2D Coordinates

Variables: x (indep), y (dep)

Axes: x-axis $\perp y$ -axis

3D Coordinates

(a,b)

2D Coordinates

Variables: x (indep), y (dep) Axes: x-axis $\perp y$ -axis

Coordinates of a point:

Go a units in x-direction, b in y.

3D Coordinates

2D Coordinates

Variables: x (indep), y (dep)

Axes: x-axis $\perp y$ -axis

Coordinates of a point: (a, b)Go a units in x-direction, b in y. Projection onto x-axis: (a, 0)(drop a line \perp from point to x-axis.)

3D Coordinates

2D Coordinates

Variables: x (indep), y (dep) Axes: x-axis $\perp y$ -axis

Coordinates of a point: (a, b)Go a units in x-direction, b in y. Projection onto x-axis: (a, 0)

(drop a line \perp from point to x-axis.)

3D Coordinates

Variables: x, y (indep), z (dep) Axes: x-axis $\perp y$ -axis $\perp z$ -axis

C

2D Coordinates

Variables: x (indep), y (dep) Axes: x-axis $\perp y$ -axis

Coordinates of a point: (a, b)Go a units in x-direction, b in y. Projection onto x-axis: (a, 0)(drop a line \bot from point to x-axis.)

3D Coordinates

Variables: x, y (indep), z (dep) Axes: x-axis $\perp y$ -axis $\perp z$ -axis

Č

(right hand rule)

2D Coordinates

Variables: x (indep), y (dep) Axes: x-axis $\perp y$ -axis

Coordinates of a point: (a, b)Go a units in x-direction, b in y. Projection onto x-axis: (a, 0)(drop a line \perp from point to x-axis.)

3D Coordinates

Variables: x, y (indep), z (dep) Axes: x-axis $\perp y$ -axis $\perp z$ -axis

C

(right hand rule)

Coordinates of a point: (a, b, c)Go a units in x-dir, b in y, c in z.

2D Coordinates

Variables: x (indep), y (dep) Axes: x-axis $\perp y$ -axis

Coordinates of a point: (a, b)Go a units in x-direction, b in y. Projection onto x-axis: (a, 0)(drop a line \perp from point to x-axis.)

3D Coordinates

Variables: x, y (indep), z (dep) Axes: x-axis $\perp y$ -axis $\perp z$ -axis

C

(right hand rule)

Coordinates of a point: (a, b, c)Go a units in x-dir, b in y, c in z.

Projection onto xy-plane: (a, b, 0)(drop a line \perp from point to xy-plane)

2D Coordinates

Variables: x (indep), y (dep) Axes: x-axis $\perp y$ -axis

Coordinates of a point: (a, b)Go a units in x-direction, b in y. Projection onto x-axis: (a, 0)(drop a line \perp from point to x-axis.) Distance from origin: $\sqrt{a^2 + b^2}$

3D Coordinates

Variables: x, y (indep), z (dep) Axes: x-axis $\perp y$ -axis $\perp z$ -axis

C

(right hand rule)

Coordinates of a point: (a, b, c)Go a units in x-dir, b in y, c in z.

Projection onto xy-plane: (a, b, 0)

(drop a line \perp from point to xy-plane)

2D Coordinates

Variables: x (indep), y (dep) Axes: x-axis $\perp y$ -axis

Coordinates of a point: (a, b)Go a units in x-direction, b in y. Projection onto x-axis: (a, 0)(drop a line \perp from point to x-axis.) Distance from origin: $\sqrt{a^2 + b^2}$

3D Coordinates

Variables: x, y (indep), z (dep) Axes: x-axis $\perp y$ -axis $\perp z$ -axis

C

(right hand rule)

Coordinates of a point: (a, b, c)Go a units in x-dir, b in y, c in z.

Projection onto xy-plane: (a, b, 0)(drop a line \perp from point to xy-plane)

Distance from origin: $\sqrt{a^2 + b^2 + c^2}$

2D Coordinates

Variables: x (indep), y (dep) Axes: x-axis $\perp y$ -axis

Coordinates of a point: (a, b)Go a units in x-direction, b in y. Projection onto x-axis: (a, 0)(drop a line \perp from point to x-axis.) Distance from origin: $\sqrt{a^2 + b^2}$ First quadrant:

All points (a, b) with $a \ge 0$, $b \ge 0$.

