y } is called differential, if for all f ∈ I and δ ∈ ∆, δf ∈ I. We denote differential
polynomials by f, g, h, . . . and use letters I, J, p for ideals.

3

Let F ⊂ k{y1, . . . , yn} be a set of differential polynomials. For the differential and
radical differential ideal generated by F in k{y1, . . . , yn}, we use notations [F] and {F},
respectively. We need the notion of reduction for algorithmic computations. First, we
introduce a ranking on the set of derivatives. A ranking (Kolchin, 1973) is a total order
> on the set ΘY satisfying the following conditions for all θ ∈ Θ and u, v ∈ ΘY :

(1) θu > u,
(2) u > v =⇒ θu > θv.
Let u be a derivative, that is, u = θyj for a derivative operator

θ = δk11 δk22 · · · δkm
m ∈ Θ

and 1 6 j 6 n. The order of u is defined as

ordu = ord θ = k1 + . . .+ km.

If f is a differential polynomial, f 6∈ k, then ord f denotes the maximal order of derivatives
appearing effectively in f .

A ranking > is called orderly if ordu > ord v implies u > v for all derivatives u and
v. A ranking >el is called an elimination ranking if yi >el yj implies θ1yi >el θ2yj for all
θ1, θ2 ∈ Θ. Let a ranking > be fixed. The derivative θyj of the highest rank appearing in
a differential polynomial f ∈ k{y1, . . . , yn} \ k is called the leader of f . We denote the
leader by ld f or uf . The indeterminate yj is called the leading variable of f and denoted
by lv f. Represent f as a univariate polynomial in uf :

f = ifudf + a1ud−1
f + . . .+ ad.

The monomial udf is called the rank of f and is denoted by rk f. Extend the ranking
relation on derivatives variables to ranks: ud11 > ud22 if either u1 > u2 or u1 = u2 and
d1 > d2.

The polynomial if is called the initial of f . Apply any δ ∈ ∆ to f :

δf =
∂f

∂uf
δuf + δifudf + δa1ud−1

f + . . .+ δad.

The leader of δf is δuf and the initial of δf is called the separant of f , denoted sf . If
θ ∈ Θ \ {1}, then θf is called a proper derivative of f . Note that the initial of any proper
derivative of f is equal to sf .

We say that a differential polynomial f is partially reduced w.r.t. g if no proper deriva-
tive of ug appears in f . A differential polynomial f is algebraically reduced w.r.t. g if
degug

f < degug
g. A differential polynomial f is reduced w.r.t. a differential polyno-

mial g if f is partially and algebraically reduced w.r.t. g. Consider any subset A ⊂
k{y1, . . . , yn}\k. We say that A is autoreduced (respectively, algebraically autoreduced)
if each element of A is reduced (respectively, algebraically reduced) w.r.t. all the others.

Every autoreduced set is finite (Kolchin, 1973, Chapter I, Section 9) (but an alge-
braically autoreduced set in a ring of differential polynomials may be infinite). For au-
toreduced sets we use capital letters A,B,C, . . . and notation A = A1, . . . , Ap to specify
the list of the elements of A arranged in order of increasing rank.

We denote the sets of initials and separants of elements of A by iA and sA, respectively.
Let HA = iA ∪ sA. Let S be a finite set of differential polynomials. Denote by S∞ the
multiplicative set containing 1 and generated by S. Let I be an ideal in a commutative

4

ring R. The saturated ideal I : S∞ is defined as {a ∈ R | ∃s ∈ S∞ : sa ∈ I}. If I is a
differential ideal then I : S∞ is also a differential ideal (see Kolchin (1973)).

Consider two polynomials f and g in k{y1, . . . , yn}. Let I be the differential ideal gen-
erated by g. Applying a finite number of pseudo-divisions, one can compute a differential
partial remainder f1 and a differential remainder f2 of f w.r.t. g such that there exist
s ∈ s∞g and h ∈ H∞g satisfying sf ≡ f1 and hf ≡ f2 mod I with f1 and f2 partially
reduced and reduced w.r.t. g, respectively (see Hubert (2000) for definitions and the al-
gorithm for computing remainders). We denote by d-rem(f,A) the differential remainder
of a polynomial f w.r.t. an autoreduced set A. Denote also

AlgebraicRemainder (f,B) = {g | g alg. reduced w.r.t B, hf − g ∈ (B) for some h ∈ i∞B },
DifferentialRemainder (f,C) = {g | g reduced w.r.t. C, hf − g ∈ [C] for some h ∈ H∞C },

where B is algebraically autoreduced and C is differentially autoreduced.
Let A = A1, . . . , Ar and B = B1, . . . , Bs be (algebraically) autoreduced sets. We say

that A has lower rank than B if
• there exists k 6 r, s such that rkAi = rkBi for 1 6 i < k, and rkAk < rkBk,
• or if r > s and rkAi = rkBi for 1 6 i 6 s.
We say that rk A = rk B if r = s and rkAi = rkBi for 1 6 i 6 r.

The following notion of a characteristic set in characteristic zero is crucial in our
further discussions. It was first introduced by Ritt for prime differential ideals, and then
extended by Kolchin to arbitrary differential ideals.
Definition 1 (Ritt, 1950, Section I.5) An autoreduced subset of the lowest rank in a set
X ⊂ k{Y } is called a characteristic set of X.
A characteristic set exists for any set X ⊂ k{Y } due to the fact that every family of
autoreduced sets contains one of the least rank (Kolchin, 1973, Section I.10, Proposition
3).

As it is mentioned in (Kolchin, 1973, Lemma 8, page 82), in the case of char k = 0, a
set A is a characteristic set of a proper differential ideal I if each element of I reduces
to zero w.r.t. A. Moreover, the leaders and the correspondent degrees of these leaders of
any two characteristic sets of I coincide.
Definition 2 (Hubert, 2000, Definition 2.6) A differential ideal I in k{y1, . . . , yn} is
said to be characterizable if there exists a characteristic set A of I in Kolchin’s sense
such that I = [A] : H∞A . We call any such characteristic set A a characterizing set of I.
In other words, an ideal is characterizable if reduction to zero (by one of its characteristic
sets) implies membership. As a consequence of the Lazard Lemma, characterizable ideals
are radical (Hubert, 2000, Theorem 4.4).

3. Rosenfeld-Gröbner algorithm for the ordinary case

A system of ordinary differential equations and inequalities A = 0, H 6= 0, where
A, H ⊂ k{Y }, is called regular (see Boulier et al. (1995)), if A is autoreduced, H is
partially reduced w.r.t. A, and H ⊇ HA, where HA is the set of initials and separants
of elements of A (in the partial differential case it is also required that the set A is
coherent, but in the ordinary case this condition holds for any autoreduced set A). For
a regular system A = 0, H 6= 0, the differential ideal [A] : H∞ is also called regular.
Every regular ideal is radical (see Boulier et al. (1995)), and, according to the Rosenfeld

5

Lemma, f ∈ [A] : H∞ if and only if the partial remainder of f w.r.t. A belongs to the
algebraic ideal (A) : H∞.

The Rosenfeld-Gröbner algorithm proposed in (Boulier et al., 1995, 1997) computes a
regular decomposition of a given radical differential ideal {F}, i.e., a representation

{F} =
k⋂
i=1

[Ai] : H∞i ,

where [Ai] : H∞i are regular differential ideals.
We begin with the following version of the Rosenfeld-Gröbner algorithm. It is very

similar to the original algorithm presented in (Boulier et al., 1995), except for the fact
that we are in the ordinary case and need not deal with coherence. We also note that
some of the regular systems computed by the version of the algorithm presented here
may correspond to unit ideals; this can be checked later on by means of Gröbner basis
computations as in (Boulier et al., 1995) or via polynomial GCD computations modulo
regular chains as in (Boulier and Lemaire, 2000).

Finally, use the suggestion given in (Boulier et al., 1997, Section 5.5.2) and (Hubert,
2003, Improvements, page 73): it is recommended to reduce the multiplicative set H
of initials and separants. If it turns out that one of them reduces to zero, then the
corresponding saturated component contains 1 and therefore need not be considered. We
incorporate these ideas in Algorithm 1.

Given a set F of differential polynomials, the Rosenfeld-Gröbner algorithm at first
computes a characteristic set C of F , i.e., an autoreduced subset of F of the least rank.
It may happen that lv C (lvF (for example, take F = {x+ y, y} w.r.t. a ranking such
that x > y, then C = {y}, lv C = {y}, and lvF = {x, y}). In other words, inclusion
F1 ⊂ F2 does not imply that for the corresponding characteristic sets C1 and C2, we
have C1 ⊆ C2. We need the latter property, in order to obtain the bound, so we are going
to relax the requirement that C is autoreduced.

A subset C of k{Y } \ k is called a weak d-triangular set (Hubert, 2003, Definition
3.7), if the set of its leaders ld C is autoreduced. In the ordinary case, C is a weak d-
triangular set if and only if the leading differential indeterminates lv f , f ∈ C, are all
distinct. A partially autoreduced weak d-triangular set is called d-triangular (Hubert,
2003, Definition 3.7). For a polynomial f and a weak d-triangular set C, the pseudo-
remainder d-rem(f,C) is defined via (Hubert, 2003, Algorithm 3.13).

