Functions

Single-variable functions

 $f : \mathbb{R} \to \mathbb{R}$ f : x \mapsto f(x) f takes in a real number x outputs a real number f(x)

Functions

Single-variable functions

 $f : \mathbb{R} \to \mathbb{R}$ f : x \mapsto f(x) f takes in a real number x outputs a real number f(x)

Vector functions

 $\vec{\mathbf{r}} : \mathbb{R} \to \mathbb{R}^3 \quad (\text{or } \mathbb{R}^2 \text{ or } \mathbb{R}^n) \\ \vec{\mathbf{r}} : t \mapsto \langle f(t), g(t), h(t) \rangle \\ \vec{\mathbf{r}} \text{ takes in a real number } t \\ \text{outputs a vector } \langle f(t), g(t), h(t) \rangle$

The limit of a vector function \vec{r} is defined by taking the limits of its component functions

$$\lim_{t\to a} \vec{\mathbf{r}}(t) = \left\langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \right\rangle$$

The limit of a vector function \vec{r} is defined by taking the limits of its component functions (as long as each of these exists...)

$$\lim_{t\to a} \vec{\mathbf{r}}(t) = \left\langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \right\rangle$$

The limit of a vector function \vec{r} is defined by taking the limits of its component functions (as long as each of these exists...)

$$\lim_{t\to a} \vec{\mathbf{r}}(t) = \left\langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \right\rangle$$

A vector-valued function $\vec{\mathbf{r}}(t)$ is continuous at *a* if ______.

The limit of a vector function \vec{r} is defined by taking the limits of its component functions (as long as each of these exists...)

$$\lim_{t\to a} \vec{\mathbf{r}}(t) = \left\langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \right\rangle$$

A vector-valued function $\vec{\mathbf{r}}(t)$ is continuous at *a* if ______.

Example. Sketch the curve given by $\vec{\mathbf{r}}(t) = \cos t \, \vec{\mathbf{i}} + \sin t \, \vec{\mathbf{j}} + t \, \vec{\mathbf{k}}$.

The limit of a vector function \vec{r} is defined by taking the limits of its component functions (as long as each of these exists...)

$$\lim_{t\to a} \vec{\mathbf{r}}(t) = \left\langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \right\rangle$$

A vector-valued function $\vec{\mathbf{r}}(t)$ is continuous at *a* if ______.

Example. Sketch the curve given by $\vec{\mathbf{r}}(t) = \cos t \, \vec{\mathbf{i}} + \sin t \, \vec{\mathbf{j}} + t \, \vec{\mathbf{k}}$. The x and y components ______ while the z component _____.

The limit of a vector function \vec{r} is defined by taking the limits of its component functions (as long as each of these exists...)

$$\lim_{t\to a} \vec{\mathbf{r}}(t) = \left\langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \right\rangle$$

A vector-valued function $\vec{\mathbf{r}}(t)$ is continuous at *a* if ______.

Example. Sketch the curve given by $\vec{\mathbf{r}}(t) = \cos t \, \vec{\mathbf{i}} + \sin t \, \vec{\mathbf{j}} + t \, \vec{\mathbf{k}}$. The x and y components ______ while the z component _____. Plug in some values of t

Example. Find a vector function that is the intersection of the cylinder $x^2 + z^2 = 1$ and the plane y + z = 2.

Example. Find a vector function that is the intersection of the cylinder $x^2 + z^2 = 1$ and the plane y + z = 2.

Strategems: Find a parametrization...

Example. Find a vector function that is the intersection of the cylinder $x^2 + z^2 = 1$ and the plane y + z = 2.

Strategems: Find a parametrization... What parameter to use?

Example. Find a vector function that is the intersection of the cylinder $x^2 + z^2 = 1$ and the plane y + z = 2.

Strategems: Find a parametrization... What parameter to use?

▶ If a curve is oriented in one direction, use that variable as t.

Example. Find a vector function that is the intersection of the cylinder $x^2 + z^2 = 1$ and the plane y + z = 2.

Strategems: Find a parametrization... What parameter to use?

- \blacktriangleright If a curve is oriented in one direction, use that variable as t.
- ▶ When the curve is closed, this is not possible—work first in 2D.

Example. Find a vector function that is the intersection of the cylinder $x^2 + z^2 = 1$ and the plane y + z = 2.

Strategems: Find a parametrization... What parameter to use?

- \blacktriangleright If a curve is oriented in one direction, use that variable as t.
- ▶ When the curve is closed, this is not possible—work first in 2D.

Answer: Use the fact that we are on the cylinder. (Eqn 1) Project onto the *xz*-plane and start the parametrization there:

$$x(t) = z(t) = _ \leq t \leq _$$

Example. Find a vector function that is the intersection of the cylinder $x^2 + z^2 = 1$ and the plane y + z = 2.

