Course Notes

Multivariable Calculus, Fall 2014

Queens College, Math 201

Prof. Christopher Hanusa

http://qcpages.qc.edu/~chanusa/courses/201/14f/

Class Introductions

Arrange yourselves into groups of four or five people, With people you don't know.

- ▶ Introduce yourself. (your name, where you're from, your major)
- What brought you to this class?
- ► Fill out the blank side of your notecard:
 - ▶ Write your name. (Stylize if you wish.)
 - Write a few words related to your name.
 - Draw something in the remaining space.
- ▶ Discuss with your groupmates why you wrote what you wrote.
- Exchange contact information. (phone / email / other)

Class Introductions

Arrange yourselves into groups of four or five people, With people you don't know.

- ▶ Introduce yourself. (your name, where you're from, your major)
- ▶ What brought you to this class?
- ► Fill out **the blank side of** your notecard:
 - Write your name. (Stylize if you wish.)
 - ▶ Write a few words related to your name.
 - Draw something in the remaining space.
- ▶ Discuss with your groupmates why you wrote what you wrote.
- Exchange contact information. (phone / email / other)
- ▶ **Discuss!** What is *Calculus*?
 - ▶ Brainstorm! How do you convey *Calculus* to friends?
 - Organize into themes.

Class Introductions

Arrange yourselves into groups of four or five people, With people you don't know.

- ▶ Introduce yourself. (your name, where you're from, your major)
- ▶ What brought you to this class?
- ► Fill out the blank side of your notecard:
 - ▶ Write your name. (Stylize if you wish.)
 - Write a few words related to your name.
 - Draw something in the remaining space.
- Discuss with your groupmates why you wrote what you wrote.
- Exchange contact information. (phone / email / other)
- ▶ **Discuss!** What is *Calculus*?
 - ▶ Brainstorm! How do you convey *Calculus* to friends?
 - Organize into themes.
- ▶ How do these ideas translate to *multivariable* calculus?

To do well in this class:

► Form good study groups.

- Discuss homework and classwork. Study for exams.
- ▶ Bounce around ideas, topics, questions.
- ► You will depend on this group.

To do well in this class:

- Form good study groups.
 - ▶ Discuss homework and classwork. Study for exams.
 - ▶ Bounce around ideas, topics, questions.
 - ► You will depend on this group.
- Put in the time.
 - ► Four credits = (at least) twelve hours / week out of class.
 - ▶ Homework stresses key concepts from class; learning takes time.

To do well in this class:

Form good study groups.

- ▶ Discuss homework and classwork. Study for exams.
- ▶ Bounce around ideas, topics, questions.
- You will depend on this group.

Put in the time.

- ► Four credits = (at least) twelve hours / week out of class.
- ▶ Homework stresses key concepts from class; learning takes time.

► Come to class prepared.

- ► Review previous day's sections, notes.
- ▶ Do the homework & prepare to present.
- Preview the new day's sections. Download notes!

To do well in this class:

Form good study groups.

- ▶ Discuss homework and classwork. Study for exams.
- ▶ Bounce around ideas, topics, questions.
- You will depend on this group.

Put in the time.

- ► Four credits = (at least) twelve hours / week out of class.
- ▶ Homework stresses key concepts from class; learning takes time.

Come to class prepared.

- ► Review previous day's sections, notes.
- ▶ Do the homework & prepare to present.
- Preview the new day's sections. Download notes!

► Stay in contact.

- ▶ If you are confused, ask questions (in class and out).
- Don't fall behind in coursework or homework.
- ▶ I need to understand your concerns.

To do well in this class:

► Form good study groups.

- ▶ Discuss homework and classwork. Study for exams.
- ▶ Bounce around ideas, topics, questions.
- You will depend on this group.

Put in the time.

- ► Four credits = (at least) twelve hours / week out of class.
- ▶ Homework stresses key concepts from class; learning takes time.

Come to class prepared.

- ► Review previous day's sections, notes.
- ▶ Do the homework & prepare to present.
- Preview the new day's sections. Download notes!

► Stay in contact.

- ▶ If you are confused, ask questions (in class and out).
- ▶ Don't fall behind in coursework or homework.
- ▶ I need to understand your concerns.