3D Coordinates

Variables: x, y (indep), z (dep) Axes: x-axis $\perp y$ -axis $\perp z$ -axis

Q

(right hand rule)

Coordinates of a point: (a, b, c)Go a units in x-dir, b in y, c in z. Projection onto xy-plane: (a, b, 0)(drop a line \perp from point to xy-plane) Distance from origin: $\sqrt{a^2 + b^2 + c^2}$

2D Coordinates

Variables: x (indep), y (dep) Axes: x-axis $\perp y$ -axis

Coordinates of a point: (a, b)Go a units in x-direction, b in y. Projection onto x-axis: (a, 0)(drop a line \perp from point to x-axis.) Distance from origin: $\sqrt{a^2 + b^2}$ First quadrant:

All points (a, b) with $a \ge 0$, $b \ge 0$.

3D Coordinates

Variables: x, y (indep), z (dep) Axes: x-axis $\perp y$ -axis $\perp z$ -axis

O

(right hand rule)

Coordinates of a point: (a, b, c)Go a units in x-dir, b in y, c in z. Projection onto xy-plane: (a, b, 0)(drop a line \bot from point to xy-plane) Distance from origin: $\sqrt{a^2 + b^2 + c^2}$ First **octant:**

All points (a, b, c) with $a, b, c \ge 0$

2D Equations

Lines:

x = 2 defines

2D Equations

Lines:

x = 2 defines a vertical line.

2D Equations

Lines:

x = 2 defines a vertical line.

All points (2, b) for any b

2D Equations

Lines:

x = 2 defines a vertical line.

All points (2, b) for any b

y = 3 defines a horizontal line.

All points (a, 3) for any a

2D Equations

Lines:

x = 2 defines a vertical line. All points (2, b) for any by = 3 defines a horizontal line. All points (a, 3) for any a

3D Equations

Planes:

x=2 is

2D Equations

Lines:

x = 2 defines a vertical line. All points (2, b) for any by = 3 defines a horizontal line. All points (a, 3) for any a

3D Equations

Planes:

x=2 is a plane parallel to the yz-plane. All points (2, b, c) for any b, c.

2D Equations

Lines:

x=2 defines a vertical line. All points (2,b) for any by=3 defines a horizontal line. All points (a,3) for any a

3D Equations

Planes:

x = 2 is a plane parallel to the yz-plane.

All points (2, b, c) for any b, c.

x = y defines a plane too.

All points (a, a, c) for any a, c.

2D Equations

Lines:

x=2 defines a vertical line. All points (2,b) for any by=3 defines a horizontal line. All points (a,3) for any a

Circles:

All points distance r from (h, k):

$$x^2 + y^2 = r^2$$

3D Equations

Planes:

x=2 is a plane parallel to the yz-plane.

All points (2, b, c) for any b, c.

x = y defines a plane too.

All points (a, a, c) for any a, c.

2D Equations

Lines:

x=2 defines a vertical line. All points (2,b) for any by=3 defines a horizontal line. All points (a,3) for any a

Circles:

All points distance r from (h, k):

$$x^{2} + y^{2} = r^{2}$$
$$(x - h)^{2} + (y - k)^{2} = r^{2}$$

3D Equations

Planes:

x=2 is a plane parallel to the *yz*-plane.

All points (2, b, c) for any b, c.

x = y defines a plane too.

All points (a, a, c) for any a, c.

2D Equations

Lines:

x=2 defines a vertical line. All points (2,b) for any by=3 defines a horizontal line. All points (a,3) for any a

Circles:

All points distance r from (h, k): $x^2 + y^2 = r^2$ $(x - h)^2 + (y - k)^2 = r^2$

3D Equations

Planes:

x=2 is a plane parallel to the yz-plane.

All points (2, b, c) for any b, c.

x = y defines a plane too.

All points (a, a, c) for any a, c.

Spheres:

All points distance r from (h, k, ℓ) :

$$x^{2} + y^{2} + z^{2} = r^{2}$$
$$(x - h)^{2} + (y - k)^{2} + (z - \ell)^{2} = r^{2}$$

Vectors

Definition: A **vector** is a quantity that has both magnitude and direction, often represented by an arrow. We'll use either \mathbf{v} , $\vec{\mathbf{v}}$, or $\vec{\mathbf{v}}$.