We will replace the reduction of F w.r.t. an autoreduced set in the Rosenfeld-Gröbner
algorithm by that w.r.t. a weak d-triangular set. We note that the version of the algorithm
presented in (Hubert, 2003, Section 6) (Algorithms 6.8, 6.10, and 6.11) also computes
differential pseudo-remainders w.r.t. weak d-triangular sets. Since the output regular
systems must be partially autoreduced, at the very end, partial autoreduction of the
weak d-triangular set C via (Hubert, 2003, Algorithm 6.8) is carried out.

Alternatively, one could perform partial autoreduction every time a weak d-triangular
set is updated. In the following section, we show how to perform this autoreduction, as
well as computation of differential pseudo-remainders, so that the inequality

M(F ∪H) 6 (n− 1)!M(F0 ∪H0)

is preserved (see formulas (1) and (2) below).

6

Algorithm 1 Rosenfeld-Gröbner(F0, H0)

Input: finite sets of differential polynomials F0, H0

and a differential ranking

Output: a finite set T of regular systems such that

{F0} : H∞0 =
⋂

(A,H)∈T
[A] : H∞

T := ∅, U := {(F0, H0)}

while U 6= ∅ do

Take and remove any (F,H) ∈ U

C := characteristic set of F

F̄ := d-rem(F \ C,C) \ {0}

H̄ := d-rem(H,C) ∪HC

if F̄ ∩ k = ∅ and 0 6∈ H̄ then

if F̄ = ∅ then T := T ∪ {(C, H̄)}

else U := U ∪ {(F̄ ∪ C, H̄)}

end if

end if

U := U ∪ {(F ∪ {h}, H) | h ∈ HC, h 6∈ k ∪H}

end while

return T

4. Modified Rosenfeld-Gröbner algorithm

For a set of differential polynomials F we let

mi(F) = max
f∈F

ordyi
f, (1)

that is, mi(F) is the maximal order of the differential indeterminate yi ∈ Y occurring in
the set F . If yi does not occur in F , we set mi(F) = 0. Let

M(F) =
n∑
i=1

mi(F). (2)

We propose a modification of the Rosenfeld-Gröbner algorithm (see Algorithm 3 below),
in which for every intermediate system (F,C, H) ∈ U , the bound

M(F ∪ C ∪H) 6 (n− 1)!M(F0 ∪H0) (3)

holds, where F0 = 0, H0 6= 0 is the input system of equations and inequalities corre-
sponding to the radical differential ideal {F0} : H∞0 .

In the formula (3) we have a factor (n − 1)!. If the number of variables is equal to 1
or 2 it disappears. In the case of n = 2 Ritt proved the Jacobi bound for |F0| = 2 and

7

empty H0 by the direct computation and his result does not have any multiple either.
Consider the intuition behind the case of n > 3 by looking at a particular example.
Example 3 Let n > 3 and F0 = x1 + x2 + . . . + xn, x1

′ with the elimination ranking
x1 > x2 > . . . > xn. Then mx1 = 1, mx2 = . . . = mxn = 0 and

M(F0) = 1 + 0 + . . .+ 0 = 1.

In order to find a characteristic set of the prime differential ideal [F0] we reduce x′1 w.r.t.
x1 + x2 + . . .+ xn and get x′2 + . . .+ x′n. The output consists of two polynomials:

C = x′2 + . . .+ x′n, x1 + x2 + . . .+ xn.

We have: mx1(C) = 0 and mx2(C) = . . . = mxn
(C) = 1. Hence,

M(C) = 0 + 1 + . . .+ 1 = n− 1 = (n− 1)M(F0).

For this particular example, the algorithm stops here, so we obtain a factor of (n − 1).
In general, further reductions might give new factors of (n − 2), (n − 3), . . . , 2, 1, which
would accumulate into (n − 1)!. Unfortunately, we do not know an example where all
these factors would actually appear, and therefore do not claim that the bound is sharp.

4.1. Algebraic computation of differential remainders

The Rosenfeld-Gröbner algorithm requires to compute differential pseudo-remainders
R = d-rem(F \ C,C). If the ranking on derivatives is not orderly, the orders of some
(non-leading) derivatives may grow as a result of the differential pseudo-reduction, so
that we may have mi(R) > mi(F) for some i ∈ {1, . . . , n}. To ensure a bound on
mi(R), we construct a triangular set 6 B, such that the computation of the differential
pseudo-remainders d-rem(F,C) can be replaced by the computation of algebraic pseudo-
remainders algrem(F,B), and, at the same time, B satisfies a bound on the orders of
derivatives occurring in it.

For a set B of differential polynomials and a differential indeterminate v ∈ lv B, let

Bv = {f ∈ B | lv f = v}.
Assume that B is algebraically triangular, which implies that for any non-empty subset
A ⊂ B, elements of A of the minimal and maximal ranks are uniquely defined and
denoted, respectively, min A and max A. Define the following two subsets of B:

B0 = {min Bv | v ∈ lv B}
B∗ = {max Bv | v ∈ lv B}.

Also, for a set {mi}ki=1 of non-negative integer numbers and an arbitrary set F of differ-
ential polynomials, let

F{mi} = {f ∈ F | ordyi
f 6 mi, i = 1, . . . , k}.

The following algorithm Differentiate&Autoreduce (see Algorithm 2), which we are
presenting, is quite a technical tool helping us to prove our bound. Before we prove its
correctness and termination, let us discuss it informally. The triangular set B computed
by the algorithm can be thought of as a result of an autoreduction of a differential
prolongation of the input set C = {C1, . . . , Ck}, i.e., of the set

C̃ = {δjCi | 1 6 i 6 k, 0 6 j 6 mi − di}. 7

6 A set is called triangular if the leaders of its elements are distinct.
7 Here di is the degree of rk Ci = y

di
i .

8

Algorithm 2 Differentiate&Autoreduce(C, {mi})
Input: a weak d-triangular set C = C1, . . . , Ck with ld C = y

(d1)
1 , . . . , y

(dk)
k ,

and a set of non-negative integers {mi}ki=1, mi > mi(C)

Output: set B =
{
Bji
∣∣ 1 6 i 6 k, 0 6 j 6 mi − di

}
satisfying

• rkBji = rkC(j)
i

• Bji are reduced w.r.t. C \ {Ci}
• mi(B) 6 mi, i = 1, . . . , k
• mi(B) 6 mi(C) +

∑k
j=1(mj − dj), i = k + 1, . . . , n

• B ⊂
[
B0
]
⊂ [C] ⊂ [B] : H∞B

• HB ⊂ H∞C + [C], HC ⊂ (H∞B + [B]) : H∞B
or {1}, if it is detected that [C] : H∞C = (1)

1 D := C, B := ∅

2 while D ∪ (δB∗){mi} 6= ∅ do

3 f := min
(
D ∪ (δB∗){mi}

)
4 if f ∈ D then

5 f̄ := algrem(f,B)

6 D := D \ {f}

7 else

8 f̄ := algrem(f,B0 ∪ (δB0 \ {f}))

9 end if

10 if rk f̄ 6= rk f then return {1} end if

11 B := B ∪
{
f̄
}

12 end while

13 return B

In particular, we have rk B = rk C̃, unless the autoreduction process cancels one of the
initials, in which case we can show that [C] : H∞C = (1).

However, if one wants to make this autoreduction completely algebraic (in order to
control the growth of orders), one has to be careful, because in the above set C̃ there may
appear derivatives of some ldCi of order higher than those that appear in ld C̃, which
cannot be canceled by an algebraic reduction. For example, if C = {y1, y2 + y′1}, m1 = 1,
m2 = 2, and the ranking is elimination with y1 < y2, then

C̃ = {y1, y
′
1, y2 + y′1, y

′
2 + y′′1 , y

′′
2 + y′′′1 },

and in the last two polynomials derivatives y′′1 , y
′′′
1 cannot be canceled by algebraic re-

duction w.r.t. y1 and y′1.
This problem is avoided by computing the elements of B in the order of increasing

rank (which is ensured by line 3 of Algorithm 2). If the polynomials are added to B

9

in this order, it is guaranteed that the algebraic pseudo-remainder f̄ computed in line
5 or 8 does not contain any derivatives which could be reduced differentially, but not
algebraically, w.r.t. the current set B. For this reason, algebraic reductions are sufficient
for computing B. See Lemma 9 for the precise statement and proof of this fact.

