Equations of Lines - §10.5

Lines, Planes, and Automobiles!

Lines in 2D Coordinates Two common formats:

Lines in 2D Coordinates Two common formats:

y = mx + b (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

Lines in 2D Coordinates Two common formats:

y = mx + b (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Lines in 2D Coordinates Two common formats:

y = mx + b (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

 $\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Each t gives a point (x, y, z) on L.

Lines in 2D Coordinates Two common formats:

y = mx + b (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

 $\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Each t gives a point (x, y, z) on L. Reading componentwise, same as: $\begin{cases} x(t) = x_0 + at \\ y(t) = y_0 + bt \\ z(t) = z_0 + ct \end{cases}$

Lines in 2D Coordinates Two common formats:

y = mx + b (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

 $\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Each t gives a point (x, y, z) on L. Reading componentwise, same as: $\begin{cases} x(t) = x_0 + at \\ y(t) = y_0 + bt \\ z(t) = z_0 + ct \end{cases}$

Key idea: Read off direction vector \vec{v} from coeffs of *t*.

Lines in 2D Coordinates Two common formats:

y = mx + b (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

 $\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Each t gives a point (x, y, z) on L. Reading componentwise, same as: $\begin{cases} x(t) = x_0 + at \\ y(t) = y_0 + bt \\ z(t) = z_0 + ct \end{cases}$

Key idea: Read off direction vector \vec{v} from coeffs of *t*.

Lines in 2D Coordinates Two common formats:

y = mx + b (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

 $\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$

Two Lines

In three dimensions, two lines can

- be parallel
- intersect

be skew

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Each t gives a point (x, y, z) on L. Reading componentwise, same as: $\begin{cases} x(t) = x_0 + at \\ y(t) = y_0 + bt \\ z(t) = z_0 + ct \end{cases}$

Key idea: Read off direction vector \vec{v} from coeffs of *t*.

Example. Find the equation of the line that passes through A = (2, 4, -3) and B = (3, -1, 1).

Example. Find the equation of the line that passes through A = (2, 4, -3) and B = (3, -1, 1).

Answer: To find the equation of a line, we need

▶ One Point.

Example. Find the equation of the line that passes through A = (2, 4, -3) and B = (3, -1, 1).

Answer: To find the equation of a line, we need

- One Point.
- ▶ One Direction.

Example. Find the equation of the line that passes through A = (2, 4, -3) and B = (3, -1, 1).

Answer: To find the equation of a line, we need

- One Point.
- ▶ One Direction.

Example. Where does this line pass through the xy-plane?

Example. Find the equation of the line that passes through A = (2, 4, -3) and B = (3, -1, 1).

Answer: To find the equation of a line, we need

- One Point.
- ▶ One Direction.

Example. Where does this line pass through the *xy*-plane? *Answer:* In other words, _____

Example. Show that the following lines are skew. Romeo : $\langle 1 + t, -2 + 3t, 4 - t \rangle$ Juliet : $\langle 2s, 3 + s, -3 + 4s \rangle$

Example. Show that the following lines are skew. Romeo : $\langle 1 + t, -2 + 3t, 4 - t \rangle$ Juliet : $\langle 2s, 3 + s, -3 + 4s \rangle$

Answer: We will show:

► They are not **parallel**.

▶ They do not **intersect**.

Example. Show that the following lines are skew. Romeo : $\langle 1 + t, -2 + 3t, 4 - t \rangle$ Juliet : $\langle 2s, 3 + s, -3 + 4s \rangle$

Answer: We will show:

▶ They are not parallel. (They would have the same _____.)

▶ They do not **intersect**.

Example. Show that the following lines are skew. Romeo : $\langle 1 + t, -2 + 3t, 4 - t \rangle$ Juliet : $\langle 2s, 3 + s, -3 + 4s \rangle$

Answer: We will show:

▶ They are not parallel. (They would have the same _____.)

They do not intersect. (There would be a point _____.)

Question: Does **a plane** have a direction?

Question: Does **a plane** have a direction?

TI		\rightarrow
There is one vector	to the plane, the	n

Question: Does **a plane** have a direction?

There is one vector ______ to the plane, the ______ \vec{n} . Note: \vec{n} defines *infinitely many* planes. We also need a point.

Question: Does **a plane** have a direction?

There is one vector ______ to the plane, the ______ \vec{n} . Note: \vec{n} defines *infinitely many* planes. We also need a point.

A plane is defined by a normal vector $\vec{\mathbf{n}}$ and a point $\vec{\mathbf{r}}_0 = (x_0, y_0, z_0)$. For any point $\vec{\mathbf{r}}$ on the plane, $\vec{\mathbf{r}} - \vec{\mathbf{r}}_0$ is perpendicular to $\vec{\mathbf{n}}$.

Question: Does **a plane** have a direction?

There is one vector ______ to the plane, the ______ \vec{n} . Note: \vec{n} defines *infinitely many* planes. We also need a point.

A **plane** is defined by a normal vector $\vec{\mathbf{n}}$ and a point $\vec{\mathbf{r}}_0 = (x_0, y_0, z_0)$. For any point $\vec{\mathbf{r}}$ on the plane, $\vec{\mathbf{r}} - \vec{\mathbf{r}}_0$ is perpendicular to $\vec{\mathbf{n}}$. So the equation of a plane is

$$\vec{\mathbf{n}}\cdot(\vec{\mathbf{r}}-\vec{\mathbf{r}}_0)=0.$$

Question: Does **a plane** have a direction?

There is one vector ______ to the plane, the ______ \vec{n} . Note: \vec{n} defines *infinitely many* planes. We also need a point.

