Local Extrema

Functions of one variable
$f(x)$ has a local maximum at $x=a$ if

Local Extrema

Functions of one variable

$f(x)$ has a local maximum at $x=a$ if for all points x near $a, f(x) \leq f(a)$.

Local Extrema

Functions of one variable

$f(x)$ has a local maximum at $x=a$ if for all points x near $a, f(x) \leq f(a)$. $f(x)$ has a local minimum at $x=a$ if for all points x near $a, f(x) \geq f(a)$.

Local Extrema

Functions of one variable

$f(x)$ has a local maximum at $x=a$ if for all points x near $a, f(x) \leq f(a)$. $f(x)$ has a local minimum at $x=a$ if for all points x near $a, f(x) \geq f(a)$. (What about global/absolute?)

Local Extrema

Functions of one variable

$f(x)$ has a local maximum at $x=a$ if for all points x near $a, f(x) \leq f(a)$. $f(x)$ has a local minimum at $x=a$ if for all points x near $a, f(x) \geq f(a)$. (What about global/absolute?)
If $f(x)$ has a local max or local \min at $x=a$, then:

Local Extrema

Functions of one variable

$f(x)$ has a local maximum at $x=a$ if for all points x near $a, f(x) \leq f(a)$. $f(x)$ has a local minimum at $x=a$ if for all points x near $a, f(x) \geq f(a)$. (What about global/absolute?)
If $f(x)$ has a local max or local \min at $x=a$, then:
$f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
A point a where this is true is called a critical point.

Local Extrema

Functions of one variable

$f(x)$ has a local maximum at $x=a$ if for all points x near $a, f(x) \leq f(a)$. $f(x)$ has a local minimum at $x=a$ if for all points x near $a, f(x) \geq f(a)$. (What about global/absolute?)
If $f(x)$ has a local max or local \min at $x=a$, then:
$f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
A point a where this is true is called a critical point.

However, If $f^{\prime}(a)=0$ or $f^{\prime}(a)$ DNE then this does not imply that $x=a$ is a local max or min.

Local Extrema

Functions of one variable

$f(x)$ has a local maximum at $x=a$ if for all points x near $a, f(x) \leq f(a)$. $f(x)$ has a local minimum at $x=a$ if for all points x near $a, f(x) \geq f(a)$. (What about global/absolute?)
If $f(x)$ has a local max or local \min at $x=a$, then:
$f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
A point a where this is true is called a critical point.

However, If $f^{\prime}(a)=0$ or $f^{\prime}(a)$ DNE then this does not imply that $x=a$ is a local max or min.

Functions of multiple variables

$f(x, y)$ has a local maximum at (a, b) if for all points nearby, $f(x, y) \leq f(a, b)$. $f(x, y)$ has a local minimum at (a, b) if for all points nearby, $f(x, y) \geq f(a, b)$.
(What about global/absolute?)

Local Extrema

Functions of one variable

$f(x)$ has a local maximum at $x=a$ if for all points x near $a, f(x) \leq f(a)$. $f(x)$ has a local minimum at $x=a$ if for all points x near $a, f(x) \geq f(a)$. (What about global/absolute?)
If $f(x)$ has a local max or local \min at $x=a$, then:
$f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
A point a where this is true is called a critical point.

However, If $f^{\prime}(a)=0$ or $f^{\prime}(a)$ DNE then this does not imply that $x=a$ is a local max or min.

Functions of multiple variables

$f(x, y)$ has a local maximum at (a, b) if for all points nearby, $f(x, y) \leq f(a, b)$. $f(x, y)$ has a local minimum at (a, b) if for all points nearby, $f(x, y) \geq f(a, b)$.
(What about global/absolute?)
If $f(x, y)$ has a local max or local \min at $(x, y)=(a, b)$, then:
$f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ (or DNE)
A point (a, b) where this is true is called a critical point.

Local Extrema

Functions of one variable

$f(x)$ has a local maximum at $x=a$ if for all points x near $a, f(x) \leq f(a)$. $f(x)$ has a local minimum at $x=a$ if for all points x near $a, f(x) \geq f(a)$. (What about global/absolute?)
If $f(x)$ has a local max or local \min at $x=a$, then:
$f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
A point a where this is true is called a critical point.

However, If $f^{\prime}(a)=0$ or $f^{\prime}(a)$ DNE then this does not imply that $x=a$ is a local max or min.

Functions of multiple variables

$f(x, y)$ has a local maximum at (a, b) if for all points nearby, $f(x, y) \leq f(a, b)$. $f(x, y)$ has a local minimum at (a, b) if for all points nearby, $f(x, y) \geq f(a, b)$.
(What about global/absolute?)
If $f(x, y)$ has a local max or local \min at $(x, y)=(a, b)$, then:
$f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ (or DNE)
A point (a, b) where this is true is called a critical point.

However, If (f_{x} and f_{y}) $=0$ or DNE then this does not imply that $(x, y)=(a, b)$ is a local max or min.

Determining local extrema

Important vocabulary:

- A maximum or minimum: means
- A maximum value or minimum value: means \qquad .

Determining local extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using:
The second derivative test.
If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$,

Determining local extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using:
The second derivative test.
If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then define $D(a, b)$:

$$
D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}
$$

Determining local extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using:
The second derivative test.
If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then define $D(a, b)$:

$$
D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

Determining local extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using:

The second derivative test.

If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then define $D(a, b)$:

$$
D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

1. If $D>0$ and $f_{x x}>0$, then (a, b) is a local minimum.
2. If $D>0$ and $f_{x x}<0$, then (a, b) is a local maximum.

