(1) If $e^{.5}$ is approximated by using the tangent line to the graph of $f(x)=$ e^{x} at $(0,1)$, and we know $f^{\prime}(0)=1$, the approximation is
(a) .5
(b) $1+e^{.5}$
(c) $1+.5$
(2) The line $y=1$ is tangent to the graph of $f(x)=\cos x$ at $(0,1)$. This means that
(a) the only x-values for which $y=1$ is a good estimate for $y=\cos x$ are those that are close enough to 0
(b) tangent lines can intersect the graph of f infinitely many times
(c) the farther x is from 0 , the worse the linear approximation is
(3) Imagine that you increase the dimensions of a square with side x_{1} to a square with side length x_{2}. The change in the area of the square, ΔA, is approximated by the differential $d A$. In this example, $d A$ is
(a) $\left(x_{2}-x_{1}\right) 2 x_{1}$
(b) $\left(x_{2}-x_{1}\right) 2 x_{2}$
(c) $x_{2}^{2}-x_{1}^{2}$
(d) $\left(x_{2}-x_{1}\right)^{2}$
(4) Imagine that you increase the dimensions of a square with side x_{1} to a square with side length x_{2}. If you estimate the change in the area of the square, ΔA by the differential $d A=2 x_{1}\left(x_{2}-x_{1}\right)$, this will result in an
(a) overestimate
(b) underestimate
(c) exactly equal

