1. (10 pts) Use the definition of the derivative to calculate the derivative of the function

$$
f(x)=\frac{4}{x} .
$$

2. (5 pts) Give an example of a continuous function that is not differentiable at $x=1$ and $x=2$.
3. (15 pts) In the following problems, evaluate all derivatives fully but do not simplify.
(a) Calculate $\frac{d}{d x}\left(c x^{c}+c^{2} x^{-c}\right)$, where c is a non-zero constant.
(b) Let $f(r)=\frac{r^{3}+1}{-5-r^{4}}$. Calculate $f^{\prime}(r)$.
(c) Determine y^{\prime} where $y=\frac{1}{\sqrt{2-3 x}}$.
4. (10 pts) Give the slope of the tangent line to the curve $x^{3}-3 x y+y^{2}=-1$ at the point $(1,2)$.
5. (10 pts) You are an aluminum can producer. If the cost of producing x aluminum cans is $C(x)=\sqrt{x}+0.01 \sqrt{x^{3}}$ dollars, then estimate the cost of producing the $101^{\text {st }}$ aluminum can. (Justify your answer.)
6. (10 pts) A spherical snowball is melting so that its surface area is decreasing at $1 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the snowball's radius decreasing when the snowball's diameter is 10 cm ? The surface area of a sphere and its radius are related by the formula $S A=4 \pi r^{2}$.
