To find the maxima and minima of f(x, y, z) subject to the constraint g(x, y, z) = k (as long as $\nabla g \neq 0$ on this constraint)

$$\nabla f(x, y, z) = \lambda \cdot \nabla g(x, y, z)$$
 and $g(x, y, z) = k$

To find the maxima and minima of f(x, y, z) subject to the constraint g(x, y, z) = k (as long as $\nabla g \neq 0$ on this constraint)

▶ Solve for all tuples (x, y, z, λ) such that

$$\nabla f(x, y, z) = \lambda \cdot \nabla g(x, y, z)$$
 and $g(x, y, z) = k$

► (Solve this system of four equations and four unknowns.)

To find the maxima and minima of f(x, y, z) subject to the constraint g(x, y, z) = k (as long as $\nabla g \neq 0$ on this constraint)

$$\nabla f(x, y, z) = \lambda \cdot \nabla g(x, y, z)$$
 and $g(x, y, z) = k$

- (Solve this system of four equations and four unknowns.)
- ▶ In words: the gradient of f is parallel to the gradient of g.

To find the maxima and minima of f(x, y, z) subject to the constraint g(x, y, z) = k (as long as $\nabla g \neq 0$ on this constraint)

$$\nabla f(x, y, z) = \lambda \cdot \nabla g(x, y, z)$$
 and $g(x, y, z) = k$

- ▶ (Solve this system of four equations and four unknowns.)
- ▶ In words: the gradient of f is parallel to the gradient of g.
- ▶ Evaluate f at all points (x, y, z) you find.
 - ▶ The largest f value corresponds to a maximum
 - \triangleright The smallest f value corresponds to a minimum.

To find the maxima and minima of f(x, y, z) subject to the constraint g(x, y, z) = k (as long as $\nabla g \neq 0$ on this constraint)

$$\nabla f(x, y, z) = \lambda \cdot \nabla g(x, y, z)$$
 and $g(x, y, z) = k$

- ▶ (Solve this system of four equations and four unknowns.)
- ▶ In words: the gradient of f is parallel to the gradient of g.
- ▶ Evaluate f at all points (x, y, z) you find.
 - ▶ The largest f value corresponds to a maximum
 - ▶ The smallest f value corresponds to a minimum.
- \triangleright λ is called a Lagrange multiplier.

To find the maxima and minima of f(x, y, z) subject to the constraint g(x, y, z) = k (as long as $\nabla g \neq 0$ on this constraint)

$$\nabla f(x, y, z) = \lambda \cdot \nabla g(x, y, z)$$
 and $g(x, y, z) = k$

- ▶ (Solve this system of four equations and four unknowns.)
- ▶ In words: the gradient of f is parallel to the gradient of g.
- ▶ Evaluate f at all points (x, y, z) you find.
 - ▶ The largest f value corresponds to a maximum
 - ▶ The smallest *f* value corresponds to a minimum.
- \triangleright λ is called a Lagrange multiplier.
- ▶ Careful about when this applies. $(\nabla g \neq 0)$

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Example. A rectangular box with no lid is made from $12 \,\mathrm{m}^2$ of cardboard. What is the maximum volume of the box?

Goal: Maximize V = xyz subject to g(x, y, z) = 2xz + 2yz + xy = 12.

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Goal: Maximize V = xyz subject to g(x, y, z) = 2xz + 2yz + xy = 12.

By the method of Lagrange multipliers, we need to solve:

$$\langle yz, xz, xy \rangle = \frac{\lambda}{\lambda} \langle 2z+y, 2z+x, 2x+2y \rangle$$
 and $2xz+2yz+xy=12$

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Goal: Maximize V = xyz subject to g(x, y, z) = 2xz + 2yz + xy = 12.

By the method of Lagrange multipliers, we need to solve:

$$\langle yz, xz, xy \rangle = \frac{\lambda}{2} \langle 2z+y, 2z+x, 2x+2y \rangle$$
 and $2xz+2yz+xy=12$
Solve:
$$\begin{cases} yz = \lambda(2z+y) \\ xz = \lambda(2z+x) \\ xy = \lambda(2x+2y) \\ 2xz + 2yz + xy = 12 \end{cases}$$

► Four equations, four unknowns, so possibly solvable.

