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1. Introduction

The existing methods of studying hypertranscedence of solutions of second order

inhomogeneous linear differential equations [15] use results from parameterized dif-

ferential Galois theory [10, 26]. In this application, these results essentially limit the

consideration of inhomogeneous terms to rational functions. However, the Lommel

function with a non-integer parameter µ, the Anger and Weber functions are all ex-

amples of solutions of inhomogeneous versions of Bessel’s differential equation with

inhomogeneous terms that are not rational functions. Therefore, new techniques

in parameterized differential Galois theory are needed so that the theory can be

readily applied to the above functions. In addition, third order linear differential
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equations with parameters appear in electromagnetic waves modeling [20, §78].

The hypertranscendence results of [15] are based in part on new results in the

representation theory of linear differential algebraic groups. In particular, extensions

of a trivial representation by a two-dimensional representation are analyzed there.

In the present paper, we give a deeper development of the representation theory by

analyzing three-dimensional representations of linear differential algebraic groups

that are not necessarily extensions of a trivial representation. Based on this, we

present the first algorithm that calculates the differential Galois group of a third-

order homogeneous parameterized linear differential equation whose coefficients are

rational functions.

Our algorithm relies on several existing algorithms in the parameterized differ-

ential Galois theory referenced below. For linear differential equations of order two,

an algorithmic development was initiated in [9] and completed in [2]. An algorithm

that allows to test if the parameterized differential Galois group is reductive and

to compute the group in that case can be found in [25]. In [24], it is shown how to

compute the parameterized differential Galois group if its quotient by the unipotent

radical is conjugate to a group of matrices with constant entries with respect to the

parametric derivations. The algorithms of [24, 25] rely on the algorithm of comput-

ing differential Galois groups [16], which has been further analyzed and improved

in [11], in the case of no parameters.

The paper is organized as follows. Section 2 contains basic definitions and facts

in differential algebraic geometry, differential algebraic groups, and systems of linear

differential equations with parameters phrased in the language most suitable for our

description of our algorithm. The main algorithm is described in Section 3.

2. Basic definitions and facts

For the convenience of the reader, we present the basic standard definitions and facts

from differential algebraic geometry, differential algebraic groups, and differential

modules used in the rest of the paper. In what follows, fields are assumed to have

zero characteristic.

2.1. Differential algebraic geometry

Definition 2.1. A differential ring is a ring R with a finite set ∆ = {δ1, . . . , δm}
of commuting derivations on R. A ∆-ideal of R is an ideal of R stable under any

derivation in ∆.

In the present paper, ∆ will consist of one or two elements. Let R be a ∆-ring.

For any δ ∈ ∆, we denote

Rδ = {r ∈ R | δ(r) = 0},

which is a ∆-subring of R and is called the ring of δ-constants of R. If R is a field

and a differential ring, then it is called a differential field, or ∆-field for short. For

example, (R = Q(x, t),∆ = {∂/∂x, ∂/∂t}) is a differential field.
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The ring of ∆-differential polynomials K{y1, . . . , yn} in the differential indeter-

minates, or ∆-indeterminates, y1, . . . , yn and with coefficients in a ∆-field (K,∆),

is the ring of polynomials in the indeterminates formally denoted{
δi11 · . . . · δimm yi

∣∣ i1, . . . , im ≥ 0, 1 ≤ i ≤ n
}

with coefficients in K. We endow this ring with a structure of a ∆-ring by setting

δk
(
δi11 · . . . · δimm yi

)
= δi11 · . . . · δ

ik+1
k · . . . · δimm yi.

Definition 2.2 (see [21, Corollary 1.2(ii)]). A differential field (K,∆) is said to

be differentially closed or ∆-closed for short, if, for every finite set of ∆-polynomials

F ⊂ K{y1, . . . , yn}, if the system of differential equations F = 0 has a solution with

entries in some ∆-field extension L, then it has a solution with entries in K.

Let (k, δ) be a differentially closed field, C = kδ, and (F, δ) a δ-subfield of k.

Definition 2.3. A Kolchin-closed (or δ-closed, for short) set W ⊂ kn is the set of

common zeroes of a system of δ-polynomials with coefficients in k, that is, there

exists S ⊂ k{y1, . . . , yn} such that

W = {a ∈ kn | f(a) = 0 for all f ∈ S} .

We say that W is defined over F if W is the set of zeroes of δ-polynomials with

coefficients in F . More generally, for any δ-ring R extending F ,

W (R) = {a ∈ Rn | f(a) = 0 for all f ∈ S} .

Definition 2.4. If W ⊂ kn is a Kolchin-closed set defined over F , the δ-ideal

I(W ) = {f ∈ F{y1, . . . , yn} | f(w) = 0 for all w ∈W (k)}

is called the defining δ-ideal ofW over F . Conversely, for a subset S of F{y1, . . . , yn},
the following subset is δ-closed in kn and defined over F :

V(S) = {a ∈ kn | f(a) = 0 for all f ∈ S} .

Remark 2.1. Since every radical δ-ideal of F{y1, . . . , yn} is generated as a radical

δ-ideal by a finite set of δ-polynomials (see, for example, [29, Theorem, page 10],

[19, Sections VII.27-28]), the Kolchin topology is Ritt–Noetherian, that is, every

strictly decreasing chain of Kolchin-closed sets has a finite length.

Definition 2.5. Let W ⊂ kn be a δ-closed set defined over F . The δ-coordinate

ring F{W} of W over F is the F -∆-algebra

F{W} = F{y1, . . . , yn}
/
I(W ).

If F{W} is an integral domain, then W is said to be irreducible. This is equivalent

to I(W ) being a prime δ-ideal.

Definition 2.6. Let W ⊂ kn be a δ-closed set defined over F . Let I(W ) = p1∩. . .∩
pq be a minimal δ-prime decomposition of I(W ), that is, the pi ⊂ F{y1, . . . , yn} are
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prime δ-ideals containing I(W ) and minimal with this property. This decomposition

is unique up to permutation (see [19, Section VII.29]). The irreducible Kolchin-

closed sets Wi = V(pi) are defined over F and called the irreducible components of

W . We have W = W1 ∪ . . . ∪Wq.

Definition 2.7. Let W1 ⊂ kn1 and W2 ⊂ kn2 be two Kolchin-closed sets defined

over F . A δ-polynomial map (morphism) defined over F is a map

ϕ : W1 →W2, a 7→ (f1(a), . . . , fn2
(a)) , a ∈W1,

where fi ∈ F{y1, . . . , yn1
} for all i = 1, . . . , n2.

If W1 ⊂W2, the inclusion map of W1 in W2 is a δ-polynomial map. In this case,

we say that W1 is a δ-closed subset of W2.

Example 2.1. Let GLn ⊂ kn
2

be the group of n×n invertible matrices with entries

in k. One can see GLn as a Kolchin-closed subset of kn
2 ×k defined over F , defined

by the equation det(X)y−1 in F
{
kn

2×k
}

= F{X, y}, where X is an n×n-matrix

of δ-indeterminates over F and y a δ-indeterminate over F . One can thus identify

the δ-coordinate ring of GLn over F with F{Y, 1/det(Y )}, where Y = (yi,j)1≤i,j≤n
is a matrix of δ-indeterminates over F . We also denote the special linear group that

consists of the matrices of determinant 1 by SLn ⊂ GLn.