Vectors

Definition: A **vector** is a quantity that has both magnitude and direction, often represented by an arrow. We'll use either \mathbf{v} , $\vec{\mathbf{v}}$, or $\vec{\mathbf{v}}$.

▶ Think of them as a generalization of a single number.

Vectors

Definition: A **vector** is a quantity that has both magnitude and direction, often represented by an arrow. We'll use either \mathbf{v} , $\vec{\mathbf{v}}$, or $\vec{\mathbf{v}}$.

- ▶ Think of them as a generalization of a single number.
- ▶ They do not have a fixed position.

Vectors

Definition: A **vector** is a quantity that has both magnitude and direction, often represented by an arrow. We'll use either \mathbf{v} , $\vec{\mathbf{v}}$, or $\vec{\mathbf{v}}$.

- ▶ Think of them as a generalization of a single number.
- ▶ They do not have a fixed position.
- Can have any number of dimensions.

Vectors — $\S10.2$

What can we do with vectors?

We can add vectors.

What can we do with vectors?

We can add vectors.

Place the tail of \vec{v} at the head of \vec{u} .

What can we do with vectors?

We can add vectors.

Place the tail of \vec{v} at the head of \vec{u} . Define $\vec{u} + \vec{v}$ to be the vector starting at the tail of \vec{u} and ending at the head of \vec{v} .

What can we do with vectors?

We can add vectors.

Place the tail of $\vec{\boldsymbol{v}}$ at the head of $\vec{\boldsymbol{u}}.$

Define $\vec{\mathbf{u}} + \vec{\mathbf{v}}$ to be the vector starting at the tail of $\vec{\mathbf{u}}$ and ending at the head of $\vec{\mathbf{v}}$.

Properties: $\vec{\mathbf{u}} + \vec{\mathbf{0}} = \vec{\mathbf{u}}$

 $\vec{\mathbf{u}} + \vec{\mathbf{v}} = \vec{\mathbf{v}} + \vec{\mathbf{u}}$. (Parallelogram!)

What can we do with vectors?

We can add vectors.

Place the tail of \vec{v} at the head of \vec{u} .

Define $\vec{u} + \vec{v}$ to be the vector starting at the tail of \vec{u} and ending at the head of \vec{v} .

Properties: $\vec{\mathbf{u}} + \vec{\mathbf{0}} = \vec{\mathbf{u}}$

 $\vec{\mathbf{u}} + \vec{\mathbf{v}} = \vec{\mathbf{v}} + \vec{\mathbf{u}}$. (Parallelogram!)

We can stretch vectors

by a constant factor (a scalar).

What can we do with vectors?

We can add vectors.

Place the tail of \vec{v} at the head of \vec{u} .

Define $\vec{u} + \vec{v}$ to be the vector starting at the tail of \vec{u} and ending at the head of \vec{v} .

Properties: $\vec{\mathbf{u}} + \vec{\mathbf{0}} = \vec{\mathbf{u}}$

 $\vec{\mathbf{u}} + \vec{\mathbf{v}} = \vec{\mathbf{v}} + \vec{\mathbf{u}}$. (Parallelogram!)

We can stretch vectors

by a constant factor (a scalar).

Zero Properties:

$$0 \cdot \vec{\mathbf{v}} = \vec{\mathbf{0}}$$
 and $c \cdot \vec{\mathbf{0}} = \vec{\mathbf{0}}$

What can we do with vectors?

We can add vectors.

Place the tail of $\vec{\mathbf{v}}$ at the head of $\vec{\mathbf{u}}$.

Define $\vec{u} + \vec{v}$ to be the vector starting at the tail of \vec{u} and ending at the head of \vec{v} .

Properties:
$$\vec{\mathbf{u}} + \vec{\mathbf{0}} = \vec{\mathbf{u}}$$

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \vec{\mathbf{v}} + \vec{\mathbf{u}}$$
. (Parallelogram!)

We can stretch vectors

by a constant factor (a scalar).

Zero Properties:

$$0 \cdot \vec{\mathbf{v}} = \vec{\mathbf{0}}$$
 and $c \cdot \vec{\mathbf{0}} = \vec{\mathbf{0}}$

So we can subtract vectors,

because
$$\vec{\mathbf{u}} - \vec{\mathbf{v}} = \vec{\mathbf{u}} + (-1)\vec{\mathbf{v}}$$
.

What can we do with vectors?

We can add vectors.

