Chain Rule

Function of one variable

Suppose y = f(x) and x = g(t). That is, y = f(g(t)).

Chain Rule

Function of one variable

Suppose y = f(x) and x = g(t).

That is, y = f(g(t)).

The chain rule gives: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$

$$\frac{dy}{dx} \cdot \frac{dx}{dt}$$

Chain Rule

Function of one variable

Suppose y = f(x) and x = g(t).

That is, y = f(g(t)).

The chain rule gives:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$
$$\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$$

Chain Rule

Function of one variable

Suppose y = f(x) and x = g(t). That is, y = f(g(t)).

The chain rule gives:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$
$$\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$$

Function of several variables

Suppose z = f(x, y) and $\begin{cases} x = g(t) \\ y = h(t) \end{cases}$ So z = f(g(t), h(t)).

Chain Rule

Function of one variable

Suppose y = f(x) and x = g(t). That is, y = f(g(t)).

The chain rule gives:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$
$$\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$$

Function of several variables

Suppose z = f(x, y) and $\begin{cases} x = g(t) \\ y = h(t) \end{cases}$ So z = f(g(t), h(t)).

The chain rule gives

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

Chain Rule

Function of one variable

Suppose y = f(x) and x = g(t). That is, y = f(g(t)).

The chain rule gives:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$
$$\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$$

Function of several variables

Suppose
$$z = f(x, y)$$
 and
$$\begin{cases} x = g(t) \\ y = h(t) \end{cases}$$
So $z = f(g(t), h(t))$.

The chain rule gives

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

$$\frac{dz}{dt} = f_x(g(t), h(t)) \cdot g'(t) + f_y(g(t), h(t)) \cdot h'(t)$$

Chain Rule

Function of one variable

Suppose y = f(x) and x = g(t).

That is, y = f(g(t)). The chain rule gives:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$
$$\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$$

Key idea:

You must add contributions from all dependencies.

Function of several variables

Suppose z = f(x, y) and $\begin{cases} x = g(t) \\ y = h(t) \end{cases}$ So z = f(g(t), h(t)).

The chain rule gives

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$
$$\frac{dz}{dt} = f_x(g(t), h(t)) \cdot g'(t) + f_y(g(t), h(t)) \cdot h'(t)$$

Chain Rule

Function of one variable

Suppose
$$y = f(x)$$
 and $x = g(t)$.
That is, $y = f(g(t))$.

The chain rule gives:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$
$$\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$$

Key idea:

You must add contributions from all dependencies.

Function of several variables

Suppose
$$z = f(x, y)$$
 and
$$\begin{cases} x = g(t) \\ y = h(t) \end{cases}$$
So $z = f(g(t), h(t))$.

The chain rule gives

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

$$\frac{dz}{dt} = f_x(g(t), h(t)) \cdot g'(t) + f_y(g(t), h(t)) \cdot h'(t)$$

Example. Let $z = x^2y + 3xy^2$, where $x = \sin 2t$, $y = \cos t$. Find $\frac{dz}{dt}$, z'(0). *Answer:*

More Chains

Alternatively, we might have z = f(x, y) and x = g(s, t), y = h(s, t). Then $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$.

More Chains

All dependencies

Alternatively, we might have
$$z = f(x, y)$$
 and $x = g(s, t)$, $y = h(s, t)$.

Then $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$.

More Chains

All dependencies

Alternatively, we might have z = f(x, y) and x = g(s, t), y = h(s, t). Then $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial y} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$.

Example. Consider $u = x^4y + y^2z^3$ where $x = rse^t$, $y = rs^2e^{-t}$, $z = r^2s(\sin t)$. Find $\frac{\partial u}{\partial s}$.

More Chains

All dependencies

Alternatively, we might have z = f(x, y) and x = g(s, t), y = h(s, t). Then $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial y} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$.

Example. Consider
$$u = x^4y + y^2z^3$$
 where $x = rse^t$, $y = rs^2e^{-t}$, $z = r^2s(\sin t)$. Find $\frac{\partial u}{\partial s}$.