Similarly, if V is a finite-dimensional F -vector space, GL(V ) is defined as the

group of invertible k-linear maps of V ⊗F k. To simplify the terminology, we will

also treat GL(V ) as Kolchin-closed sets tacitly assuming that some basis of V over

F is fixed.

Remark 2.2. If K is a field, we denote the group of invertible matrices with

coefficients in K by GLn(K).

2.2. Differential algebraic groups

Definition 2.8. A linear differential algebraic group G ⊂ kn
2

defined over F is

a subgroup of GLn that is a Kolchin-closed set defined over F . If G ⊂ H ⊂ GLn
are Kolchin-closed subgroups of GLn, we say that G is a δ-closed subgroup, or

δ-subgroup of H.

We will use the abbreviation LDAG for a linear differential algebraic group.

Proposition 2.1. Let G ⊂ GLn be a linear algebraic group defined over F .

(1) G is an LDAG.

(2) Let H ⊂ G be a δ-subgroup of G defined over F , and the Zariski closure H ⊂ G
be the closure of H with respect to the Zariski topology. In this case, H is a

linear algebraic group defined over F , whose polynomial defining ideal over F

is

I(H) ∩ F [Y ] ⊂ I(H) ⊂ F{Y },

where Y = (yi,j)1≤i,j≤n is a matrix of δ-indeterminates over F .
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Definition 2.9. Let G be an LDAG defined over F . The irreducible component

of G containing the identity element e is called the identity component of G and

denoted by G◦. The LDAG G◦ is a δ-subgroup of G defined over F .

Definition 2.10. An LDAGG is said to be connected ifG = G◦, which is equivalent

to G being an irreducible Kolchin-closed set [3, page 906].

Definition 2.11. Let G be an LDAG defined over F and V a finite-dimensional

vector space over F . A δ-polynomial group homomorphism ρ : G→ GL(V ) defined

over F is called a representation of G over F .

We shall also say that V is a G-module over F . By a faithful (respectively, simple,

semisimple) G-module, we mean a faithful (respectively, irreducible, completely

reducible) representation ρ : G→ GL(V ).

The image of a δ-polynomial group homomorphism % : G→ H is Kolchin closed

[3, Proposition 7]. Moreover, if Ker(%) = {1}, then ρ is an isomorphism of linear

differential algebraic groups between G and ρ(G) [3, Proposition 8].

Definition 2.12 ([4, Theorem 2]). An LDAG G is unipotent if one of the fol-

lowing equivalent conditions holds:

(1) G is conjugate to a differential algebraic subgroup of the group of unipotent

upper triangular matrices;

(2) G contains no elements of finite order > 1;

(3) G has a descending normal sequence of differential algebraic subgroups

G = G0 ⊃ G1 ⊃ . . . ⊃ GN = {1}

with Gi/Gi+1 isomorphic to a differential algebraic subgroup of the additive

group Ga.

One can show that an LDAG G defined over F admits a largest normal unipotent

differential algebraic subgroup defined over F [22, Theorem 3.10].

Definition 2.13. Let G be an LDAG defined over F . The largest normal unipotent

differential algebraic subgroup of G defined over F is called the unipotent radical

of G and denoted by Ru(G). The unipotent radical of a linear algebraic group H is

also denoted by Ru(H).

Definition 2.14. A non-commutative LDAG G is said to be simple if {1} and G

are the only normal differential algebraic subgroups of G.

Definition 2.15. A quasi-simple linear (differential) algebraic group is a finite

central extension of a simple non-commutative linear (differential) algebraic group.

Definition 2.16. An LDAG G is said to be reductive if Ru(G) = {1}.

Proposition 2.2 ([25, Remark 2.9]). Let G ⊂ GLn be an LDAG. If G ⊂ GLn
is a reductive linear algebraic group, then G is a reductive LDAG.
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For a group G, its subgroup generated by {ghg−1h−1 | g, h ∈ G} is denoted by

[G,G].

Definition 2.17. Let G be a group and G1, . . . , Gn subgroups of G. We say that

G is the almost direct product of G1, . . . , Gn if

(1) the commutator subgroups [Gi, Gj ] = {1} for all i 6= j;

(2) the morphism

ψ : G1 × . . .×Gn → G, (g1, . . . , gn) 7→ g1 · . . . · gn
is an isogeny, that is, a surjective map with a finite kernel.

Theorem 2.1 ([15, Theorem 2.25]). Let G ⊂ GLn be a linear differential alge-

braic group defined over F . Assume that G ⊂ GLn is a connected reductive algebraic

group. Then

(1) G is an almost direct product of a torus H0 and non-commutative normal quasi-

simple linear algebraic groups H1, . . . ,Hs defined over Q;

(2) G is an almost direct product of a Zariski dense δ-closed subgroup G0 of H0

and some δ-closed subgroups Gi of Hi for i = 1, . . . , s;

(3) moreover, either Gi = Hi or Gi is conjugate by a matrix of Hi to Hi(C);

Definition 2.18. Let G be an LDAG defined over F . We define τ(G), the differ-

ential type of G, to be 0 if tr.degF Quot(F{G◦}) <∞ and to be 1 otherwise.

Definition 2.19. Let G be an LDAG defined over F . We say that G is differentially

finitely generated, or simply a DFGG, if G(k) contains a finitely generated subgroup

that is Kolchin dense over F .

2.3. Differential modules and their Galois groups

Our presentation of the (parameterized) differential Galois theory is deliberately

based on fiber functors and tensor categories so that the description of our main

algorithm is clearer. Indeed, it is essential for the description to have a correspon-

dence between the operations performed with the differential module (system of

linear differential equations) and with representations of its (parameterized) differ-

ential Galois group.

Let K be a ∆ = {∂, δ}-field and k = K∂ . We assume for simplicity that (k, δ)

is a differentially closed field (this assumption was relaxed in [12, 32, 27]).

Definition 2.20. A ∂-module M over K is a left K[∂]-module that is a finite-

dimensional vector space over K.

LetM be a ∂-module over K and {e1, . . . , en} a K-basis ofM. Let A = (ai,j) ∈
Matn(K) be the matrix defined by

∂(ei) = −
n∑
j=1

aj,iej , i = 1, . . . , n. (2.1)
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Then, for any m =
∑n
i=1 yiei, where Y = (y1, . . . , yn)T ∈ Kn, we have

∂(m) =

n∑
i=1

∂(yi)ei −
n∑
i=1

 n∑
j=1

ai,jyj

 ei.

Thus, the equation ∂(m) = 0 translates into the homogeneous system of linear

differential equations ∂(Y ) = AY .

Definition 2.21. Let M be a ∂-module over K and {e1, . . . , en} be a K-basis of

M. We say that the linear differential system ∂(Y ) = AY , as above, is associated

to the ∂-module M (via the choice of a K-basis). Conversely, to a given linear

differential system ∂(Y ) = AY , A = (ai,j) ∈ Kn×n, one associates a ∂-module M
over K, namelyM = Kn with the standard basis (e1, . . . , en) and action of ∂ given

by (2.1).