In fact, only the coefficients of the polynomial f are being reduced in lines 5 and 8
(that is, ld f is not among the leaders of the polynomials w.r.t. which it is being reduced;
see Lemma 10 for the proof). That is, if u = ld f and

f = adu
d + . . .+ a1u+ a0,

where a0, . . . , ad are free of u, one could define

coeffAlgrem (f,B) = bdu
d + . . .+ b1u+ b0,

where b0, . . . , bd are polynomials algebraically reduced w.r.t. B and satisfying

hai − bi ∈ (B), i = 0, . . . , d

for some h ∈ i∞B . Then lines 5 and 8 could be equivalently replaced with

5 f̄ = coeffAlgrem (f,B)

8 f̄ = coeffAlgrem (f,B0 ∪ δB0)
Example 4 Let f = y+x and B = tx+1 in the polynomial ring k[t, x, y] with t < x < y.
We have

algrem (f,B) = t(y + x)− (tx+ 1) = ty − 1 6= y − 1 = algrem (1,B) · y + algrem(x,B).

We illustrate these considerations on the above differential example:
(1) Start with B = ∅.
(2) Add y1 to B. We have B0 = {y1} and δB0 = {y′1}.
(3) The algebraic pseudo-remainder of y′1 w.r.t. (δB0 \ {y′1}) ∪ B0 is y′1. Add it to B.
(4) The algebraic pseudo-remainder of y2 + y′1 w.r.t. (δB0 \ {y2}) ∪ B0 is y2. Add it to

B. We have B0 = {y1, y2} and δB0 = {y′1, y′2}.
(5) The algebraic pseudo-remainder of y′2 w.r.t. (δB0 \ {y′2}) ∪ B0 is y′2. Add it to B.
(6) The algebraic pseudo-remainder of y′′2 w.r.t. (δB0 \ {y′2}) ∪ B0 is y′′2 . Add it to B.
(7) We obtain B = {y1, y

′
1, y2, y

′
2, y
′′
2}.

Let us make an informal remark which may help an interested reader to cope with rather
technical specifications of Algorithm 2. The following group of specifications:
• rkBji = rkC(j)

i ,

• B ⊂
[
B0
]
⊂ [C],

• HB ⊂ H∞C + [C],
implies that

AlgebraicRemainder(f,B) ⊂ DifferentialRemainder(f,C),

if the order of f w.r.t. yi does not exceed mi. This is the main property that allows us to
use algebraic reduction in Algorithm 3 instead of the differential reduction in Algorithm 1.
However, the remaining “inverse” inclusions

[C] ⊂ [B] : H∞B , HC ⊂ (H∞B + [B]) : H∞B ,

10

which are not taken into account by the above relationship between the algebraic and
differential remainders, are also necessary for Algorithm 3 to be correct. 8 After the
reduction, the orders of derivatives of yi’s appearing in the remainder will not exceed di
for the leading yi’s (i.e., for 1 6 i 6 k). For the non-leading yi’s, the orders are bounded
by the inequality

mi(B) 6 mi(C) +
k∑
j=1

(mj − dj), i = k + 1, . . . , n. (4)

We will use the following two auxiliary lemmas in the proof of correctness of algorithm
Differentiate&Autoreduce.
Lemma 5 Let C be a weak d-triangular set in the ring of differential polynomials k{Y }
with derivations ∆ = {δ1, . . . , δm}. Assume that a ranking on the set of derivatives ΘY
is fixed. Let f ∈ k{Y } be a differential polynomial with ld f 6∈ Θ ld C, and let f →C g.
Then
• rk g < rk f ⇒ if ∈ [C] : H∞C
• rk g = rk f ⇒ ∃ h ∈ H∞C such that h · if − ig ∈ [C], h · sf − sg ∈ [C].

Proof. Let rk f = ud, and let A = {p ∈ ΘC | ld p < u}. Then for every p ∈ A, p
and ip are free of u. Since f →C g and u 6∈ Θ ld C, there exist polynomials h ∈ i∞A ,
A1, . . . , Ak ∈ A and αa, . . . , αk ∈ k{Y } such that

h · f = g +
k∑
i=1

αiAi. (5)

The maximal degree of u present in (5) is equal to d. Replace every occurrence of ud by
a new variable v, and consider (5) as an equality between two polynomials in v, in which
polynomials h,A1, . . . , Ak are free of v. We have therefore:

h · df
dv

=
dg

dv
+

k∑
i=1

dαi
dv

Ai.

It remains to notice that df
dv = if and

dg

dv
=

 0, rk g < rk f

ig, rk g = rk f
,

hence we obtain
• rk g < rk f ⇒ if ∈ (A) : i∞A ⊂ [C] : H∞C .
• rk g = rk f ⇒ h · if − ig ∈ (A) ⊂ [C], where h ∈ i∞A ⊂ H∞C .
Consider now (5) as an equality between two polynomials in u, in which h,A1, . . . , Ak
are free of u. We have therefore:

h · df
du

=
dg

du
+

k∑
i=1

dαi
du

Ai.

8 These inclusions are necessary to justify the validity of reducing w.r.t. B and adding to F the initials

and separants of f , which is not an element of B, but an element of C̄. The initials and separants of
B cannot be added, because this may lead to an increase of the order of derivatives of non-leading

differential indeterminates and prevent us from proving the bound.

11

It remains to notice that df
du = sf and, if rk g = rk f , dgdu = sg, hence h·sf−sg ∈ (A) ⊂ [C],

where h ∈ i∞A ⊂ H∞C . 2

Remark 6 The above lemma also holds when the set of derivations ∆ is empty, in which
case k{Y } = k[Y] is a ring of algebraic polynomials, C ⊂ k[Y] is a triangular set, →C
is the algebraic pseudo-reduction relation w.r.t. C, and [C] = (C) is an ideal in k[Y].
Lemma 7 (Hubert, 2003, Lemma 6.9) Let H and K be two sets of differential polynomi-
als, and let I be a differential ideal. If K ⊂ (H∞+I) : H∞, then I : H∞ = I : (H∪K)∞.

The proof of specifications of Algorithm Differentiate&Autoreduce is divided into three
lemmas. We will:
• first prove the statements about the ranks of the elements of B,
• then about their orders, and
• finally, the inclusions.
All these statements hold only if the condition in line 10 is never satisfied, that is,
throughout the algorithm rk f̄ = rk f ; we assume this in the first two lemmas. In the
third one, we will show that, if rk f̄ 6= rk f for some f , then the ideal [C] : H∞C must be
the unit ideal.
Lemma 8 (1) If the output B of Algorithm Differentiate&Autoreduce is not {1}, then

it has the form
B =

{
Bji
∣∣ 1 6 i 6 k, 0 6 j 6 mi − di

}
,

where rkBji = rkC(j)
i .

(2) Algorithm Differentiate&Autoreduce terminates.

Proof. For i = 1, . . . , k, let

µi =

mi(ld B)− di, yi ∈ lv B

−1, otherwise.

The first statement follows from the following invariants of the while-loop:

− 1 6 µi 6 mi − di, i = 1, . . . , k (I1)

B =
{
Bji
∣∣ 1 6 i 6 k, 0 6 j 6 µi

}
(I2)

rkBji = rkC(j)
i , (1 6 i 6 k, 0 6 j 6 µi) (I3)

lv B ∩ lv D = ∅ (I4)
D ⊂ C (I5)
For all f ∈ B, g ∈ D, rk f < rk g. (I6)

One can check immediately that the above invariants hold at the beginning of the first
iteration of the while-loop. Assume that we are at the beginning of some iteration and
the invariants hold; show that they will also hold at the end of this iteration. Let f be
the polynomial computed in line 3, and let y(d)

i = ld f . We have two cases:
• f ∈ D. By (I5) and the fact that the leading variables of the elements of C are distinct,

we have rk f = rkCi. By (I4) lv f 6∈ lv B, whence by definition of µi we have µi = −1.
Since rk f̄ = rk f , at the end of the iteration we will have B0

i = f̄ with rkB0
i = rkCi,

and µi = 0. Thus, invariants (I1)–(I3) will hold.

12

Invariants (I4) and (I5) also continue to hold due to the assignments in lines 6 and
11 and the fact that sets D and B do not change elsewhere throughout the iteration of
the while-loop. The choice of f in line 3 and the assignment in line 6 also imply that
at the end of the iteration we have rk f̄ = rk f < rk g for all g ∈ D, whence invariant
(I6) is preserved.

• f ∈ (δB∗){mi}. By (I2) and (I3), µi > 0 and rk f = rkC(µi+1)
i . Hence, at the end of the

iteration µi increases by one, while f̄ with rk f̄ = rk f is added to B, thus preserving
invariants (I1)–(I3). Note also that lv f ∈ lv B, whence lv B is preserved as well. Hence,
due to the fact that D remains unchanged throughout the iteration, invariants (I4) and
(I5) are preserved. The facts that rk f̄ = rk f ≤ rk g for all g ∈ D (due to the choice of
f in line 3) and that lv f̄ 6∈ lv D (due to (I4)) implies preservation of (I6) at the end
of the iteration.

The above also proves the termination of the algorithm: at each iteration exactly one
of the µi is incremented, whence the number of iterations does not exceed

k∑
i=1

(mi − di + 1).

2

Lemma 9 If the output B of Algorithm Differentiate&Autoreduce is not {1}, then
(1) The elements Bji of B are reduced w.r.t. C \ {Ci},
(2) mi(B) 6 mi, i = 1, . . . , k,
(3) ms(B) 6 ms(C) +

∑k
t=1(mt − dt), s = k + 1, . . . , n.

