On the complexity of solving bivariate systems

Esmaeil Mehrabi Éric Schost CSD, Western University joint work in part with Romain Lebreton LIRMM, Montpellier 2

Motivation

 topology of plane or space curves [Diochnos et al., 2009], [Rouillier, 2010], [Emeliyaneko-Sagraloff, 2012], [Bouzidi et al., 2013-4], [Kobel-Sagraloff 2014], [Diatta et al. 2014] ...

- point counting algorithm [Gaudry-S., 2012]
- useful to solve general polynomial systems [Giusti-Lecerf-Salvy, 2001]

We are talking about symbolic techniques:

- tools: elimination, resultant
- nothing about real or complex root isolation

f,g are in	$\mathbb{K}[Y]$
terms in f, g	$\Theta(d)$
terms in $r = \operatorname{Res}(f, g, y)$	1
computing r (best known bound)	O~(d)
optimal?	yes, up to log factors

[Collins, '67], [Schönhage, '71], [Knuth, '71]

f,g are in	$\mathbb{K}[Y]$	$\mathbb{K}[X,Y]$
terms in f, g	$\Theta(d)$	$\Theta(d^2)$
terms in $r = \operatorname{Res}(f, g, y)$	1	$\Theta(d^2)$
computing r (best known bound)	O~(d)	$O~(d^3)$
optimal?	yes, up to log factors	no

[Collins, '67], [Schönhage, '71], [Knuth, '71], [Reischert, '97] or CRT

f,g are in	$\mathbb{K}[Y]$	$\bigg \mathbb{K}[X,Y]$	$\mathbb{K}[t,X,Y]$
terms in f, g	$\Theta(d)$	$\Theta(d^2)$	$\Theta(d^3)$
terms in $r = \operatorname{Res}(f, g, y)$	1	$\Theta(d^2)$	$\Theta(d^4)$
computing r (best known bound)	O~ (d)	$O~(d^3)$	$O(d^5)$
optimal?	yes, up to log factors	no	no

[Collins, '67], [Schönhage, '71], [Knuth, '71], [Reischert, '97] or CRT

f,g are in	$\mathbb{K}[Y]$	$\mathbb{K}[X,Y]$	$\mathbb{K}[t, X, Y]$	
terms in f, g	$\Theta(d)$	$\Theta(d^2)$	$\Theta(d^3)$	
terms in $r = \operatorname{Res}(f, g, y)$	1	$\Theta(d^2)$	$\Theta(d^4)$	
computing r (best known bound)	O(d)	$O~(d^3)$	$O~(d^5)$	
optimal?	yes, up to log factors	no	no	

[Collins, '67], [Schönhage, '71], [Knuth, '71], [Reischert, '97] or CRT

Boolean complexity

- bit-size in $\mathbb{Z}[X, Y] \simeq t$ -degree in $\mathbb{K}[t, X, Y]$
- so resultant in $\mathbb{Z}[X, Y]$, with degree and bit-size $d: \Theta(d^4)$ bit, in $O^{\sim}(d^5)$ bit operations

Our problem

Given $f, g \in \mathbb{L}[X, Y]$, where \mathbb{L} is a domain, return $\tau \in \mathbb{Z}$ and P(X), S(X) such that

- τ is not too large $(\tau \leq d^4)$
- *P* monic, squarefree
- $\sqrt{f(X + \tau Y, Y), g(X + \tau Y, Y)} = \langle P(X), Y S(X) \rangle$ over $\mathbb{K}[X, Y]$, with $\mathbb{K} = \operatorname{frac}(\mathbb{L}).$

From that, one may compute with P only (count roots, isolate them, ...)

Our problem - refined

Suppose that $\mathbb{L} = \mathbb{Z}$ or $\mathbb{L} = \mathbb{K}[t]$. Length function λ :

- Over \mathbb{Z} : $\lambda(a) := \log(|a|)$
- Over $\mathbb{K}[t]$: $\lambda(h) := \deg(h)$

Suppose for simplicity that $\deg(f), \deg(g) \leq d$ and $\lambda(f), \lambda(g) \leq d$.