Definition 2.22. A morphism of ∂-modules over K is a homomorphism of K[∂]-

modules.

One can consider the category DiffK of ∂-modules over K:

Definition 2.23. We can define the following constructions in DiffK :

(1) The direct sum of two ∂-modules,M1 andM2, isM1⊕M2 together with the

action of ∂ defined by

∂(m1 ⊕m2) = ∂(m1)⊕ ∂(m2).

(2) The tensor product of two ∂-modules, M1 and M2, is M1 ⊗K M2 together

with the action of ∂ defined by

∂(m1 ⊗m2) = ∂(m1)⊗m2 +m1 ⊗ ∂(m2).

(3) The unit object 1 for the tensor product is the field K together with the left

K[∂]-module structure given by

(a0 + a1∂ + · · ·+ an∂
n)(f) = a0f + · · ·+ an∂

n(f)

for f, a0, . . . , an ∈ K.

(4) The internal Hom of two ∂-modulesM1,M2 exists in DiffK and is denoted by

Hom(M1,M2). It consists of the K-vector space HomK(M1,M2) of K-linear

maps from M1 to M2 together with the action of ∂ given by the formula

∂u(m1) = ∂(u(m1))− u(∂m1).

The dual M∗ of a ∂-module M is the ∂-module Hom(M,1).

(5) An endofunctor D : DiffK → DiffK , called the prolongation functor, is defined

as follows: if M is an object of DiffK corresponding to the linear differential

system ∂(Y ) = AY , then D(M) corresponds to the linear differential system

∂(Z) =

(
A δ(A)

0 A

)
Z.
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The construction of the prolongation functor reflects the following. If U is a

fundamental solution matrix of ∂(Y ) = AY in some ∆-field extension F of K, that

is, ∂(U) = AU and U ∈ GLn(F ), then

∂(δU) = δ(∂U) = δ(A)U +Aδ(U).

Then,

(
U δ(U)

0 U

)
is a fundamental solution matrix of ∂(Z) =

(
A δ(A)

0 A

)
Z. En-

dowed with all these constructions, it follows from [28, Corollary 3] that the cate-

gory DiffK is a δ-tensor category (in the sense of [28, Definition 3] and [18, Defini-

tion 4.2.1]).

Definition 2.24. Let M be an object of DiffK . Let {M}⊗,δ denote the smallest

full subcategory of DiffK that contains M and is closed under all operations of

linear algebra (direct sums, tensor products, duals, and subquotients) and D. The

category {M}⊗,δ is a δ-tensor category over k. Let {M}⊗ denote the full tensor

subcategory of DiffK generated by M. Then, {M}⊗ is a tensor category over k.

Similarly, the category Vectk of finite-dimensional k-vector spaces is a δ-tensor

category. The prolongation functor on Vectk is defined as follows: for a k-vector

space V , the k-vector space D(V ) equals k[δ]≤1⊗k V , where k[δ]≤1 is considered as

the right k-module of δ-operators up to order 1 and V is viewed as a left k-module.

Definition 2.25. Let M be an object of DiffK . A δ-fiber functor ω : {M}⊗,δ →
Vectk is an exact, faithful, k-linear, tensor compatible functor together with a nat-

ural isomorphism between DVectk ◦ ω and ω ◦D{M}⊗,δ [18, Definition 4.2.7], where

the subscripts emphasize the category on which we perform the prolongation. The

pair
(
{M}⊗,δ, ω

)
is called a δ-Tannakian category.

Theorem 2.2 ([12, Corollaries 4.29 and 6.2]). Let M be an object of DiffK .

Since k is δ-closed, the category {M}⊗,δ admits a δ-fiber functor and any two δ-fiber

functors are naturally isomorphic.

Definition 2.26. Let M be an object of Diffk and ω : {M}⊗,δ → Vectk be a

δ-fiber functor. The group Galδ(M) of δ-tensor automorphisms of ω is defined as

follows. It consists of the elements g ∈ GL(ω(M)) that stabilize ω(V) for every

∂-module V obtained from M by applying the linear constructions (subquotient,

direct sum, tensor product, and dual), and the prolongation functor. The action of g

on ω(V) is obtained by applying the same constructions to ω(V). We call Galδ(M)

the parameterized differential Galois group of (M, ω) (or of M when there is no

confusion).

Theorem 2.3 ([28, Theorem 2]). Let M be an object of DiffK and ω :

{M}⊗,δ → Vectk be a δ-fiber functor. The group Galδ(M) ⊂ GL(ω(M)) is a

linear differential algebraic group defined over k, and ω induces an equivalence of

categories between {M}⊗,δ and the category of finite-dimensional representations

of Galδ(M).
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Definition 2.27. We say that a ∂-moduleM over K is trivial if it is either (0) or

isomorphic as a ∂-module over K to 1n for some positive integer n. For G a linear

differential algebraic group over k, we say that a G-module V is trivial if G acts

identically on V .

Remark 2.3. ForM an object of DiffK and ω : {M}⊗,δ → Vectk a δ-fiber functor,

the following holds: a ∂-moduleN in {M}⊗,δ is trivial if and only if ω(N ) is a trivial

Galδ(M)-module.

Definition 2.28. Forgetting the action of δ, one can similarly define the group

Gal(M) of tensor isomorphisms of ω : {M}⊗ → Vectk. By [8], the group Gal(M) ⊂
GL(ω(M)) is a linear algebraic group defined over k, and ω induces an equivalence of

categories between {M}⊗ and the category of k-finite-dimensional representations

of Gal(M). We call Gal(M) the differential Galois group of M over K.

Proposition 2.3 ([14, Proposition 6.21]). If M is an object of DiffK and ω :

{M}⊗,δ → Vectk is a δ-fiber functor, then Galδ(M) is a Zariski dense subgroup of

Gal(M).

Definition 2.29. A ∂-module M is said to be completely reducible (semisimple)

if, for every ∂-submodule N of M, there exists a ∂-submodule N ′ of M such that

M = N ⊕ N ′. We say that a ∂-operator is completely reducible if the associated

∂-module is completely reducible.

By [30, Exercise 2.38], a ∂-module is completely reducible if and only if its differ-

ential Galois group is a reductive linear algebraic group. Moreover, for a completely

reducible ∂-module M, any object in {M}⊗ is completely reducible.

Definition 2.30. A linear differential algebraic groupG ⊂ GL(V ) is called constant

(cf. [13, Definition 4.1], and also [24, Definition 2.10] for reductive LDAGs) if G

preserves a C-form of V . That is, if one considers G as a group of matrices, G is

conjugate to a group of matrices with constant entries.

Definition 2.31. We say that a differential module V is constant (also known as

isomonodromic or completely integrable) if Galδ(V) is constant (see [7, Definition 3.8

and Proposition 3.9], [13, Section 6]). We call a semisimple differential module purely

non-constant if every simple submodule is not constant.

In the language of matrices, if ∂(Y ) = AY is a system of linear differential

equations associated to V, then V is constant if and only if there exists an n × n
matrix B with entries in K such that ∂(B)−δ(A) = AB−BA (see [7, Definition 3.8

and Proposition 3.9]).