Place the tail of \vec{v} at the head of \vec{u} .

Define $\vec{\mathbf{u}} + \vec{\mathbf{v}}$ to be the vector starting at the tail of $\vec{\mathbf{u}}$ and ending at the head of $\vec{\mathbf{v}}$.

Properties: $\vec{\mathbf{u}} + \vec{\mathbf{0}} = \vec{\mathbf{u}}$

 $\vec{\mathbf{u}} + \vec{\mathbf{v}} = \vec{\mathbf{v}} + \vec{\mathbf{u}}$. (Parallelogram!)

We can stretch vectors

by a constant factor (a scalar).

Zero Properties:

$$0 \cdot \vec{\mathbf{v}} = \vec{\mathbf{0}}$$
 and $c \cdot \vec{\mathbf{0}} = \vec{\mathbf{0}}$

So we can subtract vectors,

because $\vec{\mathbf{u}} - \vec{\mathbf{v}} = \vec{\mathbf{u}} + (-1)\vec{\mathbf{v}}$.

Distributive laws:

$$(a+b)\cdot \vec{\mathbf{v}} = a\cdot \vec{\mathbf{v}} + b\cdot \vec{\mathbf{v}}$$

$$c \cdot (\vec{\mathbf{u}} + \vec{\mathbf{v}}) = c \cdot \vec{\mathbf{u}} + c \cdot \vec{\mathbf{v}}$$

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- ightharpoonup $\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$,
- ightharpoonup $ec{\mathbf{v}}=\langle 0,-1,-3
 angle$,

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

$$ightharpoonup$$
 $\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$,

$$ightarrow$$
 $ec{\mathbf{v}}=\langle 0,-1,-3
angle$,

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- ightharpoonup $\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$,
- $ightharpoonup ec{\mathbf{v}} = \langle 0, -1, -3
 angle$,

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

Alternate form: $\vec{\mathbf{u}} = \vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}$. standard basis vectors

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- ightharpoonup $\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$,
- $ightharpoonup ec{\mathbf{v}} = \langle 0, -1, -3 \rangle$,

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

Alternate form: $\vec{\mathbf{u}} = \vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle 1 + 0, 4 + (-1), 3 + (-3) \rangle = \langle 1, 3, 0 \rangle$$

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- ightharpoonup $\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$,
- $ightharpoonup ec{\mathbf{v}} = \langle 0, -1, -3 \rangle$,

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

Alternate form: $\vec{\mathbf{u}} = \vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle 1 + 0, 4 + (-1), 3 + (-3) \rangle = \langle 1, 3, 0 \rangle$$

$$\mathbf{r} \mathbf{u} = \pi \langle 1, 4, 3 \rangle = \langle \pi, 4\pi, 3\pi \rangle$$
 Stretch it!

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- ightharpoonup $\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$,
- $ightharpoonup ec{\mathbf{v}} = \langle 0, -1, -3 \rangle$,

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

Alternate form: $\vec{\mathbf{u}} = \vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle 1 + 0, 4 + (-1), 3 + (-3) \rangle = \langle 1, 3, 0 \rangle$$

$$\mathbf{v} = \pi \mathbf{u} = \pi \langle 1, 4, 3 \rangle = \langle \pi, 4\pi, 3\pi \rangle$$
 Stretch it!

Magnitude is a synonym for **length**, written $|\vec{\mathbf{v}}|$ or $||\vec{\mathbf{v}}||$.

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

$$\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$$
, then $|\vec{\mathbf{u}}| = \sqrt{1^2 + 4^2 + 3^2} = \sqrt{26}$.

$$ightharpoonup ec{\mathbf{v}} = \langle 0, -1, -3 \rangle$$
,

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

Alternate form: $\vec{\mathbf{u}} = \vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle 1 + 0, 4 + (-1), 3 + (-3) \rangle = \langle 1, 3, 0 \rangle$$

$$\mathbf{v} = \pi \mathbf{u} = \pi \langle 1, 4, 3 \rangle = \langle \pi, 4\pi, 3\pi \rangle$$
 Stretch it!

Magnitude is a synonym for **length**, written $|\vec{\mathbf{v}}|$ or $||\vec{\mathbf{v}}||$.