- output size: $\lambda(P) = O(d^2)$ but $\lambda(S) = O(d^4)$
- modified output: (Kronecker, Macaulay, Canny, Alonso *et al.*, Rouillier, Giusti *et al.*, ...)

$$R = P'S \bmod P$$

then $\lambda(R) = O(d^2)$

• total: $O(d^4)$ bits / coefficients in \mathbb{K}

Main result

1. Over Z. One can solve f = g = 0 by a Monte Carlo algorithm, with probability of success > 1/2, using $O(d^{4+\varepsilon})$ bit operations, for any $\varepsilon > 0$

- 1. symbolic Newton iteration [Giusti-Heintz-Pardo-..., 1990's]
- 2. deflation for multiple roots [Lecerf]
- 3. an extension of Kedlaya and Umans' algorithm [Poteaux-S.]

Optimality

• take
$$F^{(d)} = \prod_{i=1}^{d} (X - i), \quad G^{(d)} = \prod_{j=1}^{d} (Y - j)$$

• output has total bit size $\Theta^{\sim}(d^4)$

2. Over $\mathbb{K}[t]$. The algorithm still works, but we're missing the equivalent of 3. We still get something for simple roots, though.

Previous work

Easily seen to be polynomial time:

• [Gonzalez Vega - El Kahoui, 94], resultant and subresultants

Deterministic

• Bouzidi et al., 14, $O(d^6)$

Las Vegas

• Bouzidi et al., 14, $O(d^5)$

Monte Carlo

• $O(d^5)$ is easy (as for the resultant)

Lifting techniques

Let \mathfrak{m} be a maximal ideal in \mathbb{L} : generated by either a prime or $t - t_0$.

 $(P(X), R(X)) \text{ over } \mathbb{K} = \operatorname{frac}(\mathbb{L})$ rational reconstruction \uparrow $(P(X), S(X)) \mod \mathfrak{m}^{2^{\ell}}$ lifting step \uparrow $(P(X), S(X)) \mod \mathfrak{m}^{2^{1}}$ lifting step \uparrow initialization $(P(X), S(X)) \mod \mathfrak{m}^{2^{0}}$

Dominant part: lifting

Newton iteration – simple roots

Usual form:

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} x_n \\ y_n \end{bmatrix} - \begin{bmatrix} \frac{\partial f}{\partial X}(x_n, y_n) & \frac{\partial f}{\partial Y}(x_n, y_n) \\ \frac{\partial g}{\partial X}(x_n, y_n) & \frac{\partial g}{\partial Y}(x_n, y_n) \end{bmatrix}^{-1} \begin{bmatrix} f(x_n, y_n) \\ g(x_n, y_n) \end{bmatrix}$$

For this to work nicely, the Jacobian matrix should be invertible at the root we are looking for.

Here: similar formulas to go from $(P(X), S(X)) \mod \mathfrak{m}^k$ to $(P(X), S(X)) \mod \mathfrak{m}^{2k}$ Bottleneck: function evaluation, that is computing

$$f(X,Y) \mod (P(X), Y - S(X), \mathfrak{m}^{2k}), \ldots$$

Remark: multivariate versions of Newton iteration often assume that the input is given by a Straight Line Program. We don't.

Kedlaya and Umans' algorithm computes $g(S) \mod P$ in $\mathbb{Z}/N\mathbb{Z}[X]$ using

 $O^{\sim}(d^{1+\varepsilon}\log(N))$

bit operations, for any $\varepsilon > 0$

- quasi-optimal
- specific to the boolean model

Kedlaya and Umans' algorithm computes $g(S) \mod P$ in $\mathbb{Z}/N\mathbb{Z}[X]$ using

 $O(d^{1+\varepsilon}\log(N))$

bit operations, for any $\varepsilon > 0$

- quasi-optimal
- specific to the boolean model

Here (following [Poteaux-S., 2013])

- f is in $\mathbb{Z}[X, Y]$
- reduction modulo $\langle P(X), Y S(X) \rangle$ = computing $f(X, S) \mod P$
- $N = p^{2k}$, with $\log(p^{2k}) = O(d^2)$
- takes $O(d^{4+\varepsilon})$ bit operations

To compute $g(S) \mod P$, in a nutshell.