3. The algorithm

For simplicity, let (k, δ) be a differentially closed field of zero characteristic. Let

also K = k(x) be a ∆-field, where ∆ = {∂, δ}, and ∂ = ∂/∂x. So, k = K∂ . Let
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V be a ∂-module over K, dimV = 3, ω a δ-fiber functor, and so V = ω(V) is a

faithful Galδ(V)-module (to avoid repetition, ∂-modules over K will be denoted

by calligraphic letters, and the corresponding regular letters will be used for their

images under ω).

In what follows, we start with preliminary results and our algorithm-specific

definitions in Section 3.1, where we also explain what is sufficient to know to consider

Galδ(V) computed. We continue with a description of the algorithm by considering

the following cases that can possibly occur:

(1) Optimized for dimV = 3, and so more efficiently than in [25], we start with

computing Galδ(Vdiag) (see Definition 3.2) in Section 3.2, which also covers

the case of V ∼= Vdiag, that is V being semisimple. For checking the latter

isomorphism, see [30, Section 4.2] and the references given there.

(2) We then proceed with computing Galδ(V) if V is decomposable (can be repre-

sented as a direct sum of a 2-dimensional not semisimple and a 1-dimensional

submodules) in Section 3.3.

(3) If V is indecomposable and Vdiag has a 2-dimensional simple submodule, then

we compute Galδ(V) in Section 3.4.

(4) The remaining case of indecomposable V with Vdiag being a direct sum of three

1-dimensional submodules in Section 3.5.

3.1. Preparation

If G = Galδ(V), as explained above, it can be identified with an LDAG in GL(V ),

where V = ω(V). To compute G means to provide an algorithm that, given V,

returns a (finite) set of equations defining G in the ring of differential polynomials

in matrix coefficients, with respect to some basis of V . Note that G can be computed

as it is Gal(V) [16, 11]. If one knows a priori that τ(G) = 0, one can compute G

using [24].

Our goal now is to explain an approach to computing G in the case dimV = 3.

By [10, 26], since K = k(x), G is a DFGG, which will be essential. For example,

if % : G → GL(W ) is a 1-dimensional representation of G, then τ(%(G)) = 0. Note

that the case dimV = 2 has already been considered in [1, 2, 9].

Our approach is related to the following. Let (Hi, Vi), i ∈ I, be pairs of algebraic

groups Hi ⊂ GL(V ) containing G, and algebraic Hi-modules Vi, where I is a non-

empty finite set. Let %i : Hi → GL(Vi) denote the homomorphisms defining the

Hi-module structure on Vi.

Definition 3.1. We say that G is

• determined by the pairs (Hi, Vi), i ∈ I, if G has finite index in the intersection

P of all %−1i (Gi), where Gi := %i(G). In other words, G◦ = P ◦, or equivalently,

due to the bijection between the finite sets of connected components of G and
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of G [25, Corollary 3.7],

G = P ∩G.

• determined by Vi if Hi = G, i ∈ I. In this case, G = P .

Remark 3.1. It follows that G is determined by Vi if it is determined by some

(Hi, Vi).

Remark 3.2. Note that Vi are G-modules from the rigid tensor category generated

by V and, if Hi = G, i ∈ I, this property characterizes them.

This notion can be applied for the computation of G. Namely, suppose it is

known that G is determined by (Hi, Vi) and suppose that we know how to compute

Gi. Then we can compute

G =
⋂
i∈I

%−1i (Gi) ∩G

since %i are given (the intersection with G is needed only if G 6= P ). Furthermore,

if Fi ⊂ k{GL(Vi)}, Ji, J ⊂ k{GL(V )}, i ∈ I, are sets of generators of the defining

ideals of Gi, Hi, and H, respectively, then the defining ideal for G is generated by⋃
i∈I

ν%∗i (Fi) ∪ Ji ∪ J,

where ν is a k-linear section of k{GL(V )} → k{Hi}. Again, union with J is only

needed if we do not know whether G = P .

Proposition 3.1. Let Gi ⊂ Pi, i = 1, 2, be subgroups of finite index and all Pi be

subgroups of a group H. Then G1 ∩G2 ⊂ P1 ∩ P2 has finite index.

Proof. The groups Pi act naturally on the finite sets Xi := Pi/Gi, i = 1, 2. This

gives rise to the action of P1 × P2 on X := X1 × X2. The group P := P1 ∩ P2

embedded diagonally into P1 × P2 also acts on X with the stabilizer of the point

eG1 × eG2 ∈ X equal to G := G1 ∩G2. Since X is finite, G has finite index in P .

Definition 3.2. Let us denote the sum of composition factors for a maximal fil-

tration of V by Vdiag. Set also V diag := ω(Vdiag).

One can compute Galδ(Vdiag) using [25]. However, this can be done more simply

in our case of three dimensions.

Lemma 3.1 ([6, Equation (1), p. 195]). Let G be a linear differential alge-

braic group and H be a normal differential algebraic subgroup of G. Then τ(G) =

max{τ(H), τ(G/H)}.

Definition 3.3 ([6, Definition 2.6]). The strong identity component G0 of an

LDAG G is defined to be the smallest δ-subgroup H of G such that τ(G/H) < τ(G).

An LDAG G is called strongly connected if G0 = G.



12

Lemma 3.2. If G and G′ are LDAGs, ϕ : G→ G′ is a surjective homomorphism,

and τ(G) = τ(G′), then ϕ(G0) = G′0.

Proof. By [6, Remark 2.7.4], ϕ(G0) ⊂ G′0. On the other hand, using Lemma 3.1,

τ(G′/ϕ(G0)) = τ(G/G0Kerϕ) ≤ τ(G/G0) < τ(G) = τ(G′),

which, by definition, implies that ϕ(G0) ⊃ G′0.

3.2. Computation of the diagonal

Here, we will explain how to find G = Galδ(Vdiag). Without loss of generality, in

this section, let us assume that

V ∼= Vdiag, (3.1)

so we need to compute G. In this case, G is reductive, so

G◦ = S · Z, (3.2)

an almost direct product of its center Z and a semisimple δ-subgroup S ⊂ SL(V ).

Due to the restriction dimV = 3, one can see that S has to be quasi-simple, so it is

δ-isomorphic to a quasi-simple algebraic group or its constant points.

Proposition 3.2. Let G be a DFGG such that G◦ is commutative. Then τ(G) = 0.

Proof. By [25, Proposition 2.11],G◦ is a DFGG. Let F ⊂ GL(V ) denote the Zariski

closure of G◦. By [17, Theorem 15.5], F is a direct product of an algebraic torus Fs
and a commutative unipotent group Fu. Let Gs and Gu stand for the projections of

G◦ to Fs and Fu, respectively. Both Gs and Gu are DFGG as homomorphic images

of a DFGG. It follows from [25, Lemmas 2.12 and 2.13] that τ(Gs) = τ(Gu) = 0.

Since G◦ ⊂ Gs ×Gu, τ(G◦) = 0. Hence, τ(G) = 0.