All homeworks posted online; first one (many parts) due Tuesday.

Homework policy:

- ▶ **Daily:** Written / Presentation Homework.
 - A list of questions from the textbook to practice.
 - ▶ If a question is hard, you should practice **more** like it.

Homework policy:

- ▶ **Daily:** Written / Presentation Homework.
 - ▶ A list of questions from the textbook to practice.
 - ▶ If a question is hard, you should practice **more** like it.
 - ▶ Presentations at beginning of the next class.
 - ▶ Write up solution in bullet-point format.
 - ▶ Present the solution to the class & answer questions.

Homework policy:

- ▶ **Daily:** Written / Presentation Homework.
 - A list of questions from the textbook to practice.
 - ▶ If a question is hard, you should practice **more** like it.
 - Presentations at beginning of the next class.
 - ▶ Write up solution in bullet-point format.
 - ▶ Present the solution to the class & answer questions.
 - One of only two bonus point opportunities in this class.
 - Starts Tuesday September 2! (+ Blackboard quiz)

Homework policy:

- **▶ Daily:** Written / Presentation Homework.
 - ▶ A list of questions from the textbook to practice.
 - ▶ If a question is hard, you should practice **more** like it.
 - ▶ Presentations at beginning of the next class.
 - ▶ Write up solution in bullet-point format.
 - ▶ Present the solution to the class & answer questions.
 - One of only two bonus point opportunities in this class.
 - Starts Tuesday September 2! (+ Blackboard quiz)
- ► **Weekly:** Online Homework.
 - Using online homework called Webwork.
 - Link on webpage to: http://192.195.176.176/webwork2/QC201/
 - ▶ Your username: QC email username.
 - ▶ Initial password: CUNYFirst ID #

Homework policy:

- **▶ Daily:** Written / Presentation Homework.
 - ▶ A list of questions from the textbook to practice.
 - ▶ If a question is hard, you should practice **more** like it.
 - Presentations at beginning of the next class.
 - ▶ Write up solution in bullet-point format.
 - \blacktriangleright Present the solution to the class & answer questions.
 - ▶ One of only two bonus point opportunities in this class.
 - Starts Tuesday September 2! (+ Blackboard quiz)
- ▶ **Weekly:** Online Homework.
 - Using online homework called Webwork.
 - Link on webpage to: http://192.195.176.176/webwork2/QC201/
 - ► Your username: QC email username.
 - ▶ Initial password: CUNYFirst ID #
 - ▶ First assignment due Thursday September 4. (13 Qs)
 - * Get started early! *

Homework policy:

There are two types of homework in this class:


- **▶ Daily:** Written / Presentation Homework.
 - ▶ A list of questions from the textbook to practice.
 - ▶ If a question is hard, you should practice **more** like it.
 - ▶ Presentations at beginning of the next class.
 - ▶ Write up solution in bullet-point format.
 - ▶ Present the solution to the class & answer questions.
 - One of only two bonus point opportunities in this class.
 - ► Starts Tuesday September 2! (+ Blackboard quiz)
- ► **Weekly:** Online Homework.
 - Using online homework called Webwork.
 - Link on webpage to: http://192.195.176.176/webwork2/QC201/
 - Your username: QC email username.
 - ► Initial password: CUNYFirst ID #
 - ► First assignment due Thursday September 4. (13 Qs)
 - * Get started early! *

http://qcpages.qc.edu/~chanusa/courses/201/14f/forum.html

Parametric Curves — §9.1

Parametric Curves

Imagine a particle traveling along this curve.

Parametric Curves — §9.1

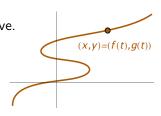
Parametric Curves

Imagine a particle traveling along this curve.

Is the curve a function?

Imagine a particle traveling along this curve.

Is the curve a function? (y = f(x)?)



Imagine a particle traveling along this curve.

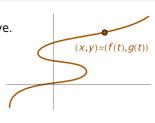
Is the curve a function? (y = f(x)?)

As an alternative, we can write the x-coordinate and the y-coordinate of the particle as a function of "time".

(Write
$$x = f(t)$$
 and $y = g(t)$.)

Parametric Curves — §9.1

Parametric Curves


Imagine a particle traveling along this curve.