1. Forget about $\operatorname{mod} P$

- 1. make g multivariate: find e.g. G(X, Y) such that $g = G(X, X^2)$
- 2. so we compute $G(S, S^2 \mod P) \mod P$
- 3. if we have enough variables, $G(S, S^2 \mod P, \ldots, S^k \mod P)$ has a small degree, so we can compute it first, then reduce

To compute $g(S) \mod P$, in a nutshell.

1. Forget about $\operatorname{mod} P$

- 1. make g multivariate: find e.g. G(X, Y) such that $g = G(X, X^2)$
- 2. so we compute $G(S, S^2 \mod P) \mod P$
- 3. if we have enough variables, $G(S, S^2 \mod P, \ldots, S^k \mod P)$ has a small degree, so we can compute it first, then reduce

2. Reduction to evaluation and interpolation

- 1. evaluate $S_1 = S, \ldots, S_k = S^k \mod P$ at (x_1, x_2, \ldots) we get points (p_1, p_2, \ldots) in k-space
- 2. evaluate G at (p_1, p_2, \dots)

hard!

3. interpolate

easy

3. Multivariate multipoint evaluation mod \boldsymbol{p}

- if p is very small, the points almost fill up a cube
- $\bullet\,$ otherwise, forget the mod p
 - work over $\mathbb Z$
 - by working modulo smaller *p*'s

Over \mathbb{Z} or $\mathbb{K}[t]$

Brent and Kung's algorithm computes $g(S) \mod P$ in $\mathbb{A}[X]$ using $O^{\sim}(d^{\frac{\omega+1}{2}})$

operations in \mathbb{A} , using baby steps / giant steps techniques

- \sqrt{d} polynomial multiplications in degree d
- \sqrt{d} matrix multiplications in size \sqrt{d}

Over \mathbb{Z} or $\mathbb{K}[t]$

Brent and Kung's algorithm computes $g(S) \mod P$ in $\mathbb{A}[X]$ using

 $O\tilde{}(d^{\frac{\omega+1}{2}})$

operations in $\mathbbm{A},$ using baby steps / giant steps techniques

- \sqrt{d} polynomial multiplications in degree d
- \sqrt{d} matrix multiplications in size \sqrt{d}

Here

- f is in $\mathbb{K}[t, X, Y]$
- we reduce modulo $\langle P(X), Y S(X) \rangle$
- takes $O^{\sim}(d^{\frac{\omega+7}{2}})$ operations in \mathbb{K}

 \sqrt{d} product of polynomial matrices of size \sqrt{d} with entries of degree d and coefficients of size d^2

Remark: improvement using [Huang-Pan 1998]: $4.685 \rightarrow 4.667$

First experiments

- Implemented in C++ using NTL [Shoup, 1995]
- $f, g \in \mathbb{Z}[X, Y]$, random, of degree less than $d, \lambda(f) < 64, \lambda(g) < 64$
- Using naive matrix multiplication ($\omega = 3$), so our cost is $\tilde{O}(d^5)$

d	precision	Lifting	$\mathrm{CRT}_{\mathrm{ZZ}}$	$\operatorname{CRT}_{\mathbf{z}\mathbf{z}}$
120	32	421	2711	1990
120	64	774	5422	3980
120	128	1728	10845	7961
140	32	818	4902	2671
140	64	1486	9804	5343
140	128	3045	19608	10687
160	32	1072	7610	5293
160	64	1896	15221	10587
160	128	3958	30442	21174
180	32	1394	11121	6541
180	64	2399	22242	13097
180	128	4951	44485	26195

Handling multiplicities

First remarks

- Newton iteration not defined at multiple roots
- easy fix: compute only the non-singular roots

In general: deflation techniques

- several approaches [Ojika et al 83], [Lecerf 02], [Leykin et al. 06], ...
- Lecerf's approach
 - involves 2 new variables
 - "symbolic" deflation, no SVD.

Challenge: make it work in our context with an acceptable complexity.

