Lines, Planes, and Automobiles!

$$
\begin{aligned}
& \text { Lines in 2D Coordinates } \\
& \text { Two common formats: } \\
& y=m x+b \text { (slope-intercept) or } \\
& \left(y-y_{0}\right)=m\left(x-x_{0}\right) \text { (pt-slope) }
\end{aligned}
$$

Given a point and a direction, you know the equation of the line.

$$
\langle x, y\rangle=\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle
$$

Two Lines

In three dimensions, two lines can

- be parallel
- intersect
- be skew

Lines in 3D Coordinates

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

Each t gives a point (x, y, z) on L. Reading componentwise, same as:

$$
\left\{\begin{array}{l}
x(t)=x_{0}+a t \\
y(t)=y_{0}+b t \\
z(t)=z_{0}+c t
\end{array}\right\}
$$

Key idea: Read off direction vector $\overrightarrow{\mathbf{v}}$ from coeffs of t.

1D Examples

Example. Find the equation of the line that passes through $A=(2,4,-3)$ and $B=(3,-1,1)$.
Answer: To find the equation of a line, we need

- One Point.
- One Direction.

Example. Where does this line pass through the $x y$-plane?
Answer: In other words,

Never the twain shall meet

Example. Show that the following lines are skew.

$$
\begin{gathered}
\text { Romeo : }\langle 1+t,-2+3 t, 4-t\rangle \\
\text { Juliet : }\langle 2 s, 3+s,-3+4 s\rangle
\end{gathered}
$$

Answer: We will show:

- They are not parallel. (They would have the same \qquad
- They do not intersect. (There would be a point \qquad

Equations of planes

Question:
Does a plane have a direction?

There is one vector to the plane, the \qquad $\overrightarrow{\mathrm{n}}$.

Note: $\overrightarrow{\boldsymbol{n}}$ defines infinitely many planes. We also need a point.
A plane is defined by a normal vector $\overrightarrow{\mathbf{n}}$ and a point $\overrightarrow{\mathbf{r}}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. For any point $\overrightarrow{\mathbf{r}}$ on the plane, $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}$ is perpendicular to $\overrightarrow{\mathbf{n}}$. So the equation of a plane is

$\stackrel{\text { ® }}{\substack{\text { ® }}}$	$\begin{gathered} \overrightarrow{\mathbf{n}} \cdot\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right)=0 . \\ \langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 \\ a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \\ a x+b y+c z=d \end{gathered}$	Key idea: Read off normal vector $\overrightarrow{\mathbf{n}}$ from coeffs of x, y, z.

Plane Examples

Example. What is the angle between the planes

$$
x+y+z=1 \text { and } x-2 y+3 z=1 ?
$$

Answer: When we need to find an angle, use \qquad .

$$
\theta=\cos ^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}
$$

Example. What is the equation of the intersection line?
Answer: For the equation of a line, we need

Plane Examples

Example. Find the distance from $(1,0,-1)$ to $2 x+3 y-5 z+10=0$. Answer: The normal vector to the plane is so the shortest distance from $P_{0}=(1,0,-1)$ to the plane is along the line $(1,0,-1)+t(2,3,-5)$. Where does this hit the plane?
Use the equation of the line and the plane:
$2 x+3 y-5 z+10=0 \rightsquigarrow 2(1+2 t)+3(0+3 t)-5(-1-5 t)+10=0$
Simplifying, the point P_{1} where the line hits the plane is when $t=\frac{-17}{38}$.

$$
\begin{aligned}
\vec{P}_{1}-\vec{P}_{0} & =\frac{-17}{38}\langle 2,3,-5\rangle, \text { so } \\
\left|\vec{P}_{1}-\vec{P}_{0}\right| & =\frac{17}{38} \sqrt{2^{2}+3^{2}+(-5)^{2}}=\frac{17}{\sqrt{38}}
\end{aligned}
$$

