Local Extrema

Functions of one variable

f(x) has a local maximum at x = a if

Local Extrema

Functions of one variable

f(x) has a **local maximum** at x = a if for all points x near a, $f(x) \le f(a)$.

Local Extrema

Functions of one variable

f(x) has a local maximum at x = a if for all points x near a, $f(x) \le f(a)$. f(x) has a local minimum at x = a if for all points x near a, $f(x) \ge f(a)$.

Local Extrema

Functions of one variable

```
f(x) has a local maximum at x = a if for all points x near a, f(x) \le f(a). f(x) has a local minimum at x = a if for all points x near a, f(x) \ge f(a). (What about global/absolute?)
```

Local Extrema

Functions of one variable

```
f(x) has a local maximum at x = a if for all points x near a, f(x) \le f(a). f(x) has a local minimum at x = a if for all points x near a, f(x) \ge f(a). (What about global/absolute?)

If f(x) has a local max or local
```

If f(x) has a local max or local min at x = a, then:

Local Extrema

Functions of one variable

f(x) has a local maximum at x = a if for all points x near a, $f(x) \le f(a)$. f(x) has a local minimum at x = a if for all points x near a, $f(x) \ge f(a)$. (What about global/absolute?)

If f(x) has a local max or local min at x = a, then:

$$f'(a) = 0$$
 or $f'(a)$ does not exist.

A point a where this is true is called a **critical point**.

Local Extrema

Functions of one variable

f(x) has a local maximum at x = a if for all points x near a, $f(x) \le f(a)$. f(x) has a local minimum at x = a if for all points x near a, $f(x) \ge f(a)$. (What about global/absolute?)

If f(x) has a local max or local

min at x = a, then:

$$f'(a) = 0$$
 or $f'(a)$ does not exist.

A point *a* where this is true is called a **critical point**.

However, If f'(a) = 0 or f'(a) DNE then this does not imply that x = a is a local max or min.

Local Extrema

Functions of one variable

f(x) has a local maximum at x = a if for all points x near a, $f(x) \le f(a)$. f(x) has a local minimum at x = a if for all points x near a, $f(x) \ge f(a)$. (What about global/absolute?)

If f(x) has a local max or local min at x = a, then:

$$f'(a) = 0$$
 or $f'(a)$ does not exist.

A point *a* where this is true is called a **critical point**.

However, If f'(a) = 0 or f'(a) DNE then this does not imply that x = a is a local max or min.

Functions of multiple variables

f(x,y) has a **local maximum** at (a,b) if for all points nearby, $f(x,y) \le f(a,b)$. f(x,y) has a **local minimum** at (a,b) if for all points nearby, $f(x,y) \ge f(a,b)$. (What about global/absolute?)

Local Extrema

Functions of one variable

f(x) has a local maximum at x = a if for all points x near a, $f(x) \le f(a)$. f(x) has a local minimum at x = a if for all points x near a, $f(x) \ge f(a)$. (What about global/absolute?)

If f(x) has a local max or local min at x = a, then:

$$f'(a) = 0$$
 or $f'(a)$ does not exist.

A point *a* where this is true is called a **critical point**.

However, If f'(a) = 0 or f'(a) DNE then this does not imply that x = a is a local max or min.

Functions of multiple variables

f(x,y) has a **local maximum** at (a,b) if for all points nearby, $f(x,y) \le f(a,b)$. f(x,y) has a **local minimum** at (a,b) if for all points nearby, $f(x,y) \ge f(a,b)$. (What about global/absolute?)

If f(x, y) has a local max or local min at (x, y) = (a, b), then:

$$f_x(a,b)=0$$
 and $f_y(a,b)=0$ (or DNE)

A point (a, b) where this is true is called a **critical point**.

Local Extrema

Functions of one variable

if for all points x near a, $f(x) \le f(a)$. f(x) has a local minimum at x = aif for all points x near a, $f(x) \ge f(a)$. (What about global/absolute?)

f(x) has a local maximum at x = a

If f(x) has a local max or local min at x = a, then:

f'(a) = 0 or f'(a) does not exist.

A point *a* where this is true is called a **critical point**.

However, If f'(a) = 0 or f'(a) DNE then this does not imply that x = a is a local max or min.

Functions of multiple variables

f(x,y) has a **local maximum** at (a,b) if for all points nearby, $f(x,y) \le f(a,b)$. f(x,y) has a **local minimum** at (a,b) if for all points nearby, $f(x,y) \ge f(a,b)$.

(What about global/absolute?)

If f(x, y) has a local max or local

min at (x, y) = (a, b), then:

 $f_x(a, b) = 0$ and $f_y(a, b) = 0$ (or DNE)

A point (a, b) where this is true is called a **critical point**.

However, If $(f_x \text{ and } f_y) = 0$ or DNE then this does not imply that (x, y) = (a, b) is a local max or min.

Determining local extrema

Important vocabulary:

- A maximum or minimum: means
- ► A maximum value or minimum value: means _____.