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Goal: Maximize V = xyz subject to g(x, y, z) = 2xz + 2yz + xy = 12.

By the method of Lagrange multipliers, we need to solve:

$$\langle yz, xz, xy \rangle = \lambda \langle 2z+y, 2z+x, 2x+2y \rangle \quad \text{and} \quad 2xz+2yz+xy = 12$$
Solve:
$$\begin{cases} yz = \lambda (2z+y) \\ xz = \lambda (2z+x) \\ xy = \lambda (2x+2y) \\ 2xz + 2yz + xy = 12 \end{cases}$$

- ► Four equations, four unknowns, so possibly solvable.
- ▶ Eliminate λ using first two equations. (& that $\lambda \neq 0$ by Eq. (4).)

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Goal: Maximize V = xyz subject to g(x, y, z) = 2xz + 2yz + xy = 12.

By the method of Lagrange multipliers, we need to solve:

$$\langle yz, xz, xy \rangle = \lambda \langle 2z+y, 2z+x, 2x+2y \rangle \quad \text{and} \quad 2xz+2yz+xy = 12$$
Solve:
$$\begin{cases} yz = \lambda (2z+y) \\ xz = \lambda (2z+x) \\ xy = \lambda (2x+2y) \\ 2xz + 2yz + xy = 12 \end{cases}$$

- ► Four equations, four unknowns, so possibly solvable.
- ▶ Eliminate λ using first two equations. (& that $\lambda \neq 0$ by Eq. (4).)
- ▶ Multiply Eq. (2) by y, Eq. (3) by z, simplify.

Why does this work?

For functions of two variables:

The tangent line to the curve g(x,y)=k and the level curve $f(x,y)=\max$ are parallel, so their normals are too. We conclude that $\nabla f(x,y)=\lambda \nabla g(x,y)$.

Why does this work?

For functions of two variables:

The tangent line to the curve g(x,y)=k and the level curve $f(x,y)=\max$ are parallel, so their normals are too. We conclude that $\nabla f(x,y)=\lambda\nabla g(x,y)$.

For functions of three variables:

The tangent plane to the surface g(x,y,z)=k and the level surface $f(x,y,z)=\max$ are parallel, so their normals are too. We conclude that $\nabla f(x,y,z)=\lambda \nabla g(x,y,z)$.

Example. Find the extreme values of $f(x, y) = x^2 + 2y^2$ in the region $x^2 + y^2 \le 1$.

Game plan:

Example. Find the extreme values of $f(x, y) = x^2 + 2y^2$ in the region $x^2 + y^2 \le 1$.

Game plan:

▶ Check for critical points on the interior of the region.

▶ Use Lagrange multipliers to find maxs, mins on boundary.

Example. Find the extreme values of $f(x, y) = x^2 + 2y^2$ in the region $x^2 + y^2 \le 1$.

Game plan:

▶ Check for critical points on the interior of the region.

For critical points, solve $f_x = 0$, $f_y = 0$:

What is f(x, y) there?

Use Lagrange multipliers to find maxs, mins on boundary.

Example. Find the extreme values of $f(x, y) = x^2 + 2y^2$ in the region $x^2 + y^2 \le 1$.

Game plan:

▶ Check for critical points on the interior of the region.

For critical points, solve $f_x = 0$, $f_y = 0$:

What is f(x, y) there?

Use Lagrange multipliers to find maxs, mins on boundary.

Find x, y, λ satisfying $\nabla f = \lambda \nabla g$ and $x^2 + y^2 = 1$:

What is f(x, y) there?

Example. Find the extreme values of $f(x, y) = x^2 + 2y^2$ in the region $x^2 + y^2 \le 1$.

Game plan:

▶ Check for critical points on the interior of the region.

For critical points, solve $f_x = 0$, $f_y = 0$:

What is f(x, y) there?

▶ Use Lagrange multipliers to find maxs, mins on boundary.

Find x, y, λ satisfying $\nabla f = \lambda \nabla g$ and $x^2 + y^2 = 1$:

What is f(x, y) there?

Solution?