Finding slope on a parametric curve

When y is a function of x, what is the slope of the tangent line?

Finding slope on a parametric curve

When y is a function of x, what is the slope of the tangent line?
For a parametric curve $\{x=f(t), y=g(t)\}$,
Think of y as a function of x. Then $\frac{d y}{d t}=$

Finding slope on a parametric curve

When y is a function of x, what is the slope of the tangent line?
For a parametric curve $\{x=f(t), y=g(t)\}$,
Think of y as a function of x. Then $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$,

Finding slope on a parametric curve

When y is a function of x, what is the slope of the tangent line?
For a parametric curve $\{x=f(t), y=g(t)\}$,
Think of y as a function of x. Then $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$, so $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Finding slope on a parametric curve

When y is a function of x, what is the slope of the tangent line?
For a parametric curve $\{x=f(t), y=g(t)\}$,
Think of y as a function of x. Then $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$, so $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$ if

Finding slope on a parametric curve

When y is a function of x, what is the slope of the tangent line?
For a parametric curve $\{x=f(t), y=g(t)\}$,
Think of y as a function of x. Then $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$, so $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{\frac{d x}{d t}}{d t}}$ if

- Curve has a horizontal tangent where $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$.
- Curve has a vertical tangent where $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$.

Finding slope on a parametric curve

When y is a function of x, what is the slope of the tangent line?
For a parametric curve $\{x=f(t), y=g(t)\}$,
Think of y as a function of x. Then $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$, so $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{\frac{d x}{d t}}{d t}}$ if

- Curve has a horizontal tangent where $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$.
- Curve has a vertical tangent where $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$.
- Question: What is true when $\frac{d x}{d t}=0$ AND $\frac{d y}{d t}=0$?

Finding slope on a parametric curve

When y is a function of x, what is the slope of the tangent line?
For a parametric curve $\{x=f(t), y=g(t)\}$,
Think of y as a function of x. Then $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$, so $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{\frac{d x}{d t}}{d t}}$ if

- Curve has a horizontal tangent where $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$.
- Curve has a vertical tangent where $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$.
- Question: What is true when $\frac{d x}{d t}=0$ AND $\frac{d y}{d t}=0$?

We can use the chain rule again to find $\frac{d^{2} y}{d x^{2}}$, but be careful!
$y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=$
. ($\frac{d y}{d x}$ is a function of

Finding slope on a parametric curve

When y is a function of x, what is the slope of the tangent line?
For a parametric curve $\{x=f(t), y=g(t)\}$,
Think of y as a function of x. Then $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$, so $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{\frac{d x}{d t}}{d t}}$ if

- Curve has a horizontal tangent where $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$.
- Curve has a vertical tangent where $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$.
- Question: What is true when $\frac{d x}{d t}=0$ AND $\frac{d y}{d t}=0$?

We can use the chain rule again to find $\frac{d^{2} y}{d x^{2}}$, but be careful!
$y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=$
. $\left(\frac{d y}{d x}\right.$ is a function of \qquad
Important: $\quad \frac{d^{2} y}{d x^{2}} \quad \neq \quad \frac{d^{2} y}{d t} / \frac{d^{2} x}{d t}$

Slope of tangent line

Example. What is the tangent line to the curve $\left\{\begin{array}{l}x(t)=t^{2} \\ y(t)=t^{3}-3 t\end{array}\right.$ at $(3,0)$?

Slope of tangent line

Example. What is the tangent line to the curve $\left\{\begin{array}{l}x(t)=t^{2} \\ y(t)=t^{3}-3 t\end{array}\right.$ at $(3,0)$?
Question: What is t there?

Slope of tangent line

Example. What is the tangent line to the curve $\left\{\begin{array}{l}x(t)=t^{2} \\ y(t)=t^{3}-3 t\end{array}\right.$ at $(3,0)$?
Question: What is t there?

Question: What is the slope there?

Slope of tangent line

Example. What is the tangent line to the curve $\left\{\begin{array}{l}x(t)=t^{2} \\ y(t)=t^{3}-3 t\end{array}\right.$ at $(3,0)$? Question: What is t there?

Question: What is the slope there?