Strategems: Find a parametrization... What parameter to use?

▶ If a curve is oriented in one direction, use that variable as t.

▶ When the curve is closed, this is not possible—work first in 2D.

Answer: Use the fact that we are on the cylinder. (Eqn 1) Project onto the *xz*-plane and start the parametrization there:

 $x(t) = z(t) = _ t \le _$

Use (Eqn 2) to find the y-coordinate:

Example. Find a vector function that is the intersection of the cylinder $x^2 + z^2 = 1$ and the plane y + z = 2.

Strategems: Find a parametrization... What parameter to use?

▶ If a curve is oriented in one direction, use that variable as t.

▶ When the curve is closed, this is not possible—work first in 2D.

Answer: Use the fact that we are on the cylinder. (Eqn 1) Project onto the *xz*-plane and start the parametrization there:

 $x(t) = z(t) = _ t \le _$

Use (Eqn 2) to find the y-coordinate:

So $\vec{r} =$

Define
$$\vec{\mathbf{r}}'(t) = \lim_{h \to 0} \frac{\vec{\mathbf{r}}(t+h) - \vec{\mathbf{r}}(t)}{h} = \langle f'(t), g'(t), h'(t) \rangle$$
.
The **derivative** $\vec{\mathbf{r}}'(t)$ of a vector-valued function

Define
$$\vec{\mathbf{r}}'(t) = \lim_{h \to 0} \frac{\vec{\mathbf{r}}(t+h) - \vec{\mathbf{r}}(t)}{h} = \langle f'(t), g'(t), h'(t) \rangle$$
.
The **derivative** $\vec{\mathbf{r}}'(t)$ of a vector-valued functionis a vector in the direction tangent to the curve $\vec{\mathbf{r}}(t)$.

Define
$$\vec{\mathbf{r}}'(t) = \lim_{h \to 0} \frac{\vec{\mathbf{r}}(t+h) - \vec{\mathbf{r}}(t)}{h} = \langle f'(t), g'(t), h'(t) \rangle$$
.
The **derivative** $\vec{\mathbf{r}}'(t)$ of a vector-valued functionis a vector in the direction tangent to the curve $\vec{\mathbf{r}}(t)$.

Standardize. The unit tangent vector $\vec{\mathbf{T}} = \frac{\vec{\mathbf{r}}'(t)}{|\vec{\mathbf{r}}'(t)|}$.

Define
$$\vec{\mathbf{r}}'(t) = \lim_{h \to 0} \frac{\vec{\mathbf{r}}(t+h) - \vec{\mathbf{r}}(t)}{h} = \langle f'(t), g'(t), h'(t) \rangle$$
.
The **derivative** $\vec{\mathbf{r}}'(t)$ of a vector-valued functionis a vector in the direction tangent to the curve $\vec{\mathbf{r}}(t)$.

Standardize. The unit tangent vector $\vec{\mathbf{T}} = \frac{\vec{\mathbf{r}}'(t)}{|\vec{\mathbf{r}}'(t)|}$.

• We can take multiple derivatives
$$\vec{\mathbf{r}}''(t) = \frac{d}{dt} (\vec{\mathbf{r}}'(t))$$

Define
$$\vec{\mathbf{r}}'(t) = \lim_{h \to 0} \frac{\vec{\mathbf{r}}(t+h) - \vec{\mathbf{r}}(t)}{h} = \langle f'(t), g'(t), h'(t) \rangle$$
.
The **derivative** $\vec{\mathbf{r}}'(t)$ of a vector-valued functionis a vector in the direction tangent to the curve $\vec{\mathbf{r}}(t)$.

Standardize. The unit tangent vector $\vec{T} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$.

• We can take multiple derivatives $\vec{\mathbf{r}}''(t) = \frac{d}{dt} (\vec{\mathbf{r}}'(t))$

A function is **smooth** on an interval *I* if

▶
$$\vec{\mathbf{r}}'(t)$$
 is continuous on I

▶ and $\vec{\mathbf{r}}'(t) \neq \vec{\mathbf{0}}$, except possibly at the endpoints of *I*

Define
$$\vec{\mathbf{r}}'(t) = \lim_{h \to 0} \frac{\vec{\mathbf{r}}(t+h) - \vec{\mathbf{r}}(t)}{h} = \langle f'(t), g'(t), h'(t) \rangle$$
.
The **derivative** $\vec{\mathbf{r}}'(t)$ of a vector-valued functionis a vector in the direction tangent to the curve $\vec{\mathbf{r}}(t)$.

Standardize. The unit tangent vector $\vec{T} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$.

