When y is a function of x, what is the slope of the tangent line?

When y is a function of x, what is the slope of the tangent line? For a parametric curve $\{x = f(t), y = g(t)\}$,

Think of y as a function of x. Then $\frac{dy}{dt} =$

When y is a function of x, what is the slope of the tangent line? For a parametric curve $\{x = f(t), y = g(t)\}$,

Think of y as a function of x. Then $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$,

When y is a function of x, what is the slope of the tangent line? For a parametric curve $\{x = f(t), y = g(t)\}$, Think of y as a function of x. Then $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$, so $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

When y is a function of x, what is the slope of the tangent line? For a parametric curve $\{x = f(t), y = g(t)\}$, Think of y as a function of x. Then $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$, so $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ if _____.

When y is a function of x, what is the slope of the tangent line? For a parametric curve $\{x = f(t), y = g(t)\}$, Think of y as a function of x. Then $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$, so $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ if _____ \blacktriangleright Curve has a horizontal tangent where $\frac{dy}{dt} = 0$ and $\frac{dx}{dt} \neq 0$.

• Curve has a vertical tangent where $\frac{dx}{dt} = 0$ and $\frac{dy}{dt} \neq 0$.

When y is a function of x, what is the slope of the tangent line? For a parametric curve $\{x = f(t), y = g(t)\}$, Think of y as a function of x. Then $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$, so $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ if ______ Curve has a horizontal tangent where $\frac{dy}{dt} = 0$ and $\frac{dx}{dt} \neq 0$. Curve has a vertical tangent where $\frac{dx}{dt} = 0$ and $\frac{dy}{dt} \neq 0$. Question: What is true when $\frac{dx}{dt} = 0$ AND $\frac{dy}{dt} = 0$?

When y is a function of x, what is the slope of the tangent line? For a parametric curve $\{x = f(t), y = g(t)\},\$ Think of y as a function of x. Then $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$, so $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ if ______ • Curve has a horizontal tangent where $\frac{dy}{dt} = 0$ and $\frac{dx}{dt} \neq 0$. • Curve has a vertical tangent where $\frac{dx}{dt} = 0$ and $\frac{dy}{dt} \neq 0$. • Question: What is true when $\frac{dx}{dt} = 0$ AND $\frac{dy}{dt} = 0$? We can use the chain rule again to find $\frac{d^2y}{dx^2}$, but be careful! $y'' = \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) =$. $\left(\frac{dy}{dx} \text{ is a function of } ___\right)$

When y is a function of x, what is the slope of the tangent line? For a parametric curve $\{x = f(t), y = g(t)\},\$ Think of y as a function of x. Then $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$, so $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ if ______ • Curve has a horizontal tangent where $\frac{dy}{dt} = 0$ and $\frac{dx}{dt} \neq 0$. • Curve has a vertical tangent where $\frac{dx}{dt} = 0$ and $\frac{dy}{dt} \neq 0$. • Question: What is true when $\frac{dx}{dt} = 0$ AND $\frac{dy}{dt} = 0$? We can use the chain rule again to find $\frac{d^2y}{dx^2}$, but be careful! $y'' = \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) =$. $\left(\frac{dy}{dx} \text{ is a function of } __\right)$

Important:
$$\frac{d^2y}{dx^2} \neq \frac{d^2y}{dt} / \frac{d^2x}{dt}$$
 !!!!

Example. What is the tangent line to the curve
$$\begin{cases} x(t) = t^2 \\ y(t) = t^3 - 3t \end{cases}$$
 at (3,0)?

Example. What is the tangent line to the curve
$$\begin{cases} x(t) = t^2 \\ y(t) = t^3 - 3t \end{cases}$$
 at (3,0)? *Question:* What is t there?

Example. What is the tangent line to the curve $\begin{cases} x(t) = t^2 \\ y(t) = t^3 - 3t \end{cases}$ at (3,0)? *Question:* What is t there?

