
On the complexity of solving bivariate systems

Esmaeil Mehrabi Éric Schost

CSD, Western University

joint work in part with Romain Lebreton

LIRMM, Montpellier 2

Motivation

• topology of plane or space curves [Diochnos et al., 2009], [Rouillier, 2010],

[Emeliyaneko-Sagraloff, 2012], [Bouzidi et al., 2013-4], [Kobel-Sagraloff 2014], [Diatta et

al. 2014] . . .

X

Y

f =
∂f

∂Y
= 0

• point counting algorithm [Gaudry-S., 2012]

• useful to solve general polynomial systems [Giusti-Lecerf-Salvy, 2001]

We are talking about symbolic techniques:

• tools: elimination, resultant

• nothing about real or complex root isolation

Warm-up: computing resultants

f, g are in . . . K[Y] K[X,Y] K[t,X, Y]

terms in f, g Θ(d) Θ(d2) Θ(d3)

terms in r = Res (f, g, y) 1 Θ(d2) Θ(d4)

computing r (best known bound) O (̃d) O (̃d3) O (̃d5)

optimal? yes, up to log factors no no

[Collins, ’67], [Schönhage, ’71], [Knuth, ’71]

Boolean complexity

• bit-size in Z[X,Y] ' t-degree in K[t,X, Y]

• so resultant in Z[X,Y], with degree and bit-size d: Θ(d4) bit, in O (̃d5) bit

operations

Warm-up: computing resultants

f, g are in . . . K[Y] K[X,Y] K[t,X, Y]

terms in f, g Θ(d) Θ(d2) Θ(d3)

terms in r = Res (f, g, y) 1 Θ(d2) Θ(d4)

computing r (best known bound) O (̃d) O (̃d3) O (̃d5)

optimal? yes, up to log factors no no

[Collins, ’67], [Schönhage, ’71], [Knuth, ’71], [Reischert, ’97] or CRT

Boolean complexity

• bit-size in Z[X,Y] ' t-degree in K[t,X, Y]

• so resultant in Z[X,Y], with degree and bit-size d: Θ(d4) bit, in O (̃d5) bit

operations

Warm-up: computing resultants

f, g are in . . . K[Y] K[X,Y] K[t,X, Y]

terms in f, g Θ(d) Θ(d2) Θ(d3)

terms in r = Res (f, g, y) 1 Θ(d2) Θ(d4)

computing r (best known bound) O (̃d) O (̃d3) O (̃d5)

optimal? yes, up to log factors no no

[Collins, ’67], [Schönhage, ’71], [Knuth, ’71], [Reischert, ’97] or CRT

Boolean complexity

• bit-size in Z[X,Y] ' t-degree in K[t,X, Y]

• so resultant in Z[X,Y], with degree and bit-size d: Θ(d4) bit, in O (̃d5) bit

operations

Warm-up: computing resultants

f, g are in . . . K[Y] K[X,Y] K[t,X, Y]

terms in f, g Θ(d) Θ(d2) Θ(d3)

terms in r = Res (f, g, y) 1 Θ(d2) Θ(d4)

computing r (best known bound) O (̃d) O (̃d3) O (̃d5)

optimal? yes, up to log factors no no

[Collins, ’67], [Schönhage, ’71], [Knuth, ’71], [Reischert, ’97] or CRT

Boolean complexity

• bit-size in Z[X,Y] ' t-degree in K[t,X, Y]

• so resultant in Z[X,Y], with degree and bit-size d: Θ(d4) bit, in O (̃d5) bit

operations

Our problem

Given f, g ∈ L[X,Y], where L is a domain, return τ ∈ Z and P (X), S(X) such that

• τ is not too large (τ ≤ d4)

• P monic, squarefree

•
√
f(X + τY, Y), g(X + τY, Y) = 〈P (X), Y − S(X)〉 over K[X,Y], with

K = frac(L).

X

Y

From that, one may compute with P only (count roots, isolate them, . . .)

Our problem – refined

Suppose that L = Z or L = K[t]. Length function λ:

• Over Z: λ(a) := log(|a|)

• Over K[t]: λ(h) := deg(h)

Suppose for simplicity that deg(f),deg(g) ≤ d and λ(f), λ(g) ≤ d.

• output size: λ(P) = O(d2) but λ(S) = O(d4)

• modified output: (Kronecker, Macaulay, Canny, Alonso et al., Rouillier, Giusti et al., . . .)

R = P ′S mod P

then λ(R) = O(d2)

• total: O(d4) bits / coefficients in K

Main result

1. Over Z. One can solve f = g = 0 by a Monte Carlo algorithm, with probability

of success > 1/2, using O(d4+ε) bit operations, for any ε > 0

1. symbolic Newton iteration [Giusti-Heintz-Pardo-. . . , 1990’s]

2. deflation for multiple roots [Lecerf]

3. an extension of Kedlaya and Umans’ algorithm [Poteaux-S.]