• We can take multiple derivatives
$$\vec{\mathbf{r}}''(t) = \frac{d}{dt} (\vec{\mathbf{r}}'(t))$$

A function is smooth on an interval I if

- $\blacktriangleright \vec{\mathbf{r}}'(t)$ is continuous on *I*
- ▶ and $\vec{\mathbf{r}}'(t) \neq \vec{\mathbf{0}}$, except possibly at the endpoints of *I*

We can integrate too. $\int_{a}^{b} \vec{r}(t) dt = \left\langle \int_{a}^{b} f(t) dt, \int_{a}^{b} g(t) dt, \int_{a}^{b} h(t) dt \right\rangle$

Define
$$\vec{\mathbf{r}}'(t) = \lim_{h \to 0} \frac{\vec{\mathbf{r}}(t+h) - \vec{\mathbf{r}}(t)}{h} = \langle f'(t), g'(t), h'(t) \rangle$$
.
The **derivative** $\vec{\mathbf{r}}'(t)$ of a vector-valued functionis a vector in the direction tangent to the curve $\vec{\mathbf{r}}(t)$.

Standardize. The unit tangent vector $\vec{T} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$.

• We can take multiple derivatives
$$\vec{\mathbf{r}}''(t) = \frac{d}{dt} (\vec{\mathbf{r}}'(t))$$

A function is **smooth** on an interval *I* if

▶
$$\vec{\mathbf{r}}'(t)$$
 is continuous on *l*

▶ and $\vec{\mathbf{r}}'(t) \neq \vec{\mathbf{0}}$, except possibly at the endpoints of *I*

We can integrate too. $\int_a^b \vec{\mathbf{r}}(t) dt = \left\langle \int_a^b f(t) dt, \int_a^b g(t) dt, \int_a^b h(t) dt \right\rangle$

Remember: Indefinite integrals have a (vector) constant of integration.

Define
$$\vec{\mathbf{r}}'(t) = \lim_{h \to 0} \frac{\vec{\mathbf{r}}(t+h) - \vec{\mathbf{r}}(t)}{h} = \langle f'(t), g'(t), h'(t) \rangle$$
.
The **derivative** $\vec{\mathbf{r}}'(t)$ of a vector-valued functionis a vector in the direction tangent to the curve $\vec{\mathbf{r}}(t)$.

Standardize. The unit tangent vector $\vec{T} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$.

• We can take multiple derivatives
$$\vec{\mathbf{r}}''(t) = \frac{d}{dt} (\vec{\mathbf{r}}'(t))$$

A function is **smooth** on an interval *I* if

- ▶ $\vec{\mathbf{r}}'(t)$ is continuous on *I*
- ▶ and $\vec{\mathbf{r}}'(t) \neq \vec{\mathbf{0}}$, except possibly at the endpoints of *I*

We can integrate too. $\int_a^b \vec{\mathbf{r}}(t) dt = \left\langle \int_a^b f(t) dt, \int_a^b g(t) dt, \int_a^b h(t) dt \right\rangle$

Remember: Indefinite integrals have a (vector) constant of integration. Example. $\int \langle 2 \cos t, \sin t, 2t \rangle dt = \langle 2 \sin t, -\cos t, t^2 \rangle + \vec{C}$.

Derivatives

Example. Find the equation of the tangent line to the helix $\vec{\mathbf{r}}(t) = \langle 2\cos t, \sin t, t \rangle$ at the point $P = (0, 1, \frac{\pi}{2})$.

Derivatives

Example. Find the equation of the tangent line to the helix $\vec{\mathbf{r}}(t) = \langle 2 \cos t, \sin t, t \rangle$ at the point $P = (0, 1, \frac{\pi}{2})$.

Game plan:

1. Find t^* for which the curve goes through the point *P*.

2. Find the tangent vector $\vec{\mathbf{r}}'(t)$, plug in $t = t^*$.

3. Write the equation of the line.

Derivatives rule

$$\begin{aligned} & \frac{d}{dt} \left(\vec{\mathbf{r}}(t) + \vec{\mathbf{s}}(t) \right) = \vec{\mathbf{r}}'(t) + \vec{\mathbf{s}}'(t) \\ & \frac{d}{dt} \left(c \, \vec{\mathbf{r}}(t) \right) = c \, \vec{\mathbf{r}}'(t) \\ & \frac{d}{dt} \left(f(t) \, \vec{\mathbf{r}}(t) \right) = f'(t) \, \vec{\mathbf{r}}(t) + f(t) \, \vec{\mathbf{r}}'(t) \\ & \frac{d}{dt} \left(\vec{\mathbf{r}}(t) \cdot \vec{\mathbf{s}}(t) \right) = \vec{\mathbf{r}}'(t) \cdot \vec{\mathbf{s}}(t) + \vec{\mathbf{r}}(t) \cdot \vec{\mathbf{s}}'(t) \\ & \frac{d}{dt} \left(\vec{\mathbf{r}}(t) \times \vec{\mathbf{s}}(t) \right) = \vec{\mathbf{r}}'(t) \times \vec{\mathbf{s}}(t) + \vec{\mathbf{r}}(t) \times \vec{\mathbf{s}}'(t) \\ & \frac{d}{dt} \left(\vec{\mathbf{r}}(t) \times \vec{\mathbf{s}}(t) \right) = f'(t) \, \vec{\mathbf{r}}'(f(t)) \end{aligned}$$