Proof. The first two statements are implied by the fact that mi(rk B) 6 mi, i = 1, . . . , k,
which is a consequence of Lemma 8, and the following invariants:

mt

(
Bji

)
6 dt, (1 6 i 6= t 6 k, 0 6 j 6 µi) (I7)

Bji are differentially reduced w.r.t. B0 \
{
B0
i

}
(I8)

The invariants hold at the beginning of the first iteration of the while-loop, since B = ∅.
Assume that they hold at the beginning of some iteration; show that they will hold at
the end of this iteration as well. We have two cases:
• f ∈ D. Let us show that

mt(f) 6 dt + µt, yt ∈ lv B. (6)

The fact that yt ∈ lv B, according to (I3), implies µt > 0. We may assume that yt is
present in f : otherwise mt(f) = 0 and (6) will trivially hold due to the fact that dt > 0
and µt > 0. According to (I1), two cases are possible:

(1) 0 6 µt < mt − dt. Then there exists a polynomial g ∈ (δB)∗{mi} with lv g = yt. By

(I3), ld g = y
(dt+µt+1)
t . Since, due to (I4), yt cannot be the leading variable of f , yet

yt is present in f , y(mt(f))
t < ld f . Since f is an element of D ∪ (δB)∗{mi} of the least

rank, ld f ≤ ld g. Combining these statements, we obtain

y
(mt(f))
t < ld f ≤ ld g = y

(dt+µt+1)
t ,

which implies (6).

13

(2) µt = mt−dt. Then, due to (I5) and the condition on the input C we have mt(f) 6 mt,
which yields (6).

Inequality (6) and invariant (I7) imply that the algebraic remainder f̄ computed in
line 5 is differentially reduced w.r.t. B0 and satisfies

mt

(
f̄
)

6 dt, yt ∈ lv B. (7)

Note also that due to (I6), B is differentially reduced w.r.t. f̄ . Thus, invariant (I8)
also holds at the end of the iteration. Taking into account that for all g ∈ D we have
rk f̄ = rk f 6 rk g, we obtain

mt

(
f̄
)

6 dt, yt ∈ lv D. (8)

Together inequalities (7) and (8) yield invariant (I7) at the end of the iteration.
• f ∈ (δB∗){mi}. By (I7), mt(f) 6 dt + 1, for t such that yt ∈ lv B \ {lv f}. This

inequality and invariant (I7) imply that the algebraic remainder f̄ computed in line
8 is differentially reduced w.r.t. B0 \ {B0

i } and satisfies mt(f̄) 6 dt. Thus, we obtain
that invariants (I7) and (I8) also holds at the end of the iteration.

Finally, we prove the bound for the orders of non-leading derivatives in the output:

ms(B) 6 ms(C) +
k∑
t=1

(mt − dt), s = k + 1, . . . , n.

This bound holds due to the following invariant:

ms(B) 6 ms(C) +
∑

{t:µt>0}

µt, s = k + 1, . . . , n. (9)

Assume that (9) holds at the beginning of an iteration, and let s ∈ {k + 1, . . . , n}. We
then have:

(1) If f ∈ D, no differentiations occur during the iteration and the sum remains un-
changed, whence (9) is preserved.

(2) If f ∈ (δB∗){mi}, then f = δg for some g ∈ B, whence ms(f) 6 ms(B)+1. Similarly,

ms

(
B0 ∪ δB0

)
6 ms(B) + 1.

Thus, according to line 8, ms

(
f̄
)

6 ms(B) + 1, and so at the end of the iteration
ms(B) is increased at most by one. At the same time, as was shown in Lemma 8,
Case 2, exactly one of the µi is incremented, whereby the sum in (9) increases by
1. Thus, (9) is preserved.

2

Lemma 10 If the output B of Algorithm Differentiate&Autoreduce is not {1}, then the
inclusions

B ⊂ [B0] ⊂ [C] ⊂ [B] : H∞B , HB ⊂ H∞C + [C], HC ⊂ (H∞B + [B]) : H∞B

hold, otherwise ideal [C] : H∞C is the unit ideal.

14

Proof. The inclusions are implied by the following invariants:

B ⊂
[
B0
]
⊂ [C] (I9)

HB ⊂ H∞C + [C] (I10)
C \ D ⊂ [B] : H∞B (I11)
HC\D ⊂ (H∞B + [B]) : H∞B (I12)

The invariants hold at the beginning of the first iteration of the while-loop, since B = ∅
and D = C. Assume that they hold at the beginning of some iteration; show that either
the algorithm terminates at this iteration with the output {1} or the invariants will hold
at the end of this iteration. We have two cases:
• f ∈ D. Then by (I5) f ∈ C. Since f̄ = algrem(f,B), we have f̄ ∈ (B ∪ {f}). Then,

according to (I9), f̄ ∈ [C]. As was shown in Lemma 8, Case 1, f̄ is added to B0 in
line 11, thus preserving (I9). Next, due to (I4), ld f 6∈ ld B. Thus, Lemma 5 (see also
Remark 6) applies to the algebraic remainder computed in line 5. We conclude from
it that

rk f̄ 6= rk f ⇒ if ∈ [B] : H∞B . (10)
We will use this statement later to justify the output {1}, in case the condition in line
10 is satisfied. For now, assume that rk f̄ = rk f . Then, from Lemma 5, we also have:

Hf̄ ⊂ Hf ·H∞B + (B).

Since f ∈ C, and due to invariants (I9) and (I10), we thus obtain Hf̄ ⊂ H∞C + [C].
This means that (I10) is also preserved. By definition of the algebraic remainder,

f ∈
(
B ∪

{
f̄
})

: H∞B .

Note that line 6 results in adding f to the set C \ D, and this set is not changed
elsewhere throughout the iteration. Thus, at the end of the iteration (I11) will hold.
Finally, as yet another consequence of Lemma 5,

Hf ⊂
(
Hf̄ + (B)

)
: H∞B .

Taking into account that C \ D does not change other than in line 6, we thus obtain
(I12) at the end of the iteration.

• f ∈ δB∗{mi}. As was shown in Lemma 8, Case 2, B0 remains unchanged during the
iteration in this case. By (I9), f ∈ [B0], whence by definition of the algebraic remainder
applied to line 8 we have

f̄ ∈
(
B0 ∪ δB0 ∪ f

)
⊂
[
B0
]
.

Thus, (I9) is preserved. Next, according to (I2) and (I3), all elements of B, and, hence,
all elements of δB, have distinct leaders. In particular, if ld f ∈ ld δB0, then f ∈ δB0,
whence ld f 6∈ ld

(
δB0 \ {f}

)
. In addition, since f ∈ δB, and due to (I2) and (I3), we

have ld f 6∈ ld B. Altogether,

ld f 6∈ ld
(
B0 ∪

(
δB0 \ {f}

))
.

Thus, Lemma 5 (see also Remark 6) applies to the algebraic remainder computed in
line 8, yielding (10). We will use this statement later to justify line 10, assuming for
now that rk f̄ = rk f . From Lemma 5, we also have:

Hf̄ ⊂ Hf ·H∞B0∪δB0 + (B0 ∪ δB0) ⊂ Hf ·H∞B + [B].

15

Since f ∈ δB, and due to invariants (I9) and (I10) and the fact that Hf ⊂ HB, we thus
obtain that (I10) is preserved at the end of the iteration. Since the set C \ D remains
unchanged during the iteration and set B is increased, invariants (I11) and (I12) are
automatically preserved. This concludes the study of Case 2.

Suppose now that rk f̄ < rk f and apply the statement (10), which has been proved above
in both cases. According to (I9), B ⊂ [C], hence

[B] : H∞B ⊂ [C] : H∞B ⊂ [C] : (HB ∪HC)∞.

According to (I10), HB ⊂ H∞C +[C]. Thus, Lemma 7 with H = HC, K = HB, and I = [C]
yields [C] : (HB∪HC)∞ = [C] : H∞C , whence [B] : H∞B ⊂ [C] : H∞C . In particular, keeping
(10) in mind, this implies that

if ∈ [C] : H∞C . (11)
Due to (I5) for Case 1, or due to (I10) for Case 2, we also have that

if ∈ Hf ⊂ H∞C + [C]. (12)

Together (11) and (12) imply [C] : H∞C = (1). 2

We now summarize what we have just done.
Proposition 11 Algorithm Differentiate&Autoreduce is correct and terminates.

Proof. The algorithm satisfies its specifications according to Lemmas 8, 9, 10. Also, by
Lemma 8, it terminates. 2

4.2. Comments about our modifications of Rosenfeld-Gröbner

We are ready to present a modified version of the Rosenfeld-Gröbner algorithm that
satisfies the bound. The only place where the orders of derivatives may grow is the
pseudoreduction w.r.t. an autoreduced set C. Of course, only the orders of non-leading
differential indeterminates may grow, while the orders of the leading ones decrease as a
result of reduction (or stay the same if the reduction turns out to be algebraic, but then
the orders of non-leading indeterminates do not grow either).