Proposition 3.3. Suppose that G◦ is non-commutative.

(1) If V is simple, then G is determined by (GL(V ), V ⊗ V ∗) and (GL(V ),∧3V ).

(2) If V is not simple, then V = U⊕W, where dimU = 1 andW is simple, and G is

determined by (H,W ⊗W ∗) and (H,∧2W ⊕U), where W = ω(W), U = ω(U),

and H = GL(U)×GL(W ) ⊂ GL(V ).

Proof. By [15, Proposition 2.23], V = ω(V) is semisimple as a G◦-module. Sup-

pose that V is simple. Then V is simple as a G◦-module. Indeed, since G◦ is

non-commutative, V has an irreducible G◦-submodule W of dimension ≥ 2. If

dimW = 2, then, due to dimV = 3, W is the only irreducible submodule of V of

dimension 2. Since G◦ is normal in G, it follows that W is a G-submodule of V ,

which is impossible. Hence, dimW = 3 and V is simple as a G◦-module. Set

H = H1 = H2 = GL(V ), V1 := V ⊗ V ∗ ' End(V ), V2 := ∧3V.
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Recall the notation from Section 3.1: %i := G → GL(Vi), i = 1, 2, where the

Zariski closure is taken in GL(V ). We have Ker %1 ⊂ H equal the group E of scalar

multiplications (by Schur’s lemma) and Ker %2 = SL(V ). It is sufficient to show (see

Definition 3.1) that G has finite index in

Γ := (G · E) ∩ (G · SL(V )) ⊂ GL(V ).

By Proposition 3.1, Γ contains the finite index subgroup

Γ1 := (G◦ · E) ∩ (G◦ · SL(V )) = (S · E) ∩ (Z · SL(V )).

(Here we used (3.2), S ⊂ SL(V ), because S = [S, S], and Z ⊂ E by Schur’s

lemma, because V is a simple G◦-module, as shown above.) Setting Λ = SL(V )∩E,

which is finite, we obtain G◦ ⊂ Γ1 = G◦ · Λ. Indeed, the inclusion Γ1 ⊃ G◦ · Λ is

straightforward. For the reverse inclusion, for each γ ∈ Γ1, let s ∈ S, e ∈ E, z ∈ Z,

and a ∈ SL(V ) be such that γ = se = za. Since z is a scalar matrix,

z−1e = s−1a ∈ SL(V ),

and so there exists λ ∈ Λ such that e = zλ. Therefore,

γ = s(zλ) = (sz)λ ∈ G◦ · Λ.

Hence, G◦ has finite index in Γ1, and therefore in Γ. Hence, G has finite index in Γ.

If V is not simple, then there exist U and W such that dimU = 1, dimW = 2,

and V = U ⊕W. Let %1 : H → GL(W ⊗W ∗) and %2 : H → GL(∧2W ⊕ U), where

H = H1 = H2 = GL(U)×GL(W ) ⊂ GL(V ).

Ker %1 equals the group of transformations acting by scalar multiplications on U

and W , and Ker %2 = SL(W ). Since S = [S, S], S ⊂ SL(W ). By Schur’s lemma,

Z ⊂ Ker %1. Therefore,

Γ′1 := (G◦ ·Ker%1) ∩ (G◦ ·Ker%2) = (S ·Ker%1) ∩ (Z · SL(W )),

which, by Proposition 3.1, has finite index in

Γ′ := (G ·Ker%1) ∩ (G ·Ker%2) ⊂ GL(U)×GL(W ).

Let Λ′ = Ker%1 ∩ SL(W ), which is finite. We have G◦ · Λ′ ⊂ Γ′1. For each γ ∈ Γ′1,

let s ∈ S, e ∈ Ker%1, z ∈ Z, and a ∈ SL(W ) be such that γ = se = za. Since z and

s commute, z−1e = s−1a ∈ SL(W ), and so there exists λ ∈ Λ′ such that e = zλ.

Therefore,

γ = s(zλ) = (sz)λ ∈ G◦ · Λ′,

and so Γ′1 ⊂ G◦ · Λ′. Hence, G◦ has finite index in Γ′1, and therefore in Γ′. Hence,

G has finite index in Γ′.

Remark 3.3. In the notation of Proposition 3.3, the groups Galδ(∧3V) and

Galδ(∧2W⊕U) can be computed since their differential type is 0 by Proposition 3.2.

Moreover, Galδ(V ⊗ V∗) and Galδ(W ⊗W∗) are quasi-simple, so can be computed

using [25, Algorithm 5.3.2].
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3.3. Decomposable case

Let us consider the situation in which V is a direct sum of its nontrivial submodules

U and W, and dimU = 1. (One of them has to be of dimension 1.) The case of

semisimple V (or, equivalently, W) is treated by Propositions 3.2 and 3.3. So, we

are interested in what happens if W is not a direct sum.

We will use the following result for differential modules of dimension 2 (see [24,

Theorem 2.13], [15, Proposition 3.21], and [2]).

Proposition 3.4. Let G′ be an LDAG and W a 2-dimensional faithful G′-module

such that W diag = U1 ⊕ U2, dimUi = 1. Then one of the following holds:

(CQ) U1 ⊗ U∗2 is constant and τ(G′)=0;

(CR) U1 ⊗ U∗2 is non-constant and W is semisimple;

(NC) U1 ⊗ U∗2 is non-constant and Ru(G′) ' Ga.

Proposition 3.5. Suppose V = U ⊕ W, dimU = 1, dimW = 2, and W is not

semisimple. Let Wdiag =W1 ⊕W2.

(1) If Galδ(W1 ⊗W∗2 ) is constant, then τ(G) = 0.

(2) Otherwise, G is determined by V diag.

Proof. The first case follows from Proposition 3.4 and Lemma 3.1. For the second

case, let W0 ⊂W be a G-invariant 1-dimensional subspace, and define

H ⊂ GL(U)×GL(W ) ⊂ GL(V )

to be the group of transformations preserving W0. We have G ⊂ H. We claim that G

is determined by (H,V diag). It suffices to show that G contains the kernel N ∼= Ga

of the action of H on V diag. We have

N ⊂ GL(W ) ⊂ GL(V ).

Let

ϕ : GL(U)×GL(W )→ GL(W )

be the projection homomorphosm and GW = ϕ(G). By the hypothesis and Propo-

sition 3.4, GW ⊃ N . Since N ∼= Ga, it is strongly connected [6, Example 2.7(1)].

Moreover, since GW /N is diagonal and is a DFGG,

τ(GW /N) = 0 < τ(GW ) = 1.

Therefore, by definition, N = (GW )0. Hence, N = ϕ(G0). Since G is a DFGG,

its restriction to GL(U) is of type zero and, therefore, the image of G0 in GL(U)

is of type zero as well. Moreover, by [6, Remark 2.7.5], we conclude that G0 acts
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trivially on U . Therefore, since G0 ⊂ GL(U) × N , and G0 acts trivially on V diag,

we conclude G0 ⊂ N , hence N = G0 ⊂ G.