If $\vec{\mathbf{r}}(t)$ is the vector position of a particle, then

- ▶ $\vec{\mathbf{r}}'(t) = \vec{\mathbf{v}}(t)$ is the vector velocity of the particle.
- ► $|\vec{\mathbf{r}}'(t)| = |\vec{\mathbf{v}}(t)|$ = speed of the particle.
- ▶ $\vec{\mathbf{r}}''(t) = \vec{\mathbf{a}}(t)$ is the vector acceleration of the particle.

If $\vec{\mathbf{r}}(t)$ is the vector position of a particle, then

- $\vec{\mathbf{r}}'(t) = \vec{\mathbf{v}}(t)$ is the vector velocity of the particle.
- ► $|\vec{\mathbf{r}}'(t)| = |\vec{\mathbf{v}}(t)|$ = speed of the particle.
- ▶ $\vec{\mathbf{r}}''(t) = \vec{\mathbf{a}}(t)$ is the vector acceleration of the particle.

We can use $\vec{a}(t)$ to find the force that an object exerts: $\vec{F}(t) = m \vec{a}(t)$

If $\vec{\mathbf{r}}(t)$ is the vector position of a particle, then

- $\vec{\mathbf{r}}'(t) = \vec{\mathbf{v}}(t)$ is the vector velocity of the particle.
- ► $|\vec{\mathbf{r}}'(t)| = |\vec{\mathbf{v}}(t)|$ = speed of the particle.
- ▶ $\vec{\mathbf{r}}''(t) = \vec{\mathbf{a}}(t)$ is the vector acceleration of the particle.

We can use $\vec{a}(t)$ to find the force that an object exerts: $\vec{F}(t) = m \vec{a}(t)$ Example. Suppose that a mass of 40 kg starts with init. pos'n $\langle 1, 0, 0 \rangle$, initial velocity $\langle 1, -1, 1 \rangle$ and has acceleration $\vec{a}(t) = \langle 4t, 6t, 1 \rangle$.

If $\vec{\mathbf{r}}(t)$ is the vector position of a particle, then

- $\vec{\mathbf{r}}'(t) = \vec{\mathbf{v}}(t)$ is the vector velocity of the particle.
- ▶ $|\vec{\mathbf{r}}'(t)| = |\vec{\mathbf{v}}(t)|$ = speed of the particle.
- ▶ $\vec{\mathbf{r}}''(t) = \vec{\mathbf{a}}(t)$ is the vector acceleration of the particle.

We can use $\vec{a}(t)$ to find the force that an object exerts: $\vec{F}(t) = m \vec{a}(t)$ Example. Suppose that a mass of 40 kg starts with init. pos'n $\langle 1, 0, 0 \rangle$, initial velocity $\langle 1, -1, 1 \rangle$ and has acceleration $\vec{a}(t) = \langle 4t, 6t, 1 \rangle$. (a) Find the position and velocity of the particle as a function of t.

(b) Determine the force that the particle exerts at time t = 2.

If $\vec{\mathbf{r}}(t)$ is the vector position of a particle, then

- $\vec{\mathbf{r}}'(t) = \vec{\mathbf{v}}(t)$ is the vector velocity of the particle.
- ▶ $|\vec{\mathbf{r}}'(t)| = |\vec{\mathbf{v}}(t)|$ = speed of the particle.
- ▶ $\vec{\mathbf{r}}''(t) = \vec{\mathbf{a}}(t)$ is the vector acceleration of the particle.

We can use $\vec{a}(t)$ to find the force that an object exerts: $\vec{F}(t) = m \vec{a}(t)$ Example. Suppose that a mass of 40 kg starts with init. pos'n $\langle 1, 0, 0 \rangle$, initial velocity $\langle 1, -1, 1 \rangle$ and has acceleration $\vec{a}(t) = \langle 4t, 6t, 1 \rangle$. (a) Find the position and velocity of the particle as a function of t.

(b) Determine the force that the particle exerts at time t = 2.

Example. Show that if a particle moves with constant speed, then the velocity and acceleration vectors are orthogonal.