Question: What is the slope there?

Example. What is the tangent line to the curve $\begin{cases} x(t) = t^2 \\ y(t) = t^3 - 3t \end{cases}$ at (3,0)? *Question:* What is t there?

Question: What is the slope there?

Question: So what is the tangent line there?

Let's now sketch the curve.

$$\begin{cases} x(t) = t^2 \\ y(t) = t^3 - 3t \end{cases}$$

Let's now sketch the curve.

Question: Where are there horizontal and vertical tangents?

Horizontal:

► Vertical:

11

Let's now sketch the curve.

Question: Where are there horizontal and vertical tangents?

- Horizontal:
- ► Vertical:

(Must check?)

 $\begin{cases} x(t) = t^2\\ y(t) = t^3 - 3t \end{cases}$

Let's now sketch the curve.

Question: Where are there horizontal and vertical tangents?

- Horizontal:
- ► Vertical: (Must check?)

Question: Where is the curve concave up? concave down?

► Calculate
$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{3t^2-3}{2t})}{\frac{dx}{dt}}$$

$$\begin{cases} x(t) = t^2 \\ y(t) = t^3 - 3t \end{cases}$$

Let's now sketch the curve.

Question: Where are there horizontal and vertical tangents?

Horizontal:

1

► Vertical:

Question: Where is the curve concave up? concave down?

• Calculate

$$\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{3t^2 - 3}{2t}\right)}{\frac{dx}{dt}} = \frac{\frac{(2t)(6t) - (3t^2 - 3)(2)}{4t^2}}{2t}$$

 $\begin{cases} x(t) = t^2 \\ v(t) = t^3 - 3t \end{cases}$

Let's now sketch the curve.

Question: Where are there horizontal and vertical tangents?

- Horizontal:
- ► Vertical:

Question: Where is the curve concave up? concave down?

• Calculate
$$\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{3t^2 - 3}{2t}\right)}{\frac{dx}{dt}} = \frac{\frac{(2t)(6t) - (3t^2 - 3)(2)}{4t^2}}{2t} = \frac{\frac{6t^2 + 6}{4t^2}}{2t}$$

 $\begin{cases} x(t) = t^2 \\ v(t) = t^3 - 3t \end{cases}$

Let's now sketch the curve.

Question: Where are there horizontal and vertical tangents?

- ► Horizontal:
- ► Vertical:

Question: Where is the curve concave up? concave down?

• Calculate

$$\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{3t^2 - 3}{2t}\right)}{\frac{dx}{dt}} = \frac{\frac{(2t)(6t) - (3t^2 - 3)(2)}{4t^2}}{2t} = \frac{\frac{6t^2 + 6}{4t^2}}{2t} = \frac{3(t^2 + 1)}{4t^3}.$$

$$\begin{aligned} x(t) &= t^2 \\ y(t) &= t^3 - 3t \end{aligned}$$

Let's now sketch the curve.

Question: Where are there horizontal and vertical tangents?

- Horizontal:
- ► Vertical: (Must check?)

Question: Where is the curve concave up? concave down?

Calculate

$$\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{3t^2 - 3}{2t}\right)}{\frac{dx}{dt}} = \frac{\frac{(2t)(6t) - (3t^2 - 3)(2)}{4t^2}}{2t} = \frac{\frac{6t^2 + 6}{4t^2}}{2t} = \frac{3(t^2 + 1)}{4t^3}.$$

Put it all together:

t	x	y
-3	9	-3
-1	1	2
0	0	0
1	1	-2
3	9	3

$$\begin{cases} x(t) = t^2 \\ y(t) = t^3 - 3t \end{cases}$$

Polar coordinates are an alternate way to think about points in 2D.

Polar coordinates are an alternate way to think about points in 2D.

$$\begin{array}{c} \text{Conversions:} \\ x = r \cos \theta \\ y = r \sin \theta \end{array} \xrightarrow{\qquad r^2 = x^2 + y^2} \\ \tan \theta = \frac{y}{x} \end{array}$$

Polar coordinates are an alternate way to think about points in 2D.