Optimality

• take F (d) =
∏d

i=1(X − i), G(d) =
∏d

j=1(Y − j)

• output has total bit size Θ (̃d4)

2. Over K[t]. The algorithm still works, but we’re missing the equivalent of 3.

We still get something for simple roots, though.

Previous work

Easily seen to be polynomial time:

• [Gonzalez Vega - El Kahoui, 94], resultant and subresultants

Deterministic

• Bouzidi et al., 14, O (̃d6)

Las Vegas

• Bouzidi et al., 14, O (̃d5)

Monte Carlo

• O (̃d5) is easy (as for the resultant)

Lifting techniques

Let m be a maximal ideal in L: generated by either a prime or t− t0.

(P (X), R(X)) over K = frac(L)

rational reconstruction ⇑

(P (X), S(X)) mod m2`

lifting step ⇑

...

lifting step ⇑

(P (X), S(X)) mod m21

lifting step ⇑

initialization (P (X), S(X)) mod m20

Dominant part: lifting

Newton iteration – simple roots

Usual form: xn+1

yn+1

 =

xn
yn

−
 ∂f

∂X (xn, yn) ∂f
∂Y (xn, yn)

∂g
∂X (xn, yn) ∂g

∂Y (xn, yn)

−1 f(xn, yn)

g(xn, yn)


For this to work nicely, the Jacobian matrix should be invertible at the root we are

looking for.

Here: similar formulas to go from (P (X), S(X)) mod mk to (P (X), S(X)) mod m2k

Bottleneck: function evaluation, that is computing

f(X,Y) mod (P (X), Y − S(X),m2k), . . .

Remark: multivariate versions of Newton iteration often assume that the input is

given by a Straight Line Program. We don’t.

Over L = Z
Kedlaya and Umans’ algorithm computes g(S) mod P in Z/NZ[X] using

O (̃d1+ε log(N))

bit operations, for any ε > 0

• quasi-optimal

• specific to the boolean model

Here

• F is in Z[x, y]

• reduction modulo 〈P (X), Y − S(X)〉 = computing F (X,S) mod P

• N = p2k, with log(pk) = O(d2)

• takes O(d4+ε) bit operations

Over L = Z
Kedlaya and Umans’ algorithm computes g(S) mod P in Z/NZ[X] using

O (̃d1+ε log(N))

bit operations, for any ε > 0

• quasi-optimal

• specific to the boolean model

Here (following [Poteaux-S., 2013])

• f is in Z[X,Y]

• reduction modulo 〈P (X), Y − S(X)〉 = computing f(X,S) mod P

• N = p2k, with log(p2k) = O(d2)

• takes O(d4+ε) bit operations

Over L = Z
To compute g(S) mod P , in a nutshell.

1. Forget about modP

1. make g multivariate: find e.g. G(X,Y) such that g = G(X,X2)

2. so we compute G(S, S2 mod P) mod P

3. if we have enough variables, G(S, S2 mod P, . . . , Sk mod P) has a small degree,

so we can compute it first, then reduce

2. Reduction to evaluation and interpolation

1. evaluate S1 = S, . . . , Sk = Sk mod P at (x1, x2, . . .)

we get points (p1, p2, . . .) in k-space

2. evaluate G at (p1, p2, . . .) hard!

3. interpolate

Over L = Z
To compute g(S) mod P , in a nutshell.

1. Forget about modP

1. make g multivariate: find e.g. G(X,Y) such that g = G(X,X2)

2. so we compute G(S, S2 mod P) mod P

3. if we have enough variables, G(S, S2 mod P, . . . , Sk mod P) has a small degree,

so we can compute it first, then reduce

2. Reduction to evaluation and interpolation

1. evaluate S1 = S, . . . , Sk = Sk mod P at (x1, x2, . . .)

we get points (p1, p2, . . .) in k-space

2. evaluate G at (p1, p2, . . .) hard!

3. interpolate

Over L = Z
3. Multivariate multipoint evaluation mod p

• if p is very small, the points almost fill up a cube easy

• otherwise, forget the mod p

– work over Z

– by working modulo smaller p’s

Over Z or K[t]

Brent and Kung’s algorithm computes g(S) mod P in A[X] using

O (̃d
ω+1
2)

operations in A, using baby steps / giant steps techniques

•
√
d polynomial multiplications in degree d

•
√
d matrix multiplications in size

√
d

Here

• f is in K[t,X, Y]

• we reduce modulo 〈P (X), Y − S(X)〉

• takes O (̃d
ω+7
2) operations in K

√
d product of polynomial matrices of size

√
d with entries of degree d and coefficients of

size d2

Over Z or K[t]

Brent and Kung’s algorithm computes g(S) mod P in A[X] using

O (̃d
ω+1
2)

operations in A, using baby steps / giant steps techniques

•
√
d polynomial multiplications in degree d

•
√
d matrix multiplications in size

√
d

Here

• f is in K[t,X, Y]