Lecerf's deflation lemma

Suppose $(x, y) \subset \mathbb{K}^2$ is an isolated root of F = G = 0, of multiplicity M

• find the smallest m such that either

$$\frac{\partial^m F}{\partial Y^m}(x,y) \neq 0 \quad \text{or} \quad \frac{\partial^m G}{\partial Y^m}(x,y) \neq 0.$$

Lecerf's deflation lemma

Suppose $(x,y) \subset \mathbb{K}^2$ is an isolated root of F = G = 0, of multiplicity M

• find the smallest m such that either

$$\frac{\partial^m F}{\partial Y^m}(x,y) \neq 0 \quad \text{or} \quad \frac{\partial^m G}{\partial Y^m}(x,y) \neq 0.$$

• implicit function theorem: there exists J_x in $\mathbb{K}[[\zeta]]$ such that (say)

$$\frac{\partial^{m-1}F}{\partial Y^{m-1}}(\zeta + x, J_x) = 0, \quad J_x(0) = y.$$

Lecerf's deflation lemma

Suppose $(x,y) \subset \mathbb{K}^2$ is an isolated root of F = G = 0, of multiplicity M

• find the smallest m such that either

$$\frac{\partial^m F}{\partial Y^m}(x,y) \neq 0 \quad \text{or} \quad \frac{\partial^m G}{\partial Y^m}(x,y) \neq 0.$$

• implicit function theorem: there exists J_x in $\mathbb{K}[[\zeta]]$ such that (say)

$$\frac{\partial^{m-1}F}{\partial Y^{m-1}}(\zeta + x, J_x) = 0, \quad J_x(0) = y.$$

• Claim: one of the power series, say S_x , among

$$\frac{\partial^{\ell} F}{\partial Y^{\ell}}(\zeta + x, J_x), \quad \frac{\partial^{\ell} G}{\partial Y^{\ell}}(\zeta + x, J_x) \quad (\ell \le m)$$

has valuation $n \leq M/m$.

Deflation and lifting

What we need

- compute J_x such that $\frac{\partial^{m-1}F}{\partial Y^{m-1}}(\zeta + x, J_x) = 0$
- compute a power series of the form $S_x = \frac{\partial^{\ell} G}{\partial Y^{\ell}} (\zeta + x, J_x) \mod \zeta^{n+1}$, for some $\ell \leq m$.

Main loop (if all roots of P have the same "signature")

- start from $(P^{\star}, S^{\star}) = (P \mod p^k, S \mod p^k)$
- compute series as before, working in $\mathbb{Z}/p^{2k}\mathbb{Z}[X]/\langle P^{\star}\rangle$

- done by computing $G(X + \zeta, J_x + \xi) \mod \langle P^{\star}, \zeta^{n+1}, \xi^{m+1} \rangle$ same kind of reduction as before, in 3 variables

 $- \deg(P)nm \le d^2$

• deduce $(P \mod p^{2k}, S \mod p^{2k})$ easy

In general

We have several factors, with several values of (m, n).

What we really need: given

- integers (m_i, n_i)
- polynomials P_i in $\mathbb{A}[X]$ of degrees e_i
- J_i in $\mathbb{A}[X, \zeta]_{e_i, n_i+1}$,

compute

• all $\frac{\partial^{m_i} G}{\partial Y^{m_i}}(x+\zeta, J_i) \mod \langle P_i, \zeta^{n_i+1} \rangle$

We compute all $G(X + \zeta, J_i + \xi) \mod \langle P_i, \zeta^{n_i+1}, \xi^{m_i+1} \rangle$.

Remark: $\sum_i e_i n_i m_i \leq d^2$.

 $\mathbb{A} = \mathbb{Z}/p^k\mathbb{Z}$

Multiple reduction

[Poteaux - S.] we can reduce modulo one triangular set efficiently (quasi-optimal)

- we shouldn't process of all them independently (like multipoint evaluation of polynomials)
- we shouldn't merge them all together (degrees too large in T)
- merge those with similar T-degree (say between 2^i and $2^{i+1} 1$)

Altogether, $O(\log(d))$ reduction, each of them in time $d^{4+\varepsilon}$.