The Need-to-know List

In order to be able to fully appreciate the calculus that you learn this year, you need to be completely comfortable with the following fundamental building blocks.

1. Arithmetic, Algebra, and Fractions

$$
\begin{array}{lc}
(a+b)^{2}=a^{2}+2 a b+b^{2}, \text { NOT }=a^{2}+b^{2}!!!!! & (a+b) / c=a / c+b / c \\
a^{2}-b^{2}=(a+b) \times(a-b) & c /(a+b) \text { does NOT simplify!!!!!! } \\
x^{3}+y^{3}=(x+y) \times\left(x^{2}-x y+y^{2}\right) & \frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d} \\
x^{3}-y^{3}=(x-y) \times\left(x^{2}+x y+y^{2}\right) & \frac{a}{c}=\frac{a d}{d} \quad \frac{a}{d}=\frac{a d}{c} \quad \frac{a}{c}=\frac{a}{b c}
\end{array}
$$

- Know how to factor and find roots of polynomials.

2. Powers

Simplifies	Does Not Simplify
$x^{a} x^{b}=x^{a+b}$	$x^{a}+x^{b}$
$a^{x} a^{y}=a^{x+y}$	$a^{x}+a^{y}$
$x^{a} y^{a}=(x y)^{a}$	
$\left(x^{a}\right)^{b}=x^{a b}$	$x^{\left(a^{b}\right)}$
$x^{-a}=1 / x^{a}$	
$\sqrt{x y}=\sqrt{x} \sqrt{y}$	$\sqrt{x+y}$
$\sqrt{x^{2}}=\|x\|$	

3. Areas and Volumes

Area of a rectangle (square): $\quad A_{\text {rect }}=l w\left(A_{\text {sq }}=l^{2}\right)$
Area of a triangle: $\quad A_{\text {tri }}=\frac{1}{2} b h$
Area of a circle:
$A_{\text {circ }}=\pi r^{2}$
Volume of any prism: $\quad V_{\text {prism }}=A h$ (rectangular prism): $\quad\left(V_{\text {box }}=l w h\right)$
(cylinder): $\quad\left(V_{\text {cyl }}=\pi r^{2} h\right)$
Volume of a sphere: $\quad V_{\mathrm{sph}}=\frac{4}{3} \pi r^{3}$

Memorize these special values!

$1^{0}=1 \quad 0^{1}=0 \quad 0^{0}=$ undefined

4. Trigonometry and Triangles

SOH-CAH-TOA: $\sin (\theta)=\frac{\text { OPP }}{\text { HYP }}, \cos (\theta)=\frac{\text { ADJ }}{\text { HYP }}, \tan (\theta)=\frac{\text { OPP }}{\text { ADJ }}$

$$
\begin{aligned}
\sin ^{2}(x)+\cos ^{2}(x)=1 & \text { For all } x \text { 's! } \\
a^{2}+b^{2}=c^{2} & \text { For right triangles, hypotenuse } c .
\end{aligned}
$$

Memorize these special values!

$$
30^{\circ}=\pi / 6 \quad 45^{\circ}=\pi / 4 \quad 90^{\circ}=\pi / 2 \quad 180^{\circ}=\pi \quad 360^{\circ}=2 \pi
$$

$\mathbf{0}$	$\mathbf{1} / \mathbf{2}$	$\sqrt{\mathbf{2}} / \mathbf{2}$	$\sqrt{\mathbf{3}} / \mathbf{2}$	$\mathbf{1}$
$\sin (0)$	$\sin (\pi / 6)$	$\sin (\pi / 4)$	$\sin (\pi / 3)$	$\sin (\pi / 2)$
$\cos (\pi / 2)$	$\cos (\pi / 3)$	$\cos (\pi / 4)$	$\cos (\pi / 6)$	$\cos (0)$

Key Identities

$$
\begin{aligned}
\sin (2 x)=2 \sin (x) \cos (x) & \text { Sine Double Angle } \\
\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x) & \text { Cosine Double Angle } \\
\sin ^{2} x=[1-\cos (2 x)] / 2 & \text { Sine Half-Angle } \\
\cos ^{2} x=[1+\cos (2 x)] / 2 & \text { Cosine Half-Angle }
\end{aligned}
$$