Determining local extrema

Important vocabulary:

- A maximum or minimum: means ______.
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

If the second partial derivatives of f(x, y) are continuous around (a, b)And if $f_x(a, b) = 0$ and $f_y(a, b) = 0$,

Determining local extrema

Important vocabulary:

- ► A maximum or minimum: means .
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

If the second partial derivatives of f(x,y) are continuous around (a,b) And if $f_x(a,b)=0$ and $f_y(a,b)=0$, then define D(a,b):

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - (f_{xy}(a,b))^2$$

Determining local extrema

Important vocabulary:

- ► A maximum or minimum: means .
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

If the second partial derivatives of f(x,y) are continuous around (a,b) And if $f_x(a,b) = 0$ and $f_y(a,b) = 0$, then define D(a,b):

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - \left(f_{xy}(a,b)\right)^2 = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

Determining local extrema

Important vocabulary:

- ► A maximum or minimum: means ______.
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

If the second partial derivatives of f(x, y) are continuous around (a, b)And if $f_x(a, b) = 0$ and $f_y(a, b) = 0$, then define D(a, b):

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - (f_{xy}(a,b))^{2} = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

- 1. If D > 0 and $f_{xx} > 0$, then (a, b) is a local minimum.
- 2. If D > 0 and $f_{xx} < 0$, then (a, b) is a local maximum.

Determining local extrema

Important vocabulary:

- A maximum or minimum: means ______.
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

If the second partial derivatives of f(x,y) are continuous around (a,b)And if $f_x(a,b) = 0$ and $f_y(a,b) = 0$, then define D(a,b):

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - \left(f_{xy}(a,b)\right)^2 = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

- 1. If D > 0 and $f_{xx} > 0$, then (a, b) is a local minimum.
- 2. If D > 0 and $f_{xx} < 0$, then (a, b) is a local maximum.
- 3. If D < 0, then (a, b) is a saddle point of f.

Determining local extrema

Important vocabulary:

- A maximum or minimum: means ______.
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

If the second partial derivatives of f(x,y) are continuous around (a,b)And if $f_x(a,b) = 0$ and $f_y(a,b) = 0$, then define D(a,b):

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - (f_{xy}(a,b))^{2} = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

- 1. If D > 0 and $f_{xx} > 0$, then (a, b) is a local minimum.
- 2. If D > 0 and $f_{xx} < 0$, then (a, b) is a local maximum.
- 3. If D < 0, then (a, b) is a saddle point of f.
- 4. If D = 0, the test is inconclusive.

Extreme Examples

Example. Find the local extrema and saddle points of

$$f(x,y) = x^4 + y^4 - 4xy + 1.$$

Extreme Examples

Example. Find the local extrema and saddle points of

$$f(x,y) = x^4 + y^4 - 4xy + 1.$$

Critical points:

▶ For each: Find D(a, b), classify.

Global Extrema

Functions of one variable

Extreme Value Theorem:

If f is continuous on a closed interval, then f attains an absolute max and absolute min somewhere on this interval.

Global Extrema

Functions of one variable

Extreme Value Theorem: If f is continuous on a closed interval, then f attains an absolute max and absolute min somewhere on this interval.

Functions of multiple variables

Extreme Value Theorem: If f is continuous on a **set** in \mathbb{R}^2 , then f attains an absolute max and absolute min

somewhere on this set.

Example. Find the global extrema of $f(x, y) = x^2 - 2xy + 2y$

example. Find the global extrema of
$$f(x, y) = x^2 - 2xy + 2y$$
 on the rectangle $0 \le x \le 3$ and $0 \le y \le 2$.

Global Extrema

Functions of one variable

Extreme Value Theorem: If f is continuous on a closed interval, then f attains an absolute max and absolute min somewhere on this interval.

Functions of multiple variables

Extreme Value Theorem:

If f is continuous on a _____ set in \mathbb{R}^2 , then f attains an absolute max and absolute min somewhere on this set.

Example. Find the global extrema of $f(x, y) = x^2 - 2xy + 2y$ on the rectangle $0 \le x \le 3$ and $0 \le y \le 2$.

► Check for crit. pts. on interior.

Global Extrema

Functions of one variable

Extreme Value Theorem:

If f is continuous on a closed interval, then f attains an absolute max and absolute min somewhere on this interval.

Functions of multiple variables

Extreme Value Theorem:

If f is continuous on a _____ set in \mathbb{R}^2 , then f attains an absolute max and absolute min somewhere on this set.

Example. Find the global extrema of $f(x, y) = x^2 - 2xy + 2y$ on the rectangle $0 \le x \le 3$ and $0 \le y \le 2$.

► Check for crit. pts. on interior.

$$\left. \begin{array}{l}
0 = f_x = 2x - 2y \\
0 = f_y = -2x + 2
\end{array} \right\} \rightarrow$$

Global Extrema

Functions of one variable

Extreme Value Theorem: If f is continuous on a closed interval, then f attains an absolute max and absolute min somewhere on this interval.