A **plane** is defined by a normal vector $\vec{\mathbf{n}}$ and a point $\vec{\mathbf{r}}_0 = (x_0, y_0, z_0)$. For any point $\vec{\mathbf{r}}$ on the plane, $\vec{\mathbf{r}} - \vec{\mathbf{r}}_0$ is perpendicular to $\vec{\mathbf{n}}$. So the equation of a plane is

 $\vec{\mathbf{n}} \cdot (\vec{\mathbf{r}} - \vec{\mathbf{r}}_0) = 0.$ $\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$ $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ ax + by + cz = d

Question: Does **a plane** have a direction?

There is one vector ______ to the plane, the ______ \vec{n} . Note: \vec{n} defines *infinitely many* planes. We also need a point.

A **plane** is defined by a normal vector $\vec{\mathbf{n}}$ and a point $\vec{\mathbf{r}}_0 = (x_0, y_0, z_0)$. For any point $\vec{\mathbf{r}}$ on the plane, $\vec{\mathbf{r}} - \vec{\mathbf{r}}_0$ is perpendicular to $\vec{\mathbf{n}}$. So the equation of a plane is

Alternate forms

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{r}} - \vec{\mathbf{r}}_0) = 0.$$

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax + by + cz = d$$

Key idea: Read off normal vector \vec{n} from coeffs of x, y, z.

Example. What is the angle between the planes x + y + z = 1 and x - 2y + 3z = 1?

Example. What is the angle between the planes x + y + z = 1 and x - 2y + 3z = 1?

Answer: When we need to find an angle, use

Example. What is the angle between the planes

$$x + y + z = 1$$
 and $x - 2y + 3z = 1$?

Answer: When we need to find an angle, use

$$\theta = \cos^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}$$

•

Example. What is the angle between the planes x + y + z = 1 and x - 2y + 3z = 1?

Answer: When we need to find an angle, use

$$\theta = \cos^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}$$

Example. What is the equation of the intersection line?

Example. What is the angle between the planes x + y + z = 1 and x - 2y + 3z = 1?

Answer: When we need to find an angle, use

Example. What is the equation of the intersection line? *Answer:* For the equation of a line, we need _____

 $\theta = \cos^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}$

Example. Find the distance from (1, 0, -1) to 2x + 3y - 5z + 10 = 0.

Example. Find the distance from (1, 0, -1) to 2x + 3y - 5z + 10 = 0. Answer: The normal vector to the plane is

Example. Find the distance from (1, 0, -1) to 2x + 3y - 5z + 10 = 0. *Answer:* The normal vector to the plane is so the shortest distance from $P_0 = (1, 0, -1)$ to the plane is along the line (1, 0, -1) + t(2, 3, -5).

Example. Find the distance from (1, 0, -1) to 2x + 3y - 5z + 10 = 0. *Answer:* The normal vector to the plane is so the shortest distance from $P_0 = (1, 0, -1)$ to the plane is along the line (1, 0, -1) + t(2, 3, -5). Where does this hit the plane?

Example. Find the distance from (1, 0, -1) to 2x + 3y - 5z + 10 = 0. *Answer:* The normal vector to the plane is so the shortest distance from $P_0 = (1, 0, -1)$ to the plane is along the line (1, 0, -1) + t(2, 3, -5). Where does this hit the plane?

Use the equation of the line and the plane: $2x + 3y - 5z + 10 = 0 \implies 2(1 + 2t) + 3(0 + 3t) - 5(-1 - 5t) + 10 = 0$

Example. Find the distance from (1, 0, -1) to 2x + 3y - 5z + 10 = 0. *Answer:* The normal vector to the plane is so the shortest distance from $P_0 = (1, 0, -1)$ to the plane is along the line (1, 0, -1) + t(2, 3, -5). Where does this hit the plane?

Use the equation of the line and the plane: $2x + 3y - 5z + 10 = 0 \implies 2(1 + 2t) + 3(0 + 3t) - 5(-1 - 5t) + 10 = 0$

Simplifying, the point P_1 where the line hits the plane is when $t = \frac{-17}{38}$.

Example. Find the distance from (1, 0, -1) to 2x + 3y - 5z + 10 = 0. *Answer:* The normal vector to the plane is so the shortest distance from $P_0 = (1, 0, -1)$ to the plane is along the line (1, 0, -1) + t(2, 3, -5). Where does this hit the plane? Use the equation of the line and the plane:

 $2x + 3y - 5z + 10 = 0 \rightsquigarrow 2(1 + 2t) + 3(0 + 3t) - 5(-1 - 5t) + 10 = 0$

Simplifying, the point P_1 where the line hits the plane is when $t = \frac{-17}{38}$. $\vec{P}_1 - \vec{P}_0 = \frac{-17}{29} \langle 2, 3, -5 \rangle$, so

Example. Find the distance from (1, 0, -1) to 2x + 3y - 5z + 10 = 0. *Answer:* The normal vector to the plane is so the shortest distance from $P_0 = (1, 0, -1)$ to the plane is along the line (1, 0, -1) + t(2, 3, -5). Where does this hit the plane?

Use the equation of the line and the plane: $2x + 3y - 5z + 10 = 0 \implies 2(1 + 2t) + 3(0 + 3t) - 5(-1 - 5t) + 10 = 0$

Simplifying, the point P_1 where the line hits the plane is when $t = \frac{-17}{38}$. $\vec{P}_1 - \vec{P}_0 = \frac{-17}{38} \langle 2, 3, -5 \rangle$, so $|\vec{P}_1 - \vec{P}_0| = \frac{17}{38} \sqrt{2^2 + 3^2 + (-5)^2} = \frac{17}{-5}$.

$$|P_1 - P_0| = \frac{11}{38}\sqrt{2^2 + 3^2} + (-5)^2 = \frac{11}{\sqrt{38}}$$