By associating different weights with leading and non-leading indeterminates, we will
achieve that the weighted sum of their orders does not increase as a result of reduction.
These weights come from the bound in the algorithm Differentiate&Autoreduce. If the
set of leading indeterminates changes, so do the weights. However, if we estimate in
advance the number of times the set of leading indeterminates can change throughout
the algorithm, we can still obtain an overall bound on the orders.

For the original Rosenfeld-Gröbner algorithm, it is not that easy to carry out such
an estimate, because some indeterminates may disappear and reappear again among the
leading indeterminates of the characteristic set C. For example,
Example 12 Let F = {y + z, x, x2 + z}, with the elimination ranking x > y > z.
• We choose its characteristic set as C := {y + z, x}.
• The leading variables of C are {y, x}.
• We put F̄ := d-rem(F \ C,C) = {z}.
• Fnew := F̄ ∪ C = {z, y + z, x}.

16

• As radical differential ideals:{
y + z, x, x2 + z

}
= [z, y + z, x] : 1∞ ∩

{
y + z, x, x2 + z, 1

}
.

• The new C = {z, x} is computed from Fnew and the leading variables have changed!
• . . .
• Finally, {

y + z, x, x2 + z
}

= [z, y, x] : 1∞ = [z, y, x]
and we see that the leaders y and x have come back.

Here we see that the leading variables change for a moment. But we need to prevent
this from happening in the proof of correctness of the algorithm (see Proposition 14) in
formulas (19) and (20).
Example 13 Let F = {zy, x, x2 + z}, with the elimination ranking x > y > z.
• We choose its characteristic set as C := {zy, x}.
• The leading variables of C are {y, x}.
• We put F̄ := d-rem(F \ C,C) = {z}.
• Fnew := F̄ ∪ C = {z, zy, x}.
• As radical differential ideals:{

zy, x, x2 + z
}

= [z, zy, x] : z∞ ∩
{
zy, x, x2 + z, z

}
.

• The new C = {z, x} is computed from Fnew and the leading variables have also changed!
• But the first component is trivial: 1 ∈ [z, zy, x] : z∞.

The first situation can be remedied by properly relaxing the requirement that C is
autoreduced, while the second one can be detected, after which further computations
in this branch of the Rosenfeld-Gröbner algorithm are not necessary. As a result, we
obtain an algorithm, in which, as long as an indeterminate appears among the leading
indeterminates of the set C, w.r.t. which we reduce, it will stay there until the end.

As mentioned above, we are going to replace the computation of the characteristic
set by that of a weak d-triangular subset. It is tempting to simply compute a weak d-
triangular subset of the least rank, since this computation is inexpensive and it would
give us the desired property that the leading indeterminates do not disappear. However,
the termination of the algorithm is not guaranteed then. For example, take the system
F = {x, xy} in k{x, y}, and let x < y. The weak d-triangular subset of F of the least
rank is F itself. Thus, we obtain a component {x, xy} : x∞ = (1) and another component
{x, xy, ixy}. However, ixy = x, hence we arrive at the same set F that was given in the
input, and the algorithm runs forever.

The reason for the above behavior is that the initials of a weak d-triangular set C,
as opposed to an autoreduced set, need not be reduced w.r.t. C. Thus by adding these
initials we do not necessarily decrease the rank. The solution comes from the idea of
(Boulier et al., 1997, Section 5), (Hubert, 2003, Algorithm 6.11), and (Hubert, 2004,
Algorithm 4.1) to construct the weak d-triangular set C gradually, so that each next
polynomial f to be added to C is reduced w.r.t. C (thus, we can also safely add the
initial and separant of f and guarantee that the rank decreases). In order to be able
to construct the set C gradually, similarly to (Hubert, 2003), we store it as a separate
component of the triples (F,C, H) ∈ U .

The last modification that we are going to do is the replacement of the differential
pseudo-reduction w.r.t. C by the algebraic pseudo-reduction w.r.t. B, which is computed
from C by Algorithm Differentiate&Autoreduce. As a result, we obtain Algorithm RG-
Bound.

17

4.3. Final algorithm and proof of the bound

In the proof of the bound, a key role is played by the quantity MZ(F), which is defined
for a finite set F of differential polynomials and a proper subset Z (Y . Assume that
|Z| = k < n. As before, for a differential indeterminate y ∈ Y , my(F) denotes the highest
order of a derivative of y occurring in F , or zero, if y does not occur in F . Then

MZ(F) := (n− k)
∑
y∈Z

my(F) +
∑

y∈Y \Z

my(F).

We also recall the notation
M(F) =

∑
y∈Y

my(F).

Proposition 14 Algorithm 3 is correct and terminates.

Proof. We prove the following invariants of the while-loop:
• (I1) {F0} : H∞0 =

⋂
(F,C,H)∈U{F ∪ C} : H∞ ∩

⋂
(A,H)∈T [A] : H∞

• For all (F,C, H) ∈ U ,
· (I2) C is d-triangular,
· (I3) F 6= ∅ is reduced w.r.t. C
· (I4) HC ⊂ H,
· (I5) Let l = | lv C|. Then, if 0 < l < n,

Mlv C(F ∪ C ∪H) 6 (n− 1) . . . (n− l) ·M(F0 ∪H0),

if l = 0 then
Mlv C(F ∪ C ∪H) = M(F0 ∪H0),

otherwise
M(F ∪ C ∪H) 6 (n− 1)! ·M(F0 ∪H0).

The proof is divided into three parts: correctness (invariants I1–I4), termination,
and proof of the bound (invariant I5). The first two parts follow the standard arguments
used in the proof of correctness and termination of the Rosenfeld-Gröbner algorithm.

The invariants hold for the initial triple (F0,∅, H0). Assuming that they hold at the
beginning of an iteration of the while loop, we will show that the invariants also take
place at the end of the iteration.

Correctness. Let (F,C, H) be the triple taken and removed from U . Since F 6= ∅,
we can compute an element f ∈ F of the least rank. Then f , as an element of F , is
reduced w.r.t. C. Applying (Hubert, 2003, Proposition 6.6), we have

{F ∪ C} : H∞ = {F ∪ C} : (H ∪Hf)∞ ∩ {F ∪ {if} ∪ C} : H∞ ∩ {F ∪ {sf} ∪ C} : H∞.

We note that, since rk if < rk f and rk sf < rk f , polynomials if and sf are, respectively,
the elements of F ∪ {if} and F ∪ {sf} of the least rank (and, to repeat, their ranks
are less than the rank of the least element of F). Moreover, since in the last two triples
(F ∪{if},C, H), (F ∪{sf},C, H) only the first component has changed, invariants I2–I5
are preserved for them. For the proof of invariant I1, it remains to show that

{F ∪ C} : (H ∪Hf)∞ =

[
B0
]

: H̄∞, F̄ = ∅{
F̄ ∪ B0

}
: H̄∞, otherwise.

(13)

18

Algorithm 3 RGBound(F0, H0)

Input: finite sets of differential polynomials F0 6= ∅ and H0,

and a differential ranking

Output: a finite set T of regular systems such that

{F0} : H∞0 =
⋂

(A,H)∈T
[A] : H∞ and

M(A ∪H) 6 (n− 1)!M(F0 ∪H0) for (A, H) ∈ T.

T := ∅, U := {(F0,∅, H0)}

while U 6= ∅ do

Take and remove any (F,C, H) ∈ U

f := an element of F of the least rank

D := {C ∈ C | lvC = lv f}

G := (F ∪D) \ {f}

C̄ := C \D ∪ {f}

B :=Differentiate&Autoreduce
(
C̄,
{
my(G ∪ C̄ ∪H) | y ∈ lv C̄

})
if B 6= {1} then

F̄ := algrem(G,B) \ {0}

H̄ := algrem(H,B) ∪HB

if F̄ ∩ k = ∅ and 0 6∈ H̄ then

if F̄ = ∅ then T := T ∪
{(

B0, H̄
)}

else U := U ∪
{(
F̄ ,B0, H̄

)}
end if

end if

end if

if sf 6∈ k then

U := U ∪ {(F ∪ {sf},C, H)}

if if 6∈ k and deguf
f > 1 then U := U ∪ {(F ∪ {if},C, H)} end if

end if

end while

return T

19

Given that C is d-triangular, the three assignments following the computation of f ensure
that C̄ is a weak d-triangular set of rank strictly less than C, because the polynomial f
is reduced w.r.t. C and we throw away (from C) all its elements with leading variables
“in conflict” with the one of f . We note that

G ∪ C̄ = (F ∪ D \ {f}) ∪ (C \ D) ∪ {f} = F ∪ C.