Conversions: $x = r \cos \theta$ $r^2 = x^2 + y^2$ $y = r \sin \theta$ $\overleftarrow{}$ $\tan \theta = \frac{y}{x}$

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin					
cos					
tan					

Polar coordinates are an alternate way to think about points in 2D.

Need to know Changing coordinates: $(r, \theta) = (2, -\frac{2\pi}{3})$ then (x, y) =

Conversions: $x = r \cos \theta$ \longrightarrow $r^2 = x^2 + y^2$ $y = r \sin \theta$ \longleftrightarrow $\tan \theta = \frac{y}{x}$

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin					
COS					
tan					

Polar coordinates are an alternate way to think about points in 2D.

Need to know Changing coordinates: $(r, \theta) = (2, -\frac{2\pi}{3})$ then (x, y) = (x, y) = (-1, 1) then $(r, \theta) =$

Conversions: $x = r \cos \theta$ $r^2 = x^2 + y^2$ $y = r \sin \theta$ $\overleftarrow{}$ $\tan \theta = \frac{y}{x}$

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin					
cos					
tan					

Polar coordinates are an alternate way to think about points in 2D.

Need to know Changing coordinates: $(r, \theta) = (2, -\frac{2\pi}{3})$ then (x, y) =(x, y) = (-1, 1) then $(r, \theta) =$ Identifying polar equations: $\theta = 1$ r = 2

Conversions: $x = r \cos \theta$ $r^2 = x^2 + y^2$ $y = r \sin \theta$ $to \theta = \frac{y}{x}$

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin					
cos					
tan					

12

Polar coordinates are an alternate way to think about points in 2D.

Conversions: $x = r \cos \theta$ $r^2 = x^2 + y^2$ $y = r \sin \theta$ $tan \theta = \frac{y}{x}$

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin					
COS					
tan					

Need to know Changing coordinates: $(r, \theta) = (2, -\frac{2\pi}{3})$ then (x, y) =(x, y) = (-1, 1) then $(r, \theta) =$ Identifying polar equations: $\theta = 1$ r = 2

$$r = 2\cos\theta$$

Polar coordinates are an alternate way to think about points in 2D.

Conversions: $x = r \cos \theta$ $r^2 = x^2 + y^2$ $y = r \sin \theta$ $tan \theta = \frac{y}{x}$

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin					
cos					
tan					

Need to know Changing coordinates: $(r, \theta) = (2, -\frac{2\pi}{3})$ then (x, y) =(x, y) = (-1, 1) then $(r, \theta) =$ Identifying polar equations: $\theta = 1$ r = 2 $r = 2\cos\theta$ $r = \cos 2\theta$ $r = 1 + \sin \theta$

Polar coordinates are an alternate way to think about points in 2D.

Conversions: $x = r \cos \theta$ $r^2 = x^2 + y^2$ $y = r \sin \theta$ $tan \theta = \frac{y}{x}$

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin					
cos					
tan					

Need to knowChanging coordinates: $(r, \theta) = (2, -\frac{2\pi}{3})$ then (x, y) =(x, y) = (-1, 1) then $(r, \theta) =$ Identifying polar equations: $\theta = 1$ $r = 2 \cos \theta$ $r = \cos 2\theta$ $r = 1 + \sin \theta$

Using your calculator: Switch to Polar mode: MODE $\downarrow \downarrow \downarrow \downarrow$ POL (Enter).

Polar coordinates are an alternate way to think about points in 2D.