• we reduce modulo 〈P (X), Y − S(X)〉

• takes O (̃d
ω+7
2) operations in K

√
d product of polynomial matrices of size

√
d with entries of degree d and coefficients of

size d2

Remark: improvement using [Huang-Pan 1998]: 4.685 → 4.667

First experiments

• Implemented in C++ using NTL [Shoup, 1995]

• f, g ∈ Z[X,Y], random, of degree less than d, λ(f) < 64, λ(g) < 64

• Using naive matrix multiplication (ω = 3), so our cost is Õ(d5)

d precision Lifting CRTZZ CRTzz

120 32 421 2711 1990

120 64 774 5422 3980

120 128 1728 10845 7961

140 32 818 4902 2671

140 64 1486 9804 5343

140 128 3045 19608 10687

160 32 1072 7610 5293

160 64 1896 15221 10587

160 128 3958 30442 21174

180 32 1394 11121 6541

180 64 2399 22242 13097

180 128 4951 44485 26195

Handling multiplicities

First remarks

• Newton iteration not defined at multiple roots

• easy fix: compute only the non-singular roots

In general: deflation techniques

• several approaches [Ojika et al 83], [Lecerf 02], [Leykin et al. 06], . . .

• Lecerf’s approach

– involves 2 new variables

– “symbolic” deflation, no SVD.

Challenge: make it work in our context with an acceptable complexity.

Lecerf’s deflation lemma

Suppose (x, y) ⊂ K2 is an isolated root of F = G = 0, of multiplicity M

• find the smallest m such that either

∂mF

∂Y m
(x, y) 6= 0 or

∂mG

∂Y m
(x, y) 6= 0.

implicit function theorem: there exists Jx in K[[ζ]] such that (say)

∂m−1F

∂Y m−1 (ζ + x, Jx) = 0, Jx(0) = y.

Claim: one of the power series, say Sx, among

∂`F

∂Y `
(ζ + x, Jx),

∂`G

∂Y `
(ζ + x, Jx) (` ≤ m)

has valuation n ≤M/m.

Lecerf’s deflation lemma

Suppose (x, y) ⊂ K2 is an isolated root of F = G = 0, of multiplicity M

• find the smallest m such that either

∂mF

∂Y m
(x, y) 6= 0 or

∂mG

∂Y m
(x, y) 6= 0.

• implicit function theorem: there exists Jx in K[[ζ]] such that (say)

∂m−1F

∂Y m−1 (ζ + x, Jx) = 0, Jx(0) = y.

Claim: one of the power series, say Sx, among

∂`F

∂Y `
(ζ + x, Jx),

∂`G

∂Y `
(ζ + x, Jx) (` ≤ m)

has valuation n ≤M/m.

Lecerf’s deflation lemma

Suppose (x, y) ⊂ K2 is an isolated root of F = G = 0, of multiplicity M

• find the smallest m such that either

∂mF

∂Y m
(x, y) 6= 0 or

∂mG

∂Y m
(x, y) 6= 0.

• implicit function theorem: there exists Jx in K[[ζ]] such that (say)

∂m−1F

∂Y m−1 (ζ + x, Jx) = 0, Jx(0) = y.

• Claim: one of the power series, say Sx, among

∂`F

∂Y `
(ζ + x, Jx),

∂`G

∂Y `
(ζ + x, Jx) (` ≤ m)

has valuation n ≤M/m.

Deflation and lifting

What we need

• compute Jx such that ∂m−1F
∂Y m−1 (ζ + x, Jx) = 0

• compute a power series of the form Sx = ∂`G
∂Y ` (ζ + x, Jx) mod ζn+1, for some

` ≤ m.

Main loop (if all roots of P have the same “signature”)

• start from (P ?, S?) = (P mod pk, S mod pk)

• compute series as before, working in Z/p2kZ[X]/〈P ?〉
– done by computing G(X + ζ, Jx + ξ) mod 〈P ?, ζn+1, ξm+1〉

same kind of reduction as before, in 3 variables

– deg(P)nm ≤ d2

• deduce (P mod p2k, S mod p2k) easy

In general

We have several factors, with several values of (m,n).

What we really need: given

• integers (mi, ni)

• polynomials Pi in A[X] of degrees ei A = Z/pkZ

• Ji in A[X, ζ]ei,ni+1,

compute

• all ∂miG
∂Y mi

(x+ ζ, Ji) mod 〈Pi, ζ
ni+1〉

We compute all G(X + ζ, Ji + ξ) mod 〈Pi, ζ
ni+1, ξmi+1〉.

Remark:
∑

i einimi ≤ d2.

Multiple reduction

[Poteaux - S.] we can reduce modulo one triangular set efficiently (quasi-optimal)

• we shouldn’t process of all them independently

(like multipoint evaluation of polynomials)

• we shouldn’t merge them all together

(degrees too large in T)

• merge those with similar T -degree (say between 2i and 2i+1 − 1)

Z

T

−→

Z

T

−→

Z

T

Altogether, O(log(d)) reduction, each of them in time d4+ε.