Since HC ⊂ H, we also have H ∪Hf = H ∪HC̄. Therefore,

{F ∪ C} : (H ∪Hf)∞ =
{
G ∪ C̄

}
: (H ∪HC̄)∞ . (14)

Next, we use the properties of the set B ensured by Algorithm Differentiate&Autoreduce.
Since HB ⊂ H∞C̄ +

[
C̄
]
, applying Lemma 7 with K = HB, we obtain{

G ∪ C̄
}

: (H ∪HC̄)∞ =
{
G ∪ C̄

}
: (H ∪HC̄ ∪HB)∞ . (15)

The inclusions B ⊂
[
C̄
]

and C̄ ⊂ [B] : H∞B imply that{
G ∪ C̄

}
: (H ∪HC̄ ∪HB)∞ = {G ∪ B} : (H ∪HC̄ ∪HB)∞ . (16)

Using the fact that HC̄ ⊂ (H∞B + [B]) : H∞B (see Algorithm 2) and applying Lemma 7
with K = HC̄, we get

{G ∪ B} : (H ∪HC̄ ∪HB)∞ = {G ∪ B} : (H ∪HB)∞. (17)

It follows from the definition of the algebraic pseudo-remainder (algrem) that

{G ∪ B} : (H ∪HB)∞ = {F̄ ∪ B} : H̄∞. (18)

Indeed, {G ∪ B} : (H ∪ HB)∞ = {F̄ ∪ B} : (H ∪ HB)∞. Take now any f ∈
{
F̄ ∪ B

}
:

(H ∪HB)∞. There exists h ∈ (H ∪HB)∞ such that h · f ∈
{
F̄ ∪ B

}
. If h̄ is a remainder

of h w.r.t. B then there exists h′ ∈ H∞B with h′h− h̄ ∈ (B). Hence,

h̄f ∈
{
F̄ ∪ B

}
and

f ∈
{
F̄ ∪ B

}
: H̄∞.

The reverse inclusion is done in a similar way. Since B ⊂
[
B0
]
, we obtain that

{
F̄ ∪ B

}
:

H̄∞ =
{
F̄ ∪ B0

}
: H̄∞.

The set B0 is d-triangular, its rank is equal to that of C̄, set H̄ is partially reduced
w.r.t. B0 and contains H0

B, and F̄ is reduced w.r.t. B0. Moreover, if F̄ = ∅, we obtain the
regular system

(
B0, H̄

)
, which corresponds to the radical differential ideal

[
B0
]

: H̄∞ ={
F̄ ∪ B0

}
: H∞B . Thus, we have proved (13) and also have demonstrated that invariants

I2–I4 hold for the triple
(
F̄ ,B0, H̄

)
.

Termination. At each iteration of the while-loop, the triple (F,C, H) ∈ U is replaced
by at most three triples

(
F̄ ,B0, H̄

)
, (F ∪ {if},C, H), and (F ∪ {sf},C, H).

Define a relation ≺ on the set of all triples (F,C, H) satisfying I2–I4: let (F ′,C′, H ′) ≺
(F,C, H) if and only if either rk C′ < rk C, or C′ = C and the element of the least rank
in F ′ is strictly less than that in F . Then ≺ is a lexicographic product of two well-orders,
which is a well-order. We have shown that in the first triple we have rk B0 < rk C; in the
last two triples the second component C remains the same, but the elements of the least
rank of F ∪ {if} and F ∪ {sf} are strictly less than the element of F of the least rank.
That is, each of the three triples is less than (F,C, H) w.r.t. the well-order ≺.

20

Therefore, all triples computed by the algorithm can be arranged in a ternary tree,
in which (F0,∅, H0) is the root, and every path starting from the root is finite. Let λ
be the maximal length of such a path. Then the number of vertices in the tree does not
exceed

∑λ
i=0 3i. Thus, the tree is finite, whence the algorithm terminates.

Proof of the bound. Finally, we have assumed that invariant I5 holds for the triple
(F,C, H). We need to show that it holds for the new triples formed by the algorithm at
the end of the loop. These new triples are(

F̄ ,B0, H̄
)
, (F ∪ {sf},C, H), (F ∪ {if},C, H).

Consider the first triple
(
F̄ ,B0, H̄

)
. Let l = | lv C|. We will make a general observation,

showing how Mlv C(K) changes for any finite set K, when we replace C by C̄. Two cases
are possible:

(1) lv f ∈ lv C. Then lv C̄ = lv C and, if l < n, we have

Mlv C̄(K) = Mlv C(K). (19)

The marginal situation of l = n will be further treated in (25).
(2) lv f 6∈ lv C. Then lv C̄ = lv C ∪ {lv f} and | lv C̄| = l + 1. If l + 1 < n, we observe

that

Mlv C̄(K) =

= (n− l − 1)
∑

y∈lv C̄
my(K) +

∑
y 6∈lv C̄

my(K) =

= (n− l − 1)
∑

y∈lv C
my(K) + (n− l − 1) ·mlv f (K) +

∑
y 6∈lv C̄

my(K) =

= (n− l − 1)
∑

y∈lv C
my(K) + (n− l − 2) ·mlv f (K)+

+

(
mlv f (K) +

∑
y 6∈lv C̄

my(K)

)
=

= (n− l − 1)
∑

y∈lv C
my(K) +

∑
y 6∈lv C

my(K) + (n− l − 2) ·mlv f (K) 6

6 (n− l)
∑

y∈lv C
my(K) +

∑
y 6∈lv C

my(K) + (n− l − 2) ·Mlv C(K) =

= (n− l − 1) ·Mlv C(K)

(20)

(here we have used the fact that mlv f (K) 6 Mlv C(K)).
If lv C < n and | lv C̄| = n, we simply note that

M(K) 6 Mlv C(K). (21)

We are now going to replace K by our sets. Assume for simplicity that

ld C̄ =
{
y

(d1)
1 , . . . , y

(dk)
k

}
,

where k = l or k = l+ 1. Since all derivatives of yi, 1 6 i 6 k, presented in F ∪B∪H of
order greater than di can be found among rk B, and since the elements of F̄ and H̄ \HB
are algebraic pseudo-remainders of G and H w.r.t. B, we have

mi

(
F̄ ∪ B0 ∪ H̄

)
6

 di, 1 6 i 6 k

mi(G ∪ B ∪H), k < i 6 n.
(22)

21

Also, recall that B satisfies the inequality (see (4))

mi(B) 6 mi

(
G ∪ C̄ ∪H

)
+

k∑
j=1

(mj

(
G ∪ C̄ ∪H

)
− dj), k < i 6 n. (23)

Combining (22) and (23), we obtain that

Mlv C̄
(
F̄ ∪ B0 ∪ H̄

)
= (n− k)

k∑
i=1

di +
n∑

i=k+1

mi

(
F̄ ∪ B0 ∪ H̄

)
6

6 (n− k)
k∑
i=1

di +
n∑

i=k+1

mi(G ∪ B ∪H) 6

6 (n− k)
k∑
i=1

di +
n∑

i=k+1

mi

(
G ∪ C̄ ∪H

)
+

+ (n− k)
k∑
j=1

(mj

(
G ∪ C̄ ∪H

)
− dj) =

= (n− k)
k∑
i=1

mi

(
G ∪ C̄ ∪H

)
+

n∑
i=k+1

mi

(
G ∪ C̄ ∪H

)
=

= Mlv C̄
(
G ∪ C̄ ∪H

)
and if k = n then

M
(
F̄ ∪ B0 ∪ H̄

)
=

n∑
i=1

di + 0 = M
(
G ∪ C̄ ∪H

)
because rk C̄ = rk B0. Thus,

Mlv C̄
(
F̄ ∪ B0 ∪ H̄

)
6 Mlv C̄

(
G ∪ C̄ ∪H

)
, k < n

M
(
F̄ ∪ B0 ∪ H̄

)
6 M

(
G ∪ C̄ ∪H

)
, k = n.

(24)

Now, applying (19), (20), or (21) with K = G ∪ C̄ ∪H = F ∪ C ∪H, we get

Mlv C̄
(
F̄ ∪ B0 ∪ H̄

)
6 Mlv C(F ∪ C ∪H), l = k < n

Mlv C̄
(
F̄ ∪ B0 ∪ H̄

)
6 (n− l − 1)Mlv C

(
F̄ ∪ B0 ∪ H̄

)
6

6 (n− l − 1) ·Mlv C(F ∪ C ∪H), l < k < n

M
(
F̄ ∪ B0 ∪ H̄

)
6 M

(
G ∪ C̄ ∪H

)
=

= M(F ∪ C ∪H) 6

6 Mlv C(F ∪ C ∪H), l < k = n

M
(
F̄ ∪ B0 ∪ H̄

)
6 M

(
G ∪ C̄ ∪H

)
=

= M(F ∪ C ∪H), l = k = n.

(25)

By taking into account the fact that invariant I5 holds for the triple (F,C, H), we thus
obtain this invariant for the triple

(
F̄ ,B0, H̄

)
.

22

For the last two triples, (F ∪{sf},C, H) and (F ∪{if},C, H), invariant I5 is preserved
simply because C and H remain the same and f ∈ F . More precisely,

Mlv C (F ∪ {sf} ∪ C ∪H) = Mlv C (F ∪ {if} ∪ C ∪H) =

= Mlv C(F ∪ C ∪H), l < n

M (F ∪ {sf} ∪ C ∪H) = M (F ∪ {if} ∪ C ∪H) =

= M(F ∪ C ∪H), l = n.

