\star ALWAYS Justify your answer.

1. (10 pts) Suppose that $f(x)=\frac{1}{x-1}+2$.
(a) (6 pts) Evaluate the difference quotient

$$
\frac{f(a+h)-f(a)}{h}
$$

Simplify your answer as much as possible so that your final answer is a simple fraction.
(b) (4 pts) Use your answer from part (a) to compute $\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$.
2. (a) (5 pts) Compute $\lim _{x \rightarrow 5} \frac{x^{2}-4 x-5}{x^{2}-25}$. Show your work.
(b) (5 pts) Compute $\lim _{x \rightarrow-\infty} \frac{-x^{3}+5 x^{2}+4}{7 x+3 x^{2}}$. Show your work.
3. (10 pts) Use the TABLE command on your calculator to approximate the limit

$$
\lim _{x \rightarrow 3} \frac{\sqrt{3}-\sqrt{x}}{3-x}
$$

to four decimal places. Write down five lines from the TABLE window that justify your answer.
4. (5 pts) Give the precise definition of "The function f is continuous at the number a ".
5. (10 pts) Determine a value for the constant k such that the function

$$
g(x)= \begin{cases}|x| & x<1 \\ 4-k x^{2} & x \geq 1\end{cases}
$$

is continuous for all x. You must explain why $g(x)$ is continuous everywhere!
6. (10 pts) Give a formula of a function $f(x)$ that has 5 vertical asymptotes. Explain why your function satisfies the requirements.