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

$$\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$$
, then $|\vec{\mathbf{u}}| = \sqrt{1^2 + 4^2 + 3^2} = \sqrt{26}$.

$$\vec{\mathbf{v}} = \langle 0, -1, -3 \rangle$$
, then $|\vec{\mathbf{v}}| = \sqrt{0^2 + (-1)^2 + (-3)^2} = \sqrt{10}$.

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

Alternate form: $\vec{\mathbf{u}} = \vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle 1 + 0, 4 + (-1), 3 + (-3) \rangle = \langle 1, 3, 0 \rangle$$

$$\mathbf{v} = \pi \mathbf{u} = \pi \langle 1, 4, 3 \rangle = \langle \pi, 4\pi, 3\pi \rangle$$
 Stretch it!

Magnitude is a synonym for **length**, written $|\vec{\mathbf{v}}|$ or $||\vec{\mathbf{v}}||$.

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

$$\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$$
, then $|\vec{\mathbf{u}}| = \sqrt{1^2 + 4^2 + 3^2} = \sqrt{26}$.

$$\vec{\mathbf{v}} = \langle 0, -1, -3 \rangle$$
, then $|\vec{\mathbf{v}}| = \sqrt{0^2 + (-1)^2 + (-3)^2} = \sqrt{10}$.

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

Alternate form: $\vec{\mathbf{u}} = \vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle 1 + 0, 4 + (-1), 3 + (-3) \rangle = \langle 1, 3, 0 \rangle$$

$$\mathbf{v} = \pi \mathbf{u} = \pi \langle 1, 4, 3 \rangle = \langle \pi, 4\pi, 3\pi \rangle$$
 Stretch it!

Magnitude is a synonym for **length**, written $|\vec{\mathbf{v}}|$ or $||\vec{\mathbf{v}}||$.

You may need to find the unit vector in the same direction as \vec{u} .

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

$$\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$$
, then $|\vec{\mathbf{u}}| = \sqrt{1^2 + 4^2 + 3^2} = \sqrt{26}$.

$$\vec{\mathbf{v}} = \langle 0, -1, -3 \rangle$$
, then $|\vec{\mathbf{v}}| = \sqrt{0^2 + (-1)^2 + (-3)^2} = \sqrt{10}$.

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

Alternate form: $\vec{\mathbf{u}} = \vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle 1 + 0, 4 + (-1), 3 + (-3) \rangle = \langle 1, 3, 0 \rangle$$

$$\pi \vec{\mathbf{u}} = \pi \langle 1, 4, 3 \rangle = \langle \pi, 4\pi, 3\pi \rangle$$
 Stretch it!

Magnitude is a synonym for **length**, written $|\vec{\mathbf{v}}|$ or $|\vec{\mathbf{v}}|$.

You may need to find the **unit vector** in the same direction as $\vec{\mathbf{u}}$.

Find the length of $\vec{\mathbf{u}}$ and divide by it!

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

$$\vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$$
, then $|\vec{\mathbf{u}}| = \sqrt{1^2 + 4^2 + 3^2} = \sqrt{26}$.

$$\vec{\mathbf{v}} = \langle 0, -1, -3 \rangle$$
, then $|\vec{\mathbf{v}}| = \sqrt{0^2 + (-1)^2 + (-3)^2} = \sqrt{10}$.

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

Alternate form: $\vec{\mathbf{u}} = \vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle 1 + 0, 4 + (-1), 3 + (-3) \rangle = \langle 1, 3, 0 \rangle$$

$$\mathbf{v} = \pi \mathbf{u} = \pi \langle 1, 4, 3 \rangle = \langle \pi, 4\pi, 3\pi \rangle$$
 Stretch it!

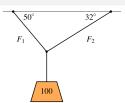
Magnitude is a synonym for **length**, written $|\vec{\mathbf{v}}|$ or $||\vec{\mathbf{v}}||$.

You may need to find the unit vector in the same direction as \vec{u} .

- ightharpoonup Find the length of $\vec{\mathbf{u}}$ and divide by it!
- **Example.** Unit vector of (2, -1, -2) is

Vectors are the best way to understand Physics

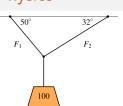
Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



Vectors are the best way to understand Physics

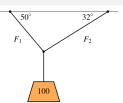
Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?

Answer: The forces must be in equilibrium.



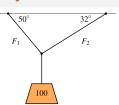
Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?

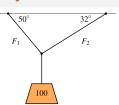


Answer: The forces must be in equilibrium. This means that the sum of all the forces equals $\vec{0}$.