Is the curve a function? (y = f(x)?)

As an alternative, we can write the x-coordinate and the y-coordinate of the particle as a function of "time".

(Write
$$x = f(t)$$
 and $y = g(t)$.)

This pair of functions is called the **parametric equations** of the curve.

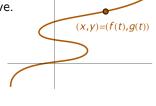
Imagine a particle traveling along this curve.

Is the curve a function? (y = f(x)?)

As an alternative, we can write the x-coordinate and the y-coordinate of the particle as a function of "time".

(x,y)=(f(t),g(t))

(Write
$$x = f(t)$$
 and $y = g(t)$.)


This pair of functions is called the **parametric equations** of the curve.

And the variable *t* is called a **parameter**.

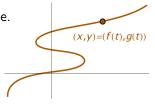
Imagine a particle traveling along this curve.

Is the curve a function? (y = f(x)?)

As an alternative, we can write the x-coordinate and the y-coordinate of the particle as a function of "time".

(Write
$$x = f(t)$$
 and $y = g(t)$.)

This pair of functions is called the parametric equations of the curve.


And the variable t is called a parameter.

(Mathematica)

Imagine a particle traveling along this curve.

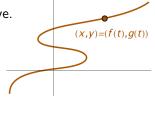
Is the curve a function? (y = f(x)?)

As an alternative, we can write the x-coordinate and the y-coordinate of the particle as a function of "time".

(Write
$$x = f(t)$$
 and $y = g(t)$.)

This pair of functions is called the **parametric equations** of the curve.

And the variable t is called a parameter.


(Mathematica)

Note: The domain of t is often $(-\infty, \infty)$ or an interval $a \le t \le b$.

Imagine a particle traveling along this curve.

Is the curve a function? (y = f(x)?)

As an alternative, we can write the x-coordinate and the y-coordinate of the particle as a function of "time".

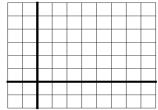
(Write
$$x = f(t)$$
 and $y = g(t)$.)

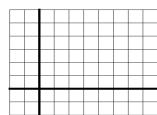
This pair of functions is called the **parametric equations** of the curve.

And the variable *t* is called a **parameter**.

(Mathematica)

Note: The domain of t is often $(-\infty, \infty)$ or an interval $a \le t \le b$.

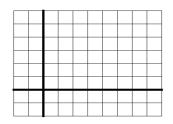

Goal 1: Understand parametric curves. (Today)


Goal 2: Do calculus using parametric curves. (Next time)

What is the shape of a curve given by parametric equations?

- By hand
- Use a calculator or computer

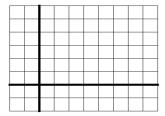
Example. Plot the curve defined by $x(t) = t^2 - 2t$ and y(t) = t + 1.


Parametric Curves — §9.1

Sketching Parametric Curves

What is the shape of a curve given by parametric equations?

- ▶ By hand ← How do you plot y = f(x)?
- ▶ Use a calculator or computer


Example. Plot the curve defined by $x(t) = t^2 - 2t$ and y(t) = t + 1.

What is the shape of a curve given by parametric equations?

- ▶ By hand \leftarrow How do you plot y = f(x)?
- Use a calculator or computer

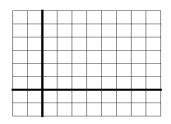
Example. Plot the curve defined by $x(t) = t^2 - 2t$ and y(t) = t + 1. $\begin{array}{c|ccccc} t & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline x(t) & & & & \end{array}$

The shape of the curve is _____

What is the shape of a curve given by parametric equations?

- ▶ By hand \longleftarrow How do you plot y = f(x)?
- Use a calculator or computer

Example. Plot the curve defined by $x(t) = t^2 - 2t$ and y(t) = t + 1. $\begin{array}{c|ccccc} t & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline x(t) & & & & \end{array}$


The shape of the curve is _____

Should we have known this?

What is the shape of a curve given by parametric equations?

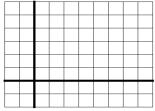
- ▶ By hand \longleftarrow How do you plot y = f(x)?
- ▶ Use a calculator or computer

Example. Plot the curve defined by $x(t) = t^2 - 2t$ and y(t) = t + 1. $\begin{array}{c|ccccc} t & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline x(t) & & & & \end{array}$

The shape of the curve is

Should we have known this?