(26)

To conclude the proof of the bound for the output regular systems
(
B0, H̄

)
, we note

that it is already given by the invariant I5 when k = n, while in case k < n we use
inequality (21):

M
(
B0 ∪ H̄

)
6 Mlv B0

(
B0 ∪ H̄

)
6 (n− 1)! ·M(F0 ∪H0).

2

4.4. Reduction-independent algorithm

The goal of this section is to give an algorithm, whose input is a set F of ordinary
differential polynomials and the output is a characteristic decomposition of {F} satisfying
the bound, which would not employ the Differentiate&Autoreduce procedure. We will now
allow any differential reduction algorithm (and define precisely what we mean by this).
After each differential reduction, we check whether the orders of the remainder exceed the
bound and, if so, apply a truncation procedure that simply removes from the remainder
all differential monomials whose orders exceed the bound. Below we show the truncation
procedure in detail (see Algorithms 4 and 5); Theorem 17 and Proposition 18 justify
the truncation. We note that the justification of truncation is essentially based on the
fact that the bound holds for at least one way of computing the differential remainders,
namely the one used in Algorithm 3.

In Algorithm 3 we had to be very careful in the reduction process. The idea was to
emulate differential reductions by doing enough differentiations first and then applying
purely algebraic reduction. We take care of the orders of derivatives in the first process
and do not need to worry about them during the second purely algebraic step. Let us
find out why such two-step procedure was necessary. If we reduce w.r.t. an arbitrary
d-triangular set, the result of reduction depends on the choice of the reduction path.
Example 15 Consider the following differential chain

C = x(x− 1), (x− 1)y, z + y + tx

with the elimination ranking t < x < y < z and the differential polynomial

f = z′ + y′.

We can reduce f w.r.t. C in many different ways and the remainders are very different:
(1)

z′ + y′
z′+y′+t′x+tx′

−−−−−−−−−→ t′x+ tx′
(2x−1)x′

−−−−−−→ t′(2x− 1)x = 2t′x2 − t′x −−−−→
x2−x−−−−→ t′x =: f1

23

(2)

z′ + y′
(x−1)y′+x′y−−−−−−−−→ (x− 1)z′ − x′y (x−1)y−−−−→ (x− 1)2z′ −−−−→
z′+y′+t′x+tx′

−−−−−−−−−→ (x− 1)2(y′ + t′x+ tx′) −−−−→ 0 =: f2.

We see that the remainder f1 depends on the variable t′ that is not in both f2 and C.
So, the reason for these so different answers is that the set C has a non-invertible initial
modulo the ideal defined by the lower equations. Speaking informally, if C is partially
autoreduced and its initials and separants are invertible, then the result of reduction
is more or less uniquely determined. More precisely, one can show that all results of
reduction of a polynomial w.r.t. a d-triangular set with invertible initials and separants
lie in a fixed Nötherian ring of algebraic polynomials. In particular, if one of the results
of reduction satisfies a certain bound on the order of its derivatives, then any other result
of reduction will satisfy this bound as well.

Since we are not in position of reducing w.r.t. a set with invertible initials and sepa-
rants, we are going to state precisely and prove a slightly weaker statement. Within the
scope of this section, let us call polynomial g a differential remainder of polynomial f
w.r.t. C, if g is reduced w.r.t. C and there exists h ∈ H∞C such that

hf − g ∈ [C] : H∞C .

Proposition 16 Let C be a coherent 9 d-triangular set of differential polynomials, f a
differential polynomial, and g a differential remainder of f w.r.t. C. Let X be the set
of derivatives present in C and g. Let ḡ be another differential remainder of f w.r.t. C.
Assume that ḡ is not in k[X], i.e., it admits a representation ḡ = aku

k + . . .+ a0, where
u 6∈ X and a0, . . . , ak are free of u. Then

ḡ − a0 ∈ (C) : H∞C .

In particular, a0 is also a differential remainder of f w.r.t. C.

Proof. Since g and ḡ are differential remainders of f w.r.t. g, they are both reduced
w.r.t. C, and there exist h, h̄ ∈ H∞C such that

hf − g ∈ [C] : H∞C , h̄f − ḡ ∈ [C] : H∞C .

Consider the differential polynomial

f̄ := h̄(hf − g)− h(h̄f − ḡ) = hḡ − h̄g ∈ [C] : H∞C .

Since C is a coherent d-triangular set, ideal [C] : H∞C is regular. The polynomial f̄ is
partially reduced w.r.t. C. Therefore, by the Rosenfeld Lemma f̄ ∈ (C) : H∞C . We have

f̄ = (h · ak)uk + . . .+ (h · a0 − h̄ · g)

with h̄ · g contributing only to a0, because it does not depend on u. Since u does not
appear in C, the fact that f̄ ∈ (C) : H∞C implies that every coefficient of f̄ belongs to
this ideal. In particular, h · ak belongs to (C) : H∞C , whence ai ∈ (C) : H∞C , 1 6 i 6 k.
Thus,

ḡ − a0 = aku
k + . . .+ a1u ∈ (C) : H∞C .

9 The adjective “coherent” makes the statement valid in presence of partial derivatives; in the ordinary

case, it can be ignored.

24

2

We are going to apply the above Proposition as follows. Let C and f be as in its
statement. Suppose we know that there exists a differential remainder g of f w.r.t. C
that satisfies a certain bound b on the order of derivatives occurring in it. We emphasize
that we do not need to know g, the fact of its existence is sufficient. Compute any
differential remainder ḡ of f w.r.t. C. Then, if ḡ does not satisfy the bound b, it must
contain a derivative u that does not satisfy this bound. By Proposition 16, the constant
term of ḡ, when viewed as a polynomial in u, is also a differential remainder of f w.r.t.
C. Replace ḡ by its constant term; continue such replacements until ḡ satisfies the bound
b. This yields an efficient procedure that computes a differential remainder satisfying the
bound (see Algorithm 4).

We have proved the following
Theorem 17 Let C be a coherent d-triangular set of differential polynomials, and let
f be a differential polynomial. Let pi > mi(C), i = 1, . . . , n. Assume that there exists a
differential remainder of f w.r.t. C, which contains no derivatives of differential inde-
terminate yi of order greater than pi, i = 1, . . . , n. Let g be any differential remainder of
f w.r.t. C. Then Truncate(g, {pi}) is a differential remainder of f w.r.t. C, in which the
order of every differential indeterminate yi does not exceed pi.

Algorithm 4 Truncate (f, {pi})
Input: a differential polynomial f and numbers pi > 0

Output: truncation of f , i.e., the sum of those terms of f that

belong to the polynomial ring R = k
[
y

(k)
i | 1 6 i 6 n, 0 6 k 6 pi

]
Let f = α1 + . . .+ αq, where αi are differential monomials

g := 0

for i := 1 to q do

if αi ∈ R then g := g + αi

end for

return g

We are going to modify Algorithm 3, so that there is no necessity to perform differ-
ential pseudo-reduction in two steps, via prolongation and purely algebraic reduction.
In the new Algorithm 5, it is assumed that procedure d-rem computes any differential
remainder in the above sense. The key idea is the following: whenever we find a dif-
ferential remainder w.r.t. D that does not satisfy the expected bound b (computed by
Algorithm 5), by Theorem 17 we can simply truncate this remainder. In order to be able
to apply Theorem 17, we are going to prove the existence of a differential remainder
satisfying b. In fact, we know that sets B, F̄ , and H̄ computed in Algorithm 3 satisfy
b; it remains to be shown that one can obtain differential remainders w.r.t. D, given
the elements of B, F̄ , and H̄. Note that we may assume rk D = rk C̄ (at the end of the
for-loop), since otherwise all results of truncations are discarded by Algorithm 5.
Proposition 18 Algorithm 5 is correct and satisfies the bound.

25

Algorithm 5 RGBound-Reduction-Independent(F0, H0)

Input: finite sets of differential polynomials F0 6= ∅ and H0,

and a differential ranking

Output: a finite set T of regular systems such that

{F0} : H∞0 =
⋂

(A,H)∈T
[A] : H∞ and

M(A ∪H) 6 (n− 1)!M(F0 ∪H0) for (A, H) ∈ T.