3.4. Indecomposable case with a 2-dimensional simple component

Proposition 3.6. Suppose that V is indecomposable and Vdiag is the sum of two

simple submodules W1 and W2, of dimension 1 and 2, respectively. Suppose addi-

tionally that G◦ is not commutative. If Galδ(W∗1 ⊗W2) is constant, then τ(G) = 0.

If Galδ(W∗1 ⊗W2) is not constant, then G is detemined by ω(V)diag.

Proof. Since the image of G under ρ : G → GL(W1) is a DFGG, it is of type

zero. If W := W∗1 ⊗ W2 is constant, so is (W∗1 ⊗ V)diag. Hence, the image of G

under ϕ : G → GL(W ∗1 ⊗ V ) is of type zero by [24, Proposition 2.19]. Since Kerϕ

consists of scalar transformations, it is isomorphic to a subgroup of ρ(G), therefore

τ(Kerϕ) = 0. We conclude by Lemma 3.1 that

τ(G) = max{τ(Kerϕ), τ(ϕ(G))} = 0.

Suppose now that W is non-constant. Replacing V with V∗ if needed, we obtain

W2 ⊂ V.

By [15, Proposition 3.12], there is a G-equivariant embedding of Ru(G) into W .

SinceW is irreducible and non-constant, it does not have nonzero proper invariant δ-

subgroups by [15, Proposition 3.21]. Therefore, either Ru(G) = {1} or Ru(G) 'W .

In the latter case, since dimW = 2, G is determined by V diag.

Finally, let us show that Ru(G) is non-trivial. Suppose the contrary: G is reduc-

tive. Then G◦ is reductive and, by [15, Proposition 2.23], V is not semisimple as a

G◦-module, because V is indecomposable. Since G◦ is non-commutative, it contains

a non-trivial semisimple part S. Note that S embeds into D := GL(W1)×GL(W2),

therefore into [D,D] ' SL2. By [5, Theorem 19], either S ' SL2 or S ' SL2(C).

If V were semisimple as an S-module, it would also be semisimple as a G◦-

module. Indeed, let W ′ be an S-submodule of V such that V = W2 ⊕W ′ as S-

modules. Since G◦ = Z ·S and W ′ and W2 are simple non-isomorphic S-modules, Z

and, therefore, G◦ must preserve each of them. Since V is not semisimple as a G◦-

module, we conclude that V is not semisimple as an S-module. Since all differential

representations of SL2(C) are algebraic, they are also completely reducible. On the

other hand, by [23, Theorem 4.11], every indecomposable differential representation

of SL2 of dimension 3 is irreducible.

3.5. Indecomposable upper-triangular case

It remains to consider the case in which there exists a G-invariant filtration

0 = V0 ⊂ V1 ⊂ V2 ⊂ V3 = V, (3.3)
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where dimVr = r. Denote the subgroup of GL(V ) preserving the flag (3.3) by B.

We have G ⊂ B. Let us choose an ordered basis E := {e1, e2, e3} of V such that Vr
is spanned by e1, . . . , er. With respect to E, B can be identified with the subgroup

of upper triangular matrices in GL3(k). Let B′ denote the subgroup of B consisting

of the elements preserving ke2.

We will use the notation for the cases from Proposition 3.4 to describe the cases

for V. For example, we say that V is of type (CQ,CR) if V2 and V/V1 correspond

to CQ and CR, respectively. There are 3× 3 = 9 such pairs.

• Due to the duality V ↔ V∗, it suffices to consider only 6 cases (e.g., we do not

need to treat (CQ,CR) once we have done (CR,CQ)).

• The case (CQ,CQ) implies that Vdiag is constant, so τ(G) = 0.

• The case (CR,CR) implies that V is decomposable, hence we can use Proposi-

tion 3.5 to deal with this case. We will now assume that V is indecomposable.

So, it remains to consider the cases (CR,CQ), (CR,NC), (CQ,NC), and (NC,NC).

• If V2 is semisimple, denote the invariant complement to V1 in V2 by U . Then

V/U is either of type (CQ) or (NC), otherwise V would have been decomposable.

– Since the module ω(V/V1 ⊕ V/U) is faithful, the case (CR,CQ,CQ) – we

include the type of V/U in the end – implies τ(G) = 0.

– For the case (CR,CQ,NC), we can identify G with a subgroup of B′. Then

G is determined by (B′, ω(V1⊕V/V1)). Indeed, it is sufficient to show that

G contains the group

Z =


1 0 a

0 1 0

0 0 1

 , a ∈ k

 . (3.4)

which is the kernel of the action of B′ on W := ω(V1 ⊕ V/V1). Since

the image of G in GL(W ) has differential type 0 by the assumption and

Proposition 3.2, and, on the other hand, τ(G) = 1 by the NC part of

(CR,CQ,NC), the kernel of the action of G on W (which belongs to Z) has

differential type 1. Then it coincides with Z, since every proper subgroup

of Ga has differential type 0 [6, Example 2.7(1)].

– The case (CR,NC,CQ) becomes (CR,CQ,NC), which we have considered,

after the permutation of V1 and U .

– It remains to consider the case (CR,NC,NC). Let g ∈ G. Then there exist

polynomial functions a, c, e : G→ k× and differential polynomial functions

b, d : G→ k such that, for all g ∈ G,

g =

a(g) 0 b(g)

0 c(g) d(g)

0 0 e(g)

 . (3.5)

We claim that G is determined by ω(V2 ⊕ V/V2). We will show this for a

more general situation in which the polynomial function a
c is allowed to
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have its image entirely contained in C× (we will use this later dealing with

the case (CQ,NC)). It is sufficient to show that G contains

Y :=

y(u, v) :=

1 0 u

0 1 v

0 0 1

 , u, v ∈ k

 . (3.6)

Note that τ(G) = 1 by the NC conditions. It follows that τ(Ru(G)) =

1 since G/Ru(G) is commutative, hence of type 0 by Proposition 3.2.

In particular, G is not reductive. Since the images of a
e and c

e are not

contained in C×, it follows from [15, Proposition 3.21] that Ru(G) is a

vector space over k. Since Ru(G) can be identified with a submodule of

ω(V2 ⊗ (V/V2)∗) by [15, Lemma 3.6], we have, up to a permutation of e1
and e2, the following possibilities:

(1) Ru(G) = Y ;

(2) Ru(G) = {y(u, 0), u ∈ k} ⊂ Y ;

(3) a = c and Ru(G) ∼= Ga.

In case (1), there is nothing left to prove. Case (3) reduces to case (2)

by a suitable choice of basis of V . Suppose we have case (2). By the NC

condition, Ru(Galδ(V/V1)) ∼= Ga. Therefore, for every h ∈ k, there exist

h1 ∈ k× and h2 ∈ k such that

z :=

h1 0 h2
0 1 h

0 0 1

 ∈ G.
Then, for all h ∈ k,

y(−h2, 0)z =

h1 0 0

0 1 h

0 0 1

 ∈ G. (3.7)

Let

Γ = G ∩


f1 0 0

0 1 f

0 0 1

 , f1 ∈ k×, f ∈ k

 ,

which is a differential algebraic subgroup with τ(Γ) = 1 by (3.7). Since

the restriction of Γ to V1, being a differential algebraic subgroup of the

restriction of G to V1, is of type 0 and by [6, Remark 2.7.5],

Γ0 =


1 0 0

0 1 f

0 0 1

 , f ∈ k

 ,

which is normal in G, unipotent, and not contained in Ru(G), as we are

in case (2). Contradiction.
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• It remains to consider (NC,NC) and (CQ,NC).

