(1) Consider the function $f(x)=\sqrt[3]{x}=x^{1 / 3}$.
(a) $f(x)$ has a tangent line at $x=0$ AND $f(x)$ is differentiable at $x=0$.
(b) $f(x)$ has a tangent line at $x=0$ AND $f(x)$ is NOT differentiable at $x=0$.
(c) $f(x)$ has NO tangent line at $x=0$ AND $f(x)$ is differentiable at $x=0$.
(d) $f(x)$ has NO tangent line at $x=0$ AND $f(x)$ is NOT differentiable at $x=0$.
(2) If $f^{\prime}(a)$ exists, $\lim _{x \rightarrow a} f(x)$
(a) must exist, but there is not enough information to determine it exactly.
(b) equals $f(a)$.
(c) equals $f^{\prime}(a)$.
(d) may not exist.
(3) A slow freight train chugs along a straight track. The distance it has traveled after x hours is given by a function $f(x)$. An engineer is walking along the top of the box cars at the rate of $3 \mathrm{mi} / \mathrm{hr}$ in the same direction as the train is moving. The speed of the man relative to the ground is
(a) $f(x)+3$
(b) $f^{\prime}(x)+3$
(c) $f(x)-3$
(d) $f^{\prime}(x)-3$
(4) $\frac{d}{d x}\left(e^{7}\right)$ equals
(a) $7 e^{6}$
(b) e^{7}
(c) 0

