DOMAIN:

- Precise definition: For a function f, which is a rule that assigns to each element x in a set D exactly one element, called $f(x)$ in a set E, then the domain of f is the set D.
- My understanding: The domain is the set of all x-values that it makes sense to plug into f.
- Example that shows you understand the definition: Consider $f(x)=\sqrt{x-2}$. The only values that can be plugged in for x are those where $x-2 \geq 0$. In other words, $D=[2,+\infty)$.
- Non-example that shows you understand the definition: Consider $f(x)=\sqrt{x-2}$. The possible y-values are geq0, but $[0,+\infty)$ is the RANGE of the function, not the DOMAIN!

RANGE:

- Precise definition: The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.
- My understanding: The range is the set of all y-values that are output from f when considering all the inputs to f in its domain.
- Example that shows you understand the definition: Consider $f(x)=\sin (x)$ on the domain $(-\infty,+\infty)$. This function can (and DOES) output every value from -1 to 1 and nothing else. So its range is the interval $[-1,1]$.
- Non-example that shows you understand the definition: Consider $f(x)=\sin (x)$. The possible x-values you can plug into the function are $(-\infty,+\infty)$, but that is the DOMAIN of the function, not the RANGE!