Proposition 3.7. Let G ⊂ GLn(k) be a subgroup and G its Zariski closure. Then

[G,G] = [G,G].

Proof. Since the commutator group of a linear algebraic group is Zariski closed

[17, Proposition 17.2], we have

[G,G] ⊂ [G,G].

The other inclusion follows immediately from [31, Theorem 4.3(c)].

Proposition 3.8. Suppose that G is of type (NC,NC).

(1) If [G,G] is commutative, then G is determined by V2.

(2) If [G,G] is not commutative, then G is determined by V diag.

Proof. Since G is of type (NC,NC), τ(G) = 1. Since G is solvable, (G/Ru(G))
◦
,

being a connected solvable reductive LDAG, is a δ-torus. Hence, by Proposition 3.2,

τ(G/Ru(G)) = 0. Therefore, by definition, G0 ⊂ Ru(G).

Let r stand for the Lie algebra of Ru(G) (see [15, Section 4.1] for a quick and

sufficient overview) and Z be defined by (3.4). Then, under the matrix conjugation,

A := r/(r ∩ LieZ)

is a G-invariant δ-subgroup of the semisimple (2-dimensional) G-module

L := Lie [B,B]/LieZ

(recall that B is the group of all upper triangular matrices, and so Lie[B,B] is the

Lie algebra of upper triangular matrices with 0 on the diagonal). By the (NC,NC)

assumption and since, for all a, b, aij , 1 6 i 6 j 6 3,a11 a12 a130 a22 a23
0 0 a33

−10 a 0

0 0 b

0 0 0

a11 a12 a130 a22 a23
0 0 a33

 =

0 a22
a11
a a23
a11
a− a12a33

a11a22
b

0 0 a33
a22
b

0 0 0

 ,

G acts on L purely non-constantly (Definition 2.31). Therefore, by [15, Proposi-

tion 3.21], A is a k-subspace of L. By [3, Proposition 22], the projections of A onto

the (1, 2) and (2, 3) entries are non-trivial. Hence, if A 6= L, then the action of G

on L is isotypic:

a11
a22

=
a22
a33

(3.8)
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on G. Moreover, if A 6= L, there exists c ∈ k× such that

r ⊂


0 a b

0 0 ca

0 0 0

 , a, b ∈ k

 . (3.9)

Therefore, r is a commutative Lie algebra, and so Ru(G) is commutative. If A = L,

then r ⊃ [r, r] = LieZ. Therefore, if A = L, then r = Lie[B,B], and so Ru(G) is the

whole group of unipotent matrices [B,B]. Since [G,G] is normal and unipotent,

[G,G] ⊂ Ru(G).

Therefore, if [G,G] is non-commutative, so is Ru(G). By the above, this implies

that

[B,B] ⊂ G.

Hence, G is determined by V diag.

Suppose now that [G,G] is commutative. We will show that

Ru(G) = Ru(G). (3.10)

It would follow then that G is determined by V2. Indeed, let % : G→ GL(V2) be the

restriction to V2 of the natural representation of G on V . (3.8) implies that Ker %

consists of unipotent matrices. Hence, Ker % ⊂ Ru(G). If (3.10) holds, then

G ⊂ %−1(%(G)) = G ·Ker % ⊂ G · Ru(G) = G · Ru(G) = G.

Therefore, G is determined by V2.

As we have shown above, A 6= L and a11
a22

= a22
a33

on G. In particular, the function

a11
a33

= (a11/a22)2

from G to k× does not have its image contained in C×. This is the character of

the action of G on LieZ by conjugation. Since LieG ∩ LieZ is G-invariant, [15,

Proposition 3.21] implies that LieG ∩ LieZ is a k-subspace of LieZ, and so either

Z ⊂ G or Z ∩G = {1}.
Suppose first that Z ⊂ G. Since [G,G] is commutative, Proposition 3.7 im-

plies that [G,G] is commutative. This is possible only if Lie Ru(G)/LieZ is proper

in L: if Lie Ru(G)/LieZ = L, Ru(G) = [B,B], which is not commutative. Since

Lie Ru(G)/LieZ contains A, it therefore coincides with A (all non-zero proper k-

subspaces of L are maximal since dimk L = 2). Since Z ⊂ Ru(G), we conclude that

the Lie algebras of Ru(G) and of Ru(G) coincide. Hence, by [3, Proposition 26],

(3.10) holds.

It remains to consider the case in which [G,G] is commutative and Z∩G = {1}.
By rescaling e3, we will assume that c = 1 in (3.9). Hence, there exists a differential

polynomial ϕ(x) such that

Ru(G) =


1 x ϕ(x)

0 1 x

0 0 1

 , x ∈ k

 . (3.11)
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Since Ru(G) is a group, for all x, y ∈ k,

ϕ(x+ y) = ϕ(x) + ϕ(y) + xy. (3.12)

For all x ∈ k, define ϕ̃(x) = ϕ(x)− x2

2 . Then (3.12) is equivalent to, for all x, y ∈ k,

ϕ̃(x+y) = ϕ̃(x)+ϕ̃(y). Therefore, ϕ̃ is a homogeneous linear differential polynomial.

Let γi ∈ k be such that ϕ̃ =
∑
i

γix
(i). By the basis change e2 7→ e2 − γ0e1, we may

assume that γ0 = 0. For all a, λ ∈ k× and b, c, d ∈ k, let

M(λ, a, b, c, d) =

aλ2 ab ac0 aλ ad

0 0 a

 .

Let N be the normalizer of Ru(G) in B. A computation shows that

N =
{
M(λ, a, b, c, d) | λ, a ∈ k×, b, c, d ∈ k : ∀x ∈ k ϕ̃(λx) = λ2ϕ̃(x) + (b− λd)x

}
.

Let f : G→ k× be the homomorphism given by a22
a33

. By the NC condition, f(G) is

a Zariski dense δ-subgroup of k×. By [3, Proposition 31], C× ⊂ f(G). Since G ⊂ N ,

for all λ ∈ C×, there exist a ∈ k×, b, c, d ∈ k such that M(λ, a, b, c, d) ∈ G, which

implies that ϕ̃ = 0. Therefore,

Ru(G) = Ru(G) (3.13)

and, for all λ, a ∈ k× and b, c, d ∈ k, M(λ, a, b, c, d) ∈ N implies that b = λd. Hence,

for all a, b, c, d, e ∈ k, if a 0 b

0 c d

0 0 e

 ∈ N,
then d = 0. Let F ⊂ G be the δ-subgroup defined by a12 = a23 = 0. Since Z ∩G =

{1}, F ∩ Ru(G) = {1} and F acts faithfully on V diag, and so F is commutative.