Conversions: $x = r \cos \theta$ $r^2 = x^2 + y^2$ $y = r \sin \theta$ $tan \theta = \frac{y}{x}$

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin					
cos					
tan					

Need to know Changing coordinates: $(r, \theta) = (2, -\frac{2\pi}{3})$ then (x, y) =(x, y) = (-1, 1) then $(r, \theta) =$ Identifying polar equations: $\theta = 1$ r = 2 $r = 2\cos\theta$ $r = \cos 2\theta$ $r = 1 + \sin \theta$

Using your calculator: Switch to Polar mode: MODE $\downarrow \downarrow \downarrow \downarrow$ POL (Enter). Also: desmos.com or Mathematica

Given a polar curve $r = f(\theta)$, we want to know $\frac{dy}{dx}$. Just as before, think of y as a function of x. Then $\frac{dy}{d\theta} =$

Given a polar curve $r = f(\theta)$, we want to know $\frac{dy}{dx}$. Just as before, think of y as a function of x. Then $\frac{dy}{d\theta} = \frac{dy}{dx} \cdot \frac{dx}{d\theta}$,

Given a polar curve $r = f(\theta)$, we want to know $\frac{dy}{dx}$. Just as before, think of y as a function of x. Then $\frac{dy}{d\theta} = \frac{dy}{dx} \cdot \frac{dx}{d\theta}$, We conclude: $\frac{dy}{dx} = \frac{\frac{d}{d\theta}y}{\frac{d}{d\theta}x}$

Given a polar curve $r = f(\theta)$, we want to know $\frac{dy}{dx}$. Just as before, think of y as a function of x. Then $\frac{dy}{d\theta} = \frac{dy}{dx} \cdot \frac{dx}{d\theta}$, We conclude: $\frac{dy}{dx} = \frac{\frac{d}{d\theta}y}{\frac{d}{d\theta}x} = \frac{\frac{d}{d\theta}(r\sin\theta)}{\frac{d}{d\theta}(r\cos\theta)}$

Given a polar curve $r = f(\theta)$, we want to know $\frac{dy}{dx}$. Just as before, think of y as a function of x. Then $\frac{dy}{d\theta} = \frac{dy}{dx} \cdot \frac{dx}{d\theta}$, We conclude: $\frac{dy}{dx} = \frac{\frac{d}{d\theta}y}{\frac{d}{d\theta}x} = \frac{\frac{d}{d\theta}(r\sin\theta)}{\frac{d}{d\theta}(r\cos\theta)} = \frac{(r\cos\theta + \sin\theta\frac{dr}{d\theta})}{(r\sin\theta + \cos\theta\frac{dr}{d\theta})}$

Given a polar curve $r = f(\theta)$, we want to know $\frac{dy}{dx}$. Just as before, think of y as a function of x. Then $\frac{dy}{d\theta} = \frac{dy}{dx} \cdot \frac{dx}{d\theta}$, We conclude: $\frac{dy}{dx} = \frac{\frac{d}{d\theta}y}{\frac{d}{d\theta}x} = \frac{\frac{d}{d\theta}(r\sin\theta)}{\frac{d}{d\theta}(r\cos\theta)} = \frac{(r\cos\theta + \sin\theta\frac{dr}{d\theta})}{(r\sin\theta + \cos\theta\frac{dr}{d\theta})}$ if ______

Given a polar curve $r = f(\theta)$, we want to know $\frac{dy}{dx}$. Just as before, think of y as a function of x. Then $\frac{dy}{d\theta} = \frac{dy}{dx} \cdot \frac{dx}{d\theta}$, We conclude: $\frac{dy}{dx} = \frac{\frac{d}{d\theta}y}{\frac{d}{d\theta}x} = \frac{\frac{d}{d\theta}(r\sin\theta)}{\frac{d}{d\theta}(r\cos\theta)} = \frac{(r\cos\theta + \sin\theta\frac{dr}{d\theta})}{(r\sin\theta + \cos\theta\frac{dr}{d\theta})}$ if _____.

Example. Find the slope of the tangent line to the curve $r = 2 \sin \theta$ at cartesian coordinates (x, y) = (2, 0).