Key concept: Eliminate the parameter t to combine x = f(t) and f(t) into a "normal" function f(t) or f(t) or f(t)


$$y = g(t)$$
 into a "normal" function $y = F(x)$ or $x = F(y)$.

What is the shape of a curve given by parametric equations?

- ▶ By hand ← How do you plot y = f(x)?
- Use a calculator or computer

Example. Plot the curve defined by $x(t) = t^2 - 2t$ and y(t) = t + 1.

t	-1	0	1	2	3	4
x(t)						
y(t)						

The shape of the curve is

Should we have known this?

Key concept: Eliminate the parameter t to combine x = f(t) and y = g(t) into a "normal" function y = F(x) or x = F(y).

Solve for t in second equation: t = y - 1 and plug in:

$$x = (y-1)^2 - 2(y-1) = y^2 - 4y + 3$$
, a "sideways parabola".

Example. Plot the curve defined by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

```
Example. Plot the curve defined by x = \cos t, y = \sin t, 0 \le t \le 2\pi.
```

Plot points or solve directly.

$$y = \sin(\cos^{-1} x)$$

Example. Plot the curve defined by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

Plot points or solve directly.

$$y = \sin(\cos^{-1} x)$$
$$y = \sqrt{1 - x^2}$$

Example. Plot the curve defined by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

Plot points or solve directly.

$$y = \sin(\cos^{-1} x)$$
$$y = \sqrt{1 - x^2}$$
$$y^2 = 1 - x^2$$

 $x^2 + y^2 = 1$

Example. Plot the curve defined by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

Plot points or solve directly.

$$y = \sin(\cos^{-1} x)$$

$$y = \sqrt{1 - x^2}$$

$$y^2 = 1 - x^2$$

$$x^2 + y^2 = 1$$

A circle! But you knew that. $\cos^2 t + \sin^2 t = 1$

Example. Plot the curve defined by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

Plot points or solve directly.

$$y = \sin(\cos^{-1} x)$$

 $y = \sqrt{1 - x^2}$
 $y^2 = 1 - x^2$
 $x^2 + y^2 = 1$

A circle! But you knew that. $\cos^2 t + \sin^2 t = 1$

Starts at t = 0: (1,0) and goes around counterclockwise.

Parametric Curves — §9.1

Around and Around

Example. Plot the curve defined by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

Plot points or solve directly.

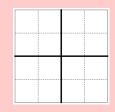
$$y = \sin(\cos^{-1} x) y = \sqrt{1 - x^2} y^2 = 1 - x^2 x^2 + y^2 = 1$$

A circle! But you knew that. $\cos^2 t + \sin^2 t = 1$

Starts at t=0: (1,0) and goes around counterclockwise.

Example. Is this the same as $x = \sin 2t$, $y = \sin 2t$, $0 \le t \le 2\pi$?

Example. Plot the curve defined by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.


Plot points or solve directly.

$$y = \sin(\cos^{-1} x) y = \sqrt{1 - x^2} y^2 = 1 - x^2 x^2 + y^2 = 1$$

A circle! But you knew that. $\cos^2 t + \sin^2 t = 1$

Starts at t=0: (1,0) and goes around counterclockwise.

Example. Is this the same as $x = \sin 2t$, $y = \sin 2t$, $0 \le t \le 2\pi$?

Question: What is $x^2 + y^2$?

Parametric Curves — §9.1

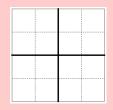
Around and Around

Example. Plot the curve defined by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

Plot points or solve directly.

$$y = \sin(\cos^{-1} x)$$

$$y = \sqrt{1 - x^2}$$


$$y^2 = 1 - x^2$$

$$x^2 + y^2 = 1$$

A circle! But you knew that. $\cos^2 t + \sin^2 t = 1$

Starts at t = 0: (1,0) and goes around counterclockwise.

Example. Is this the same as $x = \sin 2t$, $y = \sin 2t$, $0 \le t \le 2\pi$?

Question: What is $x^2 + y^2$?

The figures traced out (the curves) are the same but the functions **are not** the same.