T := ∅, U := {(F0,∅, H0)}

while U 6= ∅ do

Take and remove any (F,C, H) ∈ U

f an element of F of the least rank

D := {C ∈ C | lvC = lv f}

G := F ∪D \ {f}

C̄ := C \D ∪ {f}

Ḡ := G ∪ C̄ ∪H

b :=
{
my

(
Ḡ
) ∣∣ y ∈ lv C̄

}
∪

{
mz

(
Ḡ
)

+
∑

y∈lv C̄

(
my

(
Ḡ
)
−my

(
ld C̄

)) ∣∣ z /∈ lv C̄

}
D := ∅

for C ∈ C̄ increasingly do

D := D ∪ {Truncate (d-rem (C,D) , b)}

end for

if rk D = rk C̄ then

F̄ := Truncate (d-rem(G,D) \ {0}, b)

H̄ := Truncate (d-rem(H ∪Hf ,D) ∪HD, b)

if F̄ ∩ k = ∅ and 0 6∈ H̄

then U := U ∪
{
F̄ ,D, H̄

}
else T := T ∪ {(D, H̄)}

end if

end if

if sf 6∈ k then

U := U ∪ {(F ∪ {sf},C, H)}

if if 6∈ k and deguf
f > 1 then U := U ∪ {(F ∪ {if},C, H)} end if

end if

end while

return T 26

Proof. The proof of correctness, termination, and bound for Algorithm 5 is based on
the same invariants of the while-loop that were used for Algorithm 3. The only new step
we make is the Truncate algorithm whose application we justify now. In order to do this
we consider

B = Differentiate&Autoreduce
(
C̄,
{
my

(
Ḡ
)
| y ∈ lv C̄

})
.

and show that, at the beginning of each iteration, there exist B ∈ B and h ∈ H∞D such
that hB is a differential remainder of C w.r.t. D. This statement is a consequence of the
following expanded invariant of the for-loop, which we are going to prove by induction
on the number of iterations. Let

B<C = {f ∈ B | ld f < ldC},

B = algrem(C,B<C), E = d-rem(C,D), and D = Truncate (E, b). Then

h′ · C − hB ∈ [D] : H∞D ,

B ∈ [D ∪ {D}] : H∞D ,

HB ⊂ (H∞D + [D]) : H∞D ,

for some h, h′ ∈ H∞D . The inductive base holds, since at the end of the first iteration we
have B = E = D = C and D = {C}. For the inductive step, we have:

h1 · C −B ∈ (B<C)

for some h1 ∈ H∞B<C
. By the inductive assumption

[B<C] ⊂ [D] : H∞D .

Hence,
h1 · C −B ∈ [D] : H∞D .

Also, by the inductive assumption,

h1 ∈ (H∞D + [D]) : H∞D .

This means that there exist h ∈ H∞D , h′ ∈ H∞D such that

h · h1 − h′ ∈ [D].

Thus,
h′ · C − h ·B ∈ [D] : H∞D .

By definition of (algebraic) pseudo-remainder, we have

B ∈ (B<C ∪ {C}) , C ∈ (E + [D]) : H∞D .

By Lemma 5, taking into account the assumption rk D = rk C̄, we have:

HB ⊂ HC ·H∞B<C
+ (B<C) , HC ⊂ (HE + [D]) : H∞D .

By Proposition 16, E ∈ D + (D) : H∞D . By modifying slightly the proof of Lemma 5,
we will show that this implies HE ⊂ HD + (D) : H∞D . Indeed, using the assumption
rk D = rk C̄ (which holds at the end of the for-loop), we obtain rkD = rkC = rkE;
since all leading differential indeterminates in C̄ are distinct, this, in particular, implies
that

v = ldD = ldE 6∈ ld D.

27

Now let f1, . . . , fk be any generators of the ideal (D) : H∞D , so that we have

E −D =
k∑
i=1

αifi.

By viewing the above equality as one between two polynomials in v and noting that fi do
not involve v, we immediately obtain that iE − iD ∈ (D) : H∞D and sE − sD ∈ (D) : H∞D .

Combining the above statements, we obtain the required invariants at the end of the
iteration:

B ∈ (B<C ∪ {C}) ⊂ ([D] : H∞D ∪ (E + [D]) : H∞D) ⊂ [D ∪ {D}] : H∞D

and

HB ⊂ HC ·H∞B<C
+ (B<C) ⊂ (HE + [D]) : H∞D + [D] : H∞D ⊂ (HD + [D]) : H∞D .

The truncations applied in Algorithm 5 to compute sets F̄ and H̄ are justified by showing
that differential remainders of G and H ∪Hf w.r.t. D that satisfy the bound b exist and
can be similarly obtained from the elements of sets F̄ and H̄ computed by Algorithm 3.
We omit these details. 2

5. Conclusions

By estimating the orders of derivatives, we have shown that, given a set of ordi-
nary differential polynomials specifying a radical differential ideal I, one can construct
a Nötherian ring of algebraic polynomials, in which the computation of a characteristic
decomposition of I is actually performed. This does not mean that the computation is
completely algebraic: differentiations are allowed, but they never lead out of the con-
structed algebraic ring.

We conjecture that, if one can solve the first problem of computing a characteristic
decomposition of a radical differential ideal from generators completely algebraically,
i.e., by an algorithm that first differentiates the input polynomials sufficiently many
times, and then computes the decomposition without using differentiations, then one
can also solve the Ritt problem of computing an irredundant prime (or characteristic)
decomposition of a radical differential ideal.

Acknowledgements

We thank Michael F. Singer, François Boulier, William Sit, Évelyne Hubert, Evgeniy
Pankratiev, and the referees for their important suggestions.

References

Boulier, F., 1999. Efficient computation of regular differential systems by change
of rankings using Kähler differentials. Tech. rep., Université Lille I, 59655, Vil-
leneuve d’Ascq, France, ref. LIFL 1999–14, presented at the MEGA 2000 conference.
http://hal.archives-ouvertes.fr/hal-00139738.

28

Boulier, F., 2000. Triangularisation de systèmes de polynômes différentiels. Série IC2
(Information, Commande, Communication). Hermès, never published. In French.
http://hal.archives-ouvertes.fr/hal-00140006.

Boulier, F., 2006. Réécriture algébrique dans les systèmes d’équations différentielles poly-
nomiales en vue d’applications dans les Sciences du Vivant. Mémoire d’habilitation
à diriger des recherches. Université Lille I, LIFL, 59655 Villeneuve d’Ascq, France.
http://tel.archives-ouvertes.fr/tel-00137153.

Boulier, F., Lazard, D., Ollivier, F., Petitot, M., 1995. Representation for the radical of a
finitely generated differential ideal. In: ISSAC’95: Proceedings of the 1995 international
symposium on Symbolic and algebraic computation. ACM Press, New York, NY, USA,
pp. 158–166, http://hal.archives-ouvertes.fr/hal-00138020.

Boulier, F., Lazard, D., Ollivier, F., Petitot, M., 1997. Computing representations for
radicals of finitely generated differential ideals. Tech. rep., Université Lille I, LIFL,
59655, Villeneuve d’Ascq, France, ref. IT306. December 1998 version published in the
HDR memoir of Michel Petitot. http://hal.archives-ouvertes.fr/hal-00139061.

Boulier, F., Lemaire, F., 2000. Computing canonical representatives of regular differ-
ential ideals. In: ISSAC’00: Proceedings of the 2000 international symposium on
Symbolic and algebraic computation. ACM Press, New York, NY, USA, pp. 38–47,
http://hal.archives-ouvertes.fr/hal-00139177.

Boulier, F., Lemaire, F., Moreno Maza, M., 2001. PARDI! In: ISSAC’01:
Proceedings of the 2001 international symposium on Symbolic and al-
gebraic computation. ACM Press, New York, NY, USA, pp. 38–47,
http://hal.archives-ouvertes.fr/hal-00139354.

Boulier, F., Lemaire, F., Moreno Maza, M., 2006. Well known theorems on triangu-
lar systems and the D5 principle. In: Proceedings of Transgressive Computing 2006.
Granada, Spain, pp. 79–91, http://hal.archives-ouvertes.fr/hal-00137158.

Bouziane, D., Kandri Rodi, A., Maârouf, H., 2001. Unmixed-dimensional decomposition
of a finitely generated perfect differential ideal. Journal of Symbolic Computation 31,
631–649.

Hubert, E., 2000. Factorization-free decomposition algorithms in differential algebra.
Journal of Symbolic Computation 29 (4-5), 641–662.

Hubert, E., 2003. Notes on triangular sets and triangulation-decomposition algorithms
II: Differential systems. In: Symbolic and Numerical Scientific Computing 2001. pp.
40–87.

Hubert, E., 2004. Improvements to a triangulation-decomposition algorithm for ordinary
differential systems in higher degree cases. In: Proceedings of ISSAC 2004. ACM Press,
pp. 191–198.

Kolchin, E., 1973. Differential Algebra and Algebraic Groups. Academic Press, New York.
Kondratieva, M., Levin, A., Mikhalev, A., Pankratiev, E., 1999. Differential and difference

dimension polynomials. Kluwer Academic Publisher.
Moreno Maza, M., 1999. On triangular decompositions of algebraic varieties. Tech. Rep.

TR 4/99, NAG Ltd, Oxford, UK, presented at the MEGA-2000 Conference, Bath,
England.

Morrison, S., 1999. The differential ideal [P] : M∞. Journal of Symbolic Computation
28, 631–656.

Ritt, J., 1950. Differential Algebra. American Mathematical Society, New York.

29

Sit, W., 2002. The Ritt-Kolchin theory for differential polynomials. In: Differential Al-
gebra and Related Topics, Proceedings of the International Workshop (NJSU, 2–3
November 2000).

Szántó, Á., 1999. Computation with polynomial systems. Ph.D. thesis, Cornell University.
Wang, D. M., 1993. An elimination method for polynomial systems. Journal of Symbolic

Computation 16, 83–114.

30