Functions of multiple variables

Extreme Value Theorem: If f is continuous on a _____ set in \mathbb{R}^2 , then f attains an

absolute max and absolute min somewhere on this set.

Example. Find the global extrema of $f(x, y) = x^2 - 2xy + 2y$ on the rectangle $0 \le x \le 3$ and $0 \le y \le 2$.

- ► Check for crit. pts. on interior. $\begin{cases} 0 = f_x = 2x 2y \\ 0 = f_v = -2x + 2 \end{cases}$ \rightarrow (1,1)
- ► Find extreme values on boundary.

$$f(x,0) =$$
 \longrightarrow min: \longrightarrow min: \longrightarrow min: \longrightarrow

$$f(x,2) = \underline{\hspace{1cm}} \rightsquigarrow \min:\underline{\hspace{1cm}}$$
 $f(0,y) = \overline{\hspace{1cm}} \rightsquigarrow \min:\underline{\hspace{1cm}}$

Optimization — §11.7

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Example. A rectangular box with no lid is made from $12\,\mathrm{m}^2$ of cardboard. What is the maximum volume of the box? Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V = \underline{}$, subject to

Example. A rectangular box with no lid is made from $12 \, \text{m}^2$ of cardboard. What is the maximum volume of the box? Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize V =______, subject to ______.

Solving for z gives $z = \frac{12-xy}{2x+2y}$.

Example. A rectangular box with no li	id is made from 12 m ² of
cardboard. What is the maximum volu	ime of the box?
Solution. Let length, width, and height	t be x , y , and z , respectively
Then the question asks us to maximize	e $V=$,
subject to	
Solving for z gives $z = \frac{12-xy}{2x+2y}$.	Inserting, $V = xy(\frac{12-xy}{2x+2y})$

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize V =subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$. Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial v} = 0$ and $\frac{\partial V}{\partial v} = 0$. $\frac{\partial V}{\partial v} = 0 \rightsquigarrow$

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize V =

subject to

Solving for z gives $z = \frac{12 - xy}{2x + 2y}$.

To find an optimum value, solve for $\frac{\partial V}{\partial v} = 0$ and $\frac{\partial V}{\partial v} = 0$.

Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

 $\frac{\partial V}{\partial x} = 0 \rightsquigarrow \frac{\partial V}{\partial y} = 0 \rightsquigarrow$

Optimization — §11.7

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively.

Then the question asks us to maximize $V = \underline{\hspace{1cm}}$, subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$.

Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial x} = 0$ and $\frac{\partial V}{\partial x} = 0$.

$$\frac{\partial V}{\partial x} = 0 \iff \frac{\partial V}{\partial y} = 0 \iff 12 - 2xy - y^2 = 0$$

Solving these simultaneous equations, $12 - 2xy = x^2 = y^2 \Rightarrow x = \pm y$.

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively.

Then the question asks us to maximize V= subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$.

Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial x} = 0$ and $\frac{\partial V}{\partial x} = 0$.

$$\frac{\partial V}{\partial x} = 0 \iff \frac{\partial V}{\partial y} = 0 \iff 12 - 2xy - y^2 = 0$$

Solving these simultaneous equations, $12-2xy=x^2=y^2 \Rightarrow x=\pm y$. Because this is real world,

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively.

Then the question asks us to maximize $V = \underline{}$ subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$.

Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial x} = 0$ and $\frac{\partial V}{\partial x} = 0$.

$$\frac{\partial V}{\partial x} = 0 \iff \frac{\partial V}{\partial y} = 0 \iff 12 - 2xy - y^2 = 0$$

Solving these simultaneous equations, $12 - 2xy = x^2 = y^2 \Rightarrow x = \pm y$. Because this is real world, , so we solve $12 - 3x^2 = 0$: _____.

Optimization — §11.7

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively.

Then the question asks us to maximize $V = \underline{\hspace{1cm}}$ subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$.

Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial x} = 0$ and $\frac{\partial V}{\partial x} = 0$.

$$\frac{\partial V}{\partial x} = 0 \iff \frac{\partial V}{\partial y} = 0 \iff 12 - 2xy - y^2 = 0$$

Solving these simultaneous equations, $12 - 2xy = x^2 = y^2 \Rightarrow x = \pm y$. Because this is real world, , so we solve $12 - 3x^2 = 0$: _ .

This problem must have an absolute maximum, which must occur at a critical point. (Why?) Therefore (x, y, z) = (2, 2, 1) is the absolute maximum, and the maximum volume is xyz = 4.

Optimization subject to constraints

The method of Lagrange multipliers is an alternative way to find maxima and minima of a function f(x, y, z) subject to a given constraint g(x, y, z) = k.

Motivating Example. Suppose you are trying to find the maximum and minimum value of f(x, y) = y - x when we only consider points on the curve $g(x, y) = x^2 + 4y^2 = 36$.

What should we do?