Understanding $\delta-\varepsilon$

Simplified definition of a limit: We say that

$$
\lim _{x \rightarrow a} f(x)=L
$$

if we can make the values of $f(x)$ arbitrarily close to L when we choose some x close enough to a (but not equal to a.)

Goal: We want to force $f(x)$ to be close to L.
We'll do this by choosing x 's close to a.
How close to $x=4$ do we have to be in order to make $f(x)=\sqrt{x}$ very close to 2?
(How about within .1?)

We know that $f(3.61)=1.9$
and that $f(4.41)=2.1$,
SO, if we restrict x to be between 3.61 and 4.41, we assure ourselves that $f(x)$ is between 1.9 and 2.1.

Or even if we restrict x to some smaller interval, $f(x)$ is still between 1.9 and 2.1.

JARGON
δ : A small horizontal (x) value. [delta]
ε : A small vertical (y) value. [epsilon]

The Official Definition of a Limit:

The limit of $f(x)$ as x approaches a is L when
FOR EVERY EPSILON (ε), we can FIND A DELTA (δ) such that

$$
|f(x)-L|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

Restating: No matter how close you want to make $f(x)$ to L, you can always find an x near a to give you that value.

Example: Prove $\lim _{x \rightarrow-2}\left(\frac{1}{2} x+3\right)=2$ using the $\delta-\varepsilon$ definition of a limit.
Solution: We want to show that for every $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\left|\left(\frac{1}{2} x+3\right)-2\right|<\varepsilon \text { whenever } 0<|x-(-2)|<\delta
$$

(1) Given $\varepsilon>0$, what should we guess for δ ?
[Goal: Start out with our ε inequality and transform it into our δ inequality.]

$$
\begin{aligned}
\left|\frac{1}{2} x+3-2\right| & <\varepsilon \\
\left|\frac{1}{2} x+1\right| & <\varepsilon \\
\left|\frac{1}{2} x+\frac{1}{2} 2\right| & <\varepsilon \\
\left|\frac{1}{2}\right||x+2| & <\varepsilon \\
|x+2| & <2 \varepsilon
\end{aligned}
$$

So we choose $\delta=2 \varepsilon$.
(2) Showing δ works.
[We now need to prove the statement we set out to show.]
Given $\varepsilon>0$, let $\delta=2 \varepsilon$.
If $0<|x+2|<\delta$, [we ask what does this mean for $|f(x)-L|$?]
then, $\left|\frac{1}{2} x+3-2\right|=\left|\frac{1}{2} x+1\right|=\frac{1}{2}|x+2|$.
But we know $|x+2|<\delta$, so we can input this information:
$\left|\frac{1}{2} x+3-2\right|<\frac{1}{2} \delta=\frac{1}{2}(2 \varepsilon)=\varepsilon$.
So we have showed that whenever $0<|x-(-2)|<\delta$, we have that $\left|\left(\frac{1}{2} x+3\right)-2\right|<\varepsilon$. This is exactly the definition of the limit.