Example. Plot the curve defined by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

Plot points or solve directly.

$$y = \sin(\cos^{-1} x)$$

$$y = \sqrt{1 - x^2}$$

$$y^2 = 1 - x^2$$

$$x^2 + y^2 = 1$$

A circle! But you knew that. $\cos^2 t + \sin^2 t = 1$

Starts at t = 0: (1,0) and goes around counterclockwise.

Example. Is this the same as $x = \sin 2t$, $y = \sin 2t$, $0 \le t \le 2\pi$?

Question: What is $x^2 + y^2$?

The figures traced out (the curves) are the same but the functions **are not** the same.

You need to know your trig functions and values at certain points!!!!

Circumnavigation

If we want to draw a circle at some other place

$$(x-h)^2 + (y-k)^2 = r^2,$$

set $x - h = r \cos t$ and $y - k = r \sin t$.

Circumnavigation

If we want to draw a circle at some other place

$$(x-h)^2 + (y-k)^2 = r^2,$$

set $x - h = r \cos t$ and $y - k = r \sin t$.

In other words, use the parametric equations

$$x(t) = r \cos t + h$$
 and $y(t) = r \sin t + k$.

Circumnavigation

If we want to draw a circle at some other place

$$(x-h)^2 + (y-k)^2 = r^2$$
,

set

$$x - h = r \cos t$$
 and $y - k = r \sin t$.

In other words, use the parametric equations

$$x(t) = r \cos t + h$$
 and $y(t) = r \sin t + k$.

Try it out! Get out your graphing calculator $TI-(\leq 86)$.

Switch to Parametric mode: MODE $\downarrow \downarrow \downarrow \downarrow$ PAR (Enter).

Set the domain of T to be from 0 to 2π .

WINDOW: Tmin = 0, Tmax = 2π , Tstep = $\pi/10$.

Enter the equations $X_1 = 3 \cos(T) + 2$ and $Y_1 = 3 \sin(T) + 4$.

This plots a circle of radius 3 centered at (2,4).

Computers to the rescue

Calculators and computers can graph much more complicated curves.

$$x_1(t) = t + 2\sin(2t)$$
 and $y_1(t) = t + 2\cos(5t)$
 $x_2(t) = 1.5\cos t - \cos 30t$ and $y_2(t) = 1.5\sin t - \sin 30t$
 $x_3(t) = \sin(t + \cos 100t)$ and $y_3(t) = \cos(t + \sin 100t)$

Computers to the rescue

Calculators and computers can graph much more complicated curves.

$$x_1(t) = t + 2\sin(2t)$$
 and $y_1(t) = t + 2\cos(5t)$
 $x_2(t) = 1.5\cos t - \cos 30t$ and $y_2(t) = 1.5\sin t - \sin 30t$
 $x_3(t) = \sin(t + \cos 100t)$ and $y_3(t) = \cos(t + \sin 100t)$

Tools:

- Wolfram Alpha http://www.wolframalpha.com/
- More powerful is Wolfram Mathematica. Get license from MyQC: myqc.qc.cuny.edu/Academics/mathematics/Pages3/access.aspx
- ▶ Online plotter: desmos.com Put (f(t), g(t)) in parentheses. https://www.desmos.com/calculator/ndgy5rppqh

Computers to the rescue

Calculators and computers can graph much more complicated curves.

```
x_1(t) = t + 2\sin(2t) and y_1(t) = t + 2\cos(5t)

x_2(t) = 1.5\cos t - \cos 30t and y_2(t) = 1.5\sin t - \sin 30t

x_3(t) = \sin(t + \cos 100t) and y_3(t) = \cos(t + \sin 100t)
```

Tools:

- ▶ Wolfram Alpha http://www.wolframalpha.com/
- More powerful is Wolfram Mathematica. Get license from MyQC: myqc.qc.cuny.edu/Academics/mathematics/Pages3/access.aspx
- Online plotter: desmos.com Put (f(t), g(t)) in parentheses. https://www.desmos.com/calculator/ndgy5rppqh

Next time: What is the shape of a parametric curve? What is the length of a parametric curve? What about polar coordinates?

Before then: Work on homework to present in class Wednesday. Email me contact info, do syllabus quiz. Play with parametric eqns.