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Functions

Single-variable functions

f : R→ R
f : x 7→ f (x)
f takes in a real number x
outputs a real number f (x)

Vector functions

~r : R→ R3 (or R2 or Rn)
~r : t 7→ 〈f (t), g(t), h(t)〉
~r takes in a real number t
outputs a vector 〈f (t), g(t), h(t)〉
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Limities and Helices

The limit of a vector function ~r is defined by taking the limits of
its component functions

(as long as each of these exists...)

lim
t→a

~r(t) =
〈

lim
t→a

f (t), lim
t→a

g(t), lim
t→a

h(t)
〉

A vector-valued function ~r(t) is continuous at a if .

Example. Sketch the curve given by ~r(t) = cos t~i + sin t~j + t ~k.
The x and y components while the z component .
Plug in some values of t
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Intersectionnnnnnnnnnn

Example. Find a vector function that is the intersection of
the cylinder x2 + z2 = 1 and the plane y + z = 2.

Strategems: Find a parametrization... What parameter to use?

I If a curve is oriented in one direction, use that variable as t.

I When the curve is closed, this is not possible—work first in 2D.

Answer: Use the fact that we are on the cylinder. (Eqn 1) Project
onto the xz-plane and start the parametrization there:

x(t) = z(t) = ≤ t ≤ .

Use (Eqn 2) to find the y -coordinate:

So ~r =
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Derivatives and Derivative-derivative definitions

Define ~r′(t) = lim
h→0

~r(t+h)−~r(t)
h =

〈
f ′(t), g ′(t), h′(t)

〉
.

The derivative ~r′(t) of a vector-valued function

is a vector in the
direction tangent to the curve ~r(t).

I Standardize. The unit tangent vector ~T =
~r′(t)
|~r′(t)| .

I We can take multiple derivatives ~r′′(t) = d
dt

(
~r′(t)

)
I A function is smooth on an interval I if

I ~r′(t) is continuous on I

I and ~r′(t) 6= ~0, except possibly at the endpoints of I

We can integrate too.
∫ b
a
~r(t) dt =

〈 ∫ b
a f (t) dt,

∫ b
a g(t) dt,

∫ b
a h(t) dt

〉
Remember: Indefinite integrals have a (vector) constant of integration.

Example.
∫
〈2 cos t, sin t, 2t〉 dt = 〈2 sin t,− cos t, t2〉+ ~C.
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Derivatives

Example. Find the equation of the tangent line to the helix
~r(t) = 〈2 cos t, sin t, t〉 at the point P = (0, 1, π2 ).

Game plan:

1. Find t∗ for which the curve goes through the point P.

2. Find the tangent vector ~r′(t), plug in t = t∗.

3. Write the equation of the line.
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Derivatives rule

I d
dt

(
~r(t) +~s(t)

)
= ~r′(t) +~s′(t)

I d
dt

(
c~r(t)

)
= c~r′(t)

I d
dt

(
f (t)~r(t)

)
= f ′(t)~r(t) + f (t)~r′(t)

I d
dt

(
~r(t) ·~s(t)

)
= ~r′(t) ·~s(t) +~r(t) ·~s′(t)

I d
dt

(
~r(t)×~s(t)

)
= ~r′(t)×~s(t) +~r(t)×~s′(t)

I d
dt

(
~r(f (t))

)
= f ′(t)~r′(f (t))
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Motion in space

If ~r(t) is the vector position of a particle, then

I ~r′(t) = ~v(t) is the vector velocity of the particle.

I |~r′(t)| = |~v(t)| = speed of the particle.

I ~r′′(t) = ~a(t) is the vector acceleration of the particle.

We can use ~a(t) to find the force that an object exerts: ~F(t) = m~a(t)

Example. Suppose that a mass of 40 kg starts with init. pos’n 〈1, 0, 0〉,
initial velocity 〈1,−1, 1〉 and has acceleration ~a(t) = 〈4t, 6t, 1〉.
(a) Find the position and velocity of the particle as a function of t.

(b) Determine the force that the particle exerts at time t = 2.

Example. Show that if a particle moves with constant speed, then
the velocity and acceleration vectors are orthogonal.
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