In full generality: If u is a function of $x_1, x_2, ..., x_n$ and each x_j is a function of $t_1, t_2, ..., t_m$, then $\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_i} + \cdots + \frac{\partial u}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_i}.$

Implicit differentiation

► Simplify implicit differentiation calculations!

Implicit differentiation

▶ Simplify implicit differentiation calculations!

Involving two variables

Consider
$$F(x, y) = C$$
 like

Implicit differentiation

Simplify implicit differentiation calculations!

Involving two variables

Consider
$$F(x,y) = C$$
 like Implicitly y is a function of x :

$$F(x, f(x)) = C$$

Implicit differentiation

► Simplify implicit differentiation calculations!

Involving two variables

Consider
$$F(x, y) = C$$
 like

Implicitly y is a function of x:

$$F(x, f(x)) = C$$

Differentiating w.r.t. x:

$$F(x, y) = C$$

$$\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0$$

Implicit differentiation

▶ Simplify implicit differentiation calculations!

Involving two variables

Consider
$$F(x, y) = C$$
 like Implicitly y is a function of x:

$$F(x, f(x)) = C$$

$$F(x, y) = C$$

$$\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$$

Solving for $\frac{dy}{dx}$ gives

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

Implicit differentiation

► Simplify implicit differentiation calculations!

Involving two variables

Consider F(x, y) = C like Implicitly y is a function of x:

$$F(x, f(x)) = C$$

Differentiating w.r.t. x:

$$F(x, y) = C$$

$$\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$$

Solving for $\frac{dy}{dx}$ gives

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

Involving three variables

Consider F(x, y, z) = CImplicitly z is a function of x and y:

$$F(x, y, f(x, y)) = C$$

Implicit differentiation

Simplify implicit differentiation calculations!

Involving two variables

Consider F(x, y) = C like Implicitly y is a function of x:

$$F(x, f(x)) = C$$

Differentiating w.r.t. x:

$$F(x, y) = C$$

$$\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$$

Solving for $\frac{dy}{dx}$ gives

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

Involving three variables

Consider F(x, y, z) = CImplicitly z is a function of x and y:

$$F(x, y, f(x, y)) = C$$

Differentiating w.r.t. x:

$$F(x, y, z) = C$$

$$\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial x} \frac{\partial y}{dx} + \frac{\partial F}{\partial x} \frac{\partial z}{\partial x} = 0$$

Implicit differentiation

Simplify implicit differentiation calculations!

Involving two variables

Consider F(x, y) = C like Implicitly y is a function of x:

$$F(x, f(x)) = C$$

Differentiating w.r.t. x:

$$F(x, y) = C$$

$$\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$$

Solving for $\frac{dy}{dx}$ gives

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

Involving three variables

Consider F(x, y, z) = CImplicitly z is a function of x and y:

$$F(x, y, f(x, y)) = C$$

Differentiating w.r.t. x:

$$F(x, y, z) = C$$

$$\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial x} \frac{\partial y}{dx} + \frac{\partial F}{\partial x} \frac{\partial z}{\partial x} = 0$$

Solving for $\frac{\partial z}{\partial y}$ gives

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$$

Implicit differentiation

▶ Simplify implicit differentiation calculations!

Involving two variables

Consider F(x, y) = C like Implicitly y is a function of x:

$$F(x, f(x)) = C$$

Differentiating w.r.t. x:

$$F(x, y) = C$$

$$\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$$

Solving for $\frac{dy}{dx}$ gives

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

Involving three variables

Consider F(x, y, z) = CImplicitly z is a function of x and y:

$$F(x, y, f(x, y)) = C$$

Differentiating w.r.t. x:

$$F(x, y, z) = C$$

$$\frac{\partial F}{\partial x} \frac{\partial x}{\partial y} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial y} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial y} = 0$$

Solving for $\frac{\partial z}{\partial x}$ gives

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$$

Example. Find
$$\frac{\partial z}{\partial x}$$
 if $x^3 + y^3 + z^3 + 6xyz = 1$