- (1) If e^{5} is approximated by using the tangent line to the graph of f(x) = e^x at (0,1), and we know f'(0) = 1, the approximation is
 - (a) .5
 - (b) $1 + e^{.5}$ (c) 1 + .5

- (2) The line y = 1 is tangent to the graph of $f(x) = \cos x$ at (0, 1). This means that
 - (a) the only x-values for which y = 1 is a good estimate for $y = \cos x$ are those that are close enough to 0
 - (b) tangent lines can intersect the graph of f infinitely many times
 - (c) the farther x is from 0, the worse the linear approximation is

- (3) Imagine that you increase the dimensions of a square with side x_1 to a square with side length x_2 . The change in the area of the square, ΔA , is approximated by the differential dA. In this example, dA is
 - (a) $(x_2 x_1)2x_1$ (b) $(x_2 x_1)2x_2$

(b)
$$(x_2 - x_1)2x$$

(c) $x_2^2 - x_1^2$ (d) $(x_2 - x_1)^2$

- (4) Imagine that you increase the dimensions of a square with side x_1 to a square with side length x_2 . If you estimate the change in the area of the square, ΔA by the differential $dA = 2x_1(x_2 - x_1)$, this will result in an
 - (a) overestimate
 - (b) underestimate
 - (c) exactly equal