Determining local extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using:
The second derivative test.
If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then define $D(a, b)$:

$$
D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

1. If $D>0$ and $f_{x x}>0$, then (a, b) is a local minimum.
2. If $D>0$ and $f_{x x}<0$, then (a, b) is a local maximum.
3. If $D<0$, then (a, b) is a saddle point of f.

Determining local extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using:
The second derivative test.
If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then define $D(a, b)$:

$$
D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

1. If $D>0$ and $f_{x x}>0$, then (a, b) is a local minimum.
2. If $D>0$ and $f_{x x}<0$, then (a, b) is a local maximum.
3. If $D<0$,
4. If $D=0$,
then (a, b) is a saddle point of f.
the test is inconclusive.

Extreme Examples

Example. Find the local extrema and saddle points of

$$
f(x, y)=x^{4}+y^{4}-4 x y+1 .
$$

Extreme Examples

Example. Find the local extrema and saddle points of

$$
f(x, y)=x^{4}+y^{4}-4 x y+1
$$

- Critical points:
- For each: Find $D(a, b)$, classify.

Global Extrema

Functions of one variable

Extreme Value Theorem:
If f is continuous on a closed interval, then f attains an absolute max and absolute min somewhere on this interval.

Global Extrema

Functions of one variable
Extreme Value Theorem:
If f is continuous on a closed interval, then f attains an absolute max and absolute min somewhere on this interval.

Functions of multiple variables

Extreme Value Theorem:

If f is continuous on a set in \mathbb{R}^{2}, then f attains an absolute max and absolute min somewhere on this set.

Example. Find the global extrema of $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $0 \leq x \leq 3$ and $0 \leq y \leq 2$.

Global Extrema

Functions of one variable
Extreme Value Theorem:
If f is continuous on a closed interval, then f attains an absolute max and absolute min somewhere on this interval.

Functions of multiple variables

Extreme Value Theorem:

If f is continuous on a \qquad set in \mathbb{R}^{2}, then f attains an absolute max and absolute min somewhere on this set.

Example. Find the global extrema of $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $0 \leq x \leq 3$ and $0 \leq y \leq 2$.

- Check for crit. pts. on interior.

Global Extrema

Functions of one variable
Extreme Value Theorem:
If f is continuous on a closed interval, then f attains an absolute max and absolute min somewhere on this interval.

Functions of multiple variables

Extreme Value Theorem:

If f is continuous on a \qquad set in \mathbb{R}^{2}, then f attains an absolute max and absolute min somewhere on this set.

Example. Find the global extrema of $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $0 \leq x \leq 3$ and $0 \leq y \leq 2$.

- Check for crit. pts. on interior.

$$
\left.\begin{array}{l}
0=f_{x}=2 x-2 y \\
0=f_{y}=-2 x+2
\end{array}\right\} \rightarrow
$$

Global Extrema

Functions of one variable

Extreme Value Theorem:

If f is continuous on a closed interval, then f attains an absolute max and absolute min somewhere on this interval.

Functions of multiple variables

Extreme Value Theorem:

If f is continuous on a \qquad set in \mathbb{R}^{2}, then f attains an absolute max and absolute min somewhere on this set.

Example. Find the global extrema of $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $0 \leq x \leq 3$ and $0 \leq y \leq 2$.

- Find extreme values on boundary.

$$
\begin{aligned}
& f(x, 0)=\ldots \rightsquigarrow \mathrm{min}: \\
& f(3, y)= \\
& \rightsquigarrow \min : \\
& \text { max: } \\
& f(x, 2)= \\
& \rightsquigarrow \min : \\
& \text { max: } \\
& f(0, y)=\ldots \rightsquigarrow \min : \\
& \text { max: } \\
& \text { max: }
\end{aligned}
$$

- Determine largest \& smallest.

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ \qquad subject to \qquad .

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ \qquad subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$.

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ \qquad subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ \qquad subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$ $\frac{\partial V}{\partial y}=0 \rightsquigarrow$

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$ $\frac{\partial V}{\partial y}=0 \rightsquigarrow 12-2 x y-y^{2}=0$
Solving these simultaneous equations, $12-2 x y=x^{2}=y^{2} \Rightarrow x= \pm y$.

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$ $\frac{\partial V}{\partial y}=0 \rightsquigarrow 12-2 x y-y^{2}=0$
Solving these simultaneous equations, $12-2 x y=x^{2}=y^{2} \Rightarrow x= \pm y$. Because this is real world, \qquad

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$ $\frac{\partial V}{\partial y}=0 \rightsquigarrow 12-2 x y-y^{2}=0$
Solving these simultaneous equations, $12-2 x y=x^{2}=y^{2} \Rightarrow x= \pm y$. Because this is real world, \qquad , so we solve $12-3 x^{2}=0$: \qquad .

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$ $\frac{\partial V}{\partial y}=0 \rightsquigarrow 12-2 x y-y^{2}=0$
Solving these simultaneous equations, $12-2 x y=x^{2}=y^{2} \Rightarrow x= \pm y$. Because this is real world, \qquad , so we solve $12-3 x^{2}=0$: \qquad .
This problem must have an absolute maximum, which must occur at a critical point. (Why?) Therefore $(x, y, z)=(2,2,1)$ is the absolute maximum, and the maximum volume is $x y z=4$.

Optimization subject to constraints

The method of Lagrange multipliers is an alternative way to find maxima and minima of a function $f(x, y, z)$ subject to a given constraint $g(x, y, z)=k$.

Motivating Example. Suppose you are trying to find the maximum and minimum value of $f(x, y)=y-x$ when we only consider points on the curve $g(x, y)=x^{2}+4 y^{2}=36$.

What should we do?