Hence, F is commutative. For any b ∈ B, there exists u ∈ Ru(G) such that a12(bu) =

0. Thus, G = FnRu(G). Since there exist a, b, c, d ∈ k such that M(2, a, b, c, d) ∈ G,

there exists v ∈ Ru(G) and a′, c′ ∈ k such that

vM(2, a, b, c, d) = M(2, a′, 0, c′, 0) =: m ∈ F.

Suppose that Ru(F ) = Z. Let 1 6= z ∈ Z. Then m−1zm 6= z. This contradicts the

commutativity of F . Therefore, F is reductive. By [17, Corollary 7.4] and (3.13),

we conclude that

G = F n Ru(G) = F n Ru(G).

Thus, (3.10) holds.

Lemma 3.3. Let A ⊂ k× be a Kolchin closed subgroup that has a non-constant

element. If ϕ : A→ k and ψ : k→ k are differential polynomial maps such that

ϕ(ab) = aϕ(b) + bϕ(a) ∀ a, b ∈ A (3.14)

ψ(ax) = aψ(x) + xϕ(a) ∀ a ∈ A, x ∈ k, (3.15)
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then there exist a0, a1 ∈ k such that, for all x ∈ k and a ∈ A,

ψ(x) = a0x+ a1x
′ and ϕ(a) = a1a

′.

Proof. Note that A has to be Zariski dense in k, and therefore has to contain

all non-zero elements of the constants C ⊂ k [3, Proposition 31]. Condition (3.14)

implies that the restriction of ϕ to Q× is a derivation from Q× to k and, therefore, is

the zero map (using a standard argument). This implies that ϕ(C×) = {0}, because

the restriction of ϕ to C× is polynomial. Therefore, condition (3.15) implies that,

for all c ∈ C× and x ∈ k,

ψ(cx) = cψ(x). (3.16)

Hence, ψ(0) = ψ(2 · 0) = 2 · ψ(0), and so ψ(0) = 0. Let h be the order of ψ.

In coordinates, ψ(y) ∈ k[y, y′, . . . , y(h)]. Then (3.16) implies that degψ ≤ 1. Let

a0, . . . , ah ∈ k be such that

ψ(y) =

h∑
i=0

aiy
(i).

Condition (3.15) also implies that, for all a ∈ A,

ϕ(a) = ψ(a)− aψ(1). (3.17)

Hence, for all a, b ∈ A,

ψ(ab) = aψ(b) + bψ(a)− abψ(1).

We then have, for all a, b ∈ A,

h∑
i=0

ai

i∑
j=0

(
i

j

)
a(j)b(i−j) =

h∑
i=0

ai

(
ab(i) + ba(i)

)
− aba0,

which implies that

h∑
i=2

ai

i∑
j=0

(
i

j

)
a(j)b(i−j) =

h∑
i=2

ai

(
ab(i) + ba(i)

)
.

Hence, for all a, b ∈ A,

h∑
i=2

ai

i−1∑
j=1

(
i

j

)
a(j)b(i−j) = 0.

For each non-constant a ∈ A, this implies that the non-zero linear differential

polynomial

f(y) :=

h∑
i=2

ai

i−1∑
j=1

(
i

j

)
a(j)y(i−j)

is in the defining ideal of A. Let b ∈ A be another non-constant element. Since C

is algebraically closed, b is transcendental over C, and so b, b2, . . . , bh are linearly
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independent over C and f(bi) = 0 for all i. This contradicts with f(y) = 0, being

an (h− 1)-st order linear differential equation over k, having a solution space that

is (h − 1)-dimensional over C. Thus, h = 1, and so ψ(y) = a0y + a1y
′. Finally,

by (3.17), for all a ∈ A, ϕ(a) = a0a+ a1a
′ − aa0 = a1a

′.

Proposition 3.9. Suppose that G is of type (CQ,NC). Then, either

(1) G is determined by ω(V2 ⊕ V/V2) or

(2) V2 is not semisimple, the restriction of G to ω
(
V2 ⊗ (V/V2)

∗)
is reductive, and

V belongs to the tensor category generated by the first prolongation of V/V1.

Proof. Since the restriction of G to ω(V2 ⊕ V/V2) is of type 0, the NC condition

implies that G0 is contained in Y defined by (3.6). Moreover, the restriction of G0

to ω(V/V1) is isomorphic to Ga.

The character of the action of G on LieZ, where Z is defined by (3.4), by conju-

gation equals a11
a33

, whose image is not contained in C× by the (CQ,NC) assumption.

Since LieG ∩ LieZ is G-invariant, [15, Proposition 3.21] implies that LieG ∩ LieZ

is a k-subspace of LieZ, and so either Z ⊂ G or Z ∩G = {1}.
If V2 is semisimple, then G is determined by ω(V2⊕V/V2), as was noticed while

dealing with the case (CR,NC,NC). From now on, we will assume that V2 is not

semisimple. Let G′ denote the restriction of G to ω
(
V2 ⊗ (V/V2)

∗)
. Suppose that

Ru(G′) 6= {1}. Hence, there exist x, y, z, t, u, v ∈ k such that xt 6= 0, v 6= 0,

g1 :=

t xt yt0 t zt

0 0 t

 ∈ G, and g2 :=

1 0 u

0 1 v

0 0 1

 ∈ G.
Since xv 6= 0 and

1 6= g1g2g
−1
1 g−12 =

1 0 xv

0 1 0

0 0 1

 ∈ Z,
Z ⊂ G. Hence, G contains Y = ZG0 and, thus, is determined by ω(V2 ⊕ V/V2).

It remains to consider the case of reductive G′. Since [G′, G′] is unipotent and,

therefore, connected, [G′, G′] ⊂ Ru(G′) = {1}. Hence, G′ is commutative. Since V2
is not semisimple, we conclude that V1 ∼= V2/V1. Thus, there exist a Kolchin closed

subgroup A ⊂ k×, A 6= C×, and a differential polynomial ϕ of positive order (it

cannot be replaced by a usual polynomial) such that, for every g ∈ G, there exist

t, u, v ∈ k and a ∈ A such that t 6= 0,

g =

at ϕ(a)t ut

0 at vt

0 0 t

 , (3.18)
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and, for all a ∈ A, there exist t, u, v ∈ k, such thatat ϕ(a)t ut

0 at vt

0 0 t

 ∈ G
If Z ⊂ G, then G contains Y = ZG0 and, therefore, is determined by ω(V2⊕V/V2).

If Z 6⊂ G, then there exists a differential polynomial ψ such that

Ru(G) =


1 0 ψ(x)

0 1 x

0 0 1

∣∣∣ x ∈ k

 .

Since the conjugation by (3.18) preserves Ru(G), we obtain the restriction on ψ:

ψ(ax) = aψ(x) + xϕ(a) ∀ a ∈ A, x ∈ k.

Hence, by Lemma 3.3, there exist a0 ∈ k and a1 ∈ k× such that ψ(x) = a0x+ a1x
′

and ϕ(a) = a1a
′ for all x ∈ k and a ∈ A. By the change of basis with the matrix1 a0

a1
0

0 1
a1

0

0 0 1
a1


in representation (3.18), ϕ(a) and u in (3.18) can be replaced by a′ and v′, respec-

tively. Hence, V is in the tensor category generated by (V/V1)(1).
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