▶ Set up a coordinate system centered at the rope meeting place.

Vectors are the best way to understand Physics

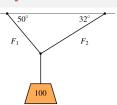
Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



- ▶ Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.

Vectors are the best way to understand Physics

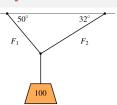
Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



- ▶ Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
 - ▶ The weight down gives $\vec{\mathbf{W}} = \langle 0, -100 \rangle$.

Vectors are the best way to understand Physics

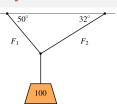
Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



- ▶ Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
 - ▶ The weight down gives $\vec{\mathbf{W}} = \langle 0, -100 \rangle$.
 - ► The first force $\vec{\mathbf{F}}_1 = F_1 \langle$

Vectors are the best way to understand Physics

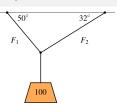
Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



- ▶ Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
 - ▶ The weight down gives $\vec{\mathbf{W}} = \langle 0, -100 \rangle$.
 - ► The first force $\vec{\mathbf{F}}_1 = F_1 \langle$ \quad \text{(magnitude · direction)}

Vectors are the best way to understand Physics

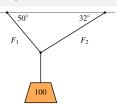
Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



- ▶ Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
 - ▶ The weight down gives $\vec{\mathbf{W}} = \langle 0, -100 \rangle$.
 - ► The first force $\vec{\mathbf{F}}_1 = F_1 \langle$ \quad \text{(magnitude · direction)}
 - ► The second force $\vec{\mathbf{F}}_2 = F_2 \langle$

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



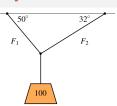
Answer: The forces must be in equilibrium.

This means that the sum of all the forces equals $oldsymbol{0}$.

- ▶ Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
 - ▶ The weight down gives $\vec{\mathbf{W}} = \langle 0, -100 \rangle$.
 - ► The first force $\vec{\mathbf{F}}_1 = F_1 \langle$ \quad \text{(magnitude · direction)}
 - ▶ The second force $\vec{\mathbf{F}}_2 = F_2 \langle$
- ▶ Use equilibrium to get a system of equations, solve.

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



Answer: The forces must be in equilibrium.

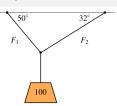
This means that the sum of all the forces equals $\mathbf{0}$.

- ▶ Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
 - ▶ The weight down gives $\vec{\mathbf{W}} = \langle 0, -100 \rangle$.
 - ► The first force $\vec{\mathbf{F}}_1 = F_1 \langle$ \quad \text{(magnitude · direction)}
 - ▶ The second force $\vec{\mathbf{F}}_2 = \mathbf{F}_2 \langle$
- ▶ Use equilibrium to get a system of equations, solve.

$$-\cos 50 F_1 + \cos 32 F_2 = 0$$

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



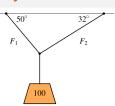
Answer: The forces must be in equilibrium.

This means that the sum of all the forces equals $\mathbf{0}$.

- ▶ Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
 - ▶ The weight down gives $\vec{\mathbf{W}} = \langle 0, -100 \rangle$.
 - ▶ The first force $\vec{\mathbf{F}}_1 = F_1 \langle$ (magnitude · direction)
 - ▶ The second force $\vec{\mathbf{F}}_2 = \mathbf{F}_2 \langle$
- ▶ Use equilibrium to get a system of equations, solve.
- $-\cos 50 \, F_1 + \cos 32 \, F_2 = 0$ and $\sin 50 \, F_1 + \sin 32 \, F_2 100 = 0$

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



Answer: The forces must be in equilibrium.

This means that the sum of all the forces equals $\hat{\mathbf{0}}$.

- ▶ Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
 - ▶ The weight down gives $\vec{\mathbf{W}} = \langle 0, -100 \rangle$.
 - ► The first force $\vec{\mathbf{F}}_1 = F_1 \langle$ \quad \text{(magnitude · direction)}
 - ▶ The second force $\vec{\mathbf{F}}_2 = \mathbf{F}_2 \langle$
- ▶ Use equilibrium to get a system of equations, solve.
- $-\cos 50 \, F_1 + \cos 32 \, F_2 = 0$ and $\sin 50 \, F_1 + \sin 32 \, F_2 100 = 0$ Solving gives $F_1 \approx 85 \, \text{lb}$ and $F_2 \approx 65 \, \text{lb}$.