Question: So what is the tangent line there?

Sketching the curve

$$
\left\{\begin{array}{l}
x(t)=t^{2} \\
y(t)=t^{3}-3 t
\end{array}\right.
$$

Let's now sketch the curve.

Sketching the curve

$$
\left\{\begin{array}{l}
x(t)=t^{2} \\
y(t)=t^{3}-3 t
\end{array}\right.
$$

Let's now sketch the curve.
Question: Where are there horizontal and vertical tangents?

- Horizontal:
- Vertical:

Sketching the curve

$$
\left\{\begin{array}{l}
x(t)=t^{2} \\
y(t)=t^{3}-3 t
\end{array}\right.
$$

Let's now sketch the curve.
Question: Where are there horizontal and vertical tangents?

- Horizontal:
- Vertical:

Sketching the curve

$$
\left\{\begin{array}{l}
x(t)=t^{2} \\
y(t)=t^{3}-3 t
\end{array}\right.
$$

Let's now sketch the curve.
Question: Where are there horizontal and vertical tangents?

- Horizontal:
- Vertical:

Question: Where is the curve concave up? concave down?

- Calculate

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{3 t^{2}-3}{2 t}\right)}{\frac{d x}{d t}}
$$

Sketching the curve

$$
\left\{\begin{array}{l}
x(t)=t^{2} \\
y(t)=t^{3}-3 t
\end{array}\right.
$$

Let's now sketch the curve.
Question: Where are there horizontal and vertical tangents?

- Horizontal:
- Vertical:

Question: Where is the curve concave up? concave down?

- Calculate

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{3 t^{2}-3}{2 t}\right)}{\frac{d x}{d t}}=\frac{\frac{(2 t)(6 t)-\left(3 t^{2}-3\right)(2)}{4 t^{2}}}{2 t}
$$

Sketching the curve

$$
\left\{\begin{array}{l}
x(t)=t^{2} \\
y(t)=t^{3}-3 t
\end{array}\right.
$$

Let's now sketch the curve.
Question: Where are there horizontal and vertical tangents?

- Horizontal:
- Vertical:

Question: Where is the curve concave up? concave down?

- Calculate

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{3 t^{2}-3}{2 t}\right)}{\frac{d x}{d t}}=\frac{\frac{(2 t)(6 t)-\left(3 t^{2}-3\right)(2)}{4 t^{2}}}{2 t}=\frac{\frac{6 t^{2}+6}{4 t^{2}}}{2 t}
$$

Sketching the curve

$$
\left\{\begin{array}{l}
x(t)=t^{2} \\
y(t)=t^{3}-3 t
\end{array}\right.
$$

Let's now sketch the curve.
Question: Where are there horizontal and vertical tangents?

- Horizontal:
- Vertical:

Question: Where is the curve concave up? concave down?

- Calculate

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{3 t^{2}-3}{2 t}\right)}{\frac{d x}{d t}}=\frac{\frac{(2 t)(6 t)-\left(3 t^{2}-3\right)(2)}{4 t^{2}}}{2 t}=\frac{\frac{6 t^{2}+6}{4 t^{2}}}{2 t}=\frac{3\left(t^{2}+1\right)}{4 t^{3}} .
$$

Sketching the curve

$$
\left\{\begin{array}{l}
x(t)=t^{2} \\
y(t)=t^{3}-3 t
\end{array}\right.
$$

Let's now sketch the curve.
Question: Where are there horizontal and vertical tangents?

- Horizontal:
- Vertical:

Question: Where is the curve concave up? concave down?

- Calculate

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{3 t^{2}-3}{2 t}\right)}{\frac{d x}{d t}}=\frac{\frac{(2 t)(6 t)-\left(3 t^{2}-3\right)(2)}{4 t^{2}}}{2 t}=\frac{\frac{6 t^{2}+6}{4 t^{2}}}{2 t}=\frac{3\left(t^{2}+1\right)}{4 t^{3}}
$$

Put it all together:

t	x	y
-3	9	-3
-1	1	2
0	0	0
1	1	-2
3	9	3

Polar coordinates

Polar coordinates are an alternate way to think about points in 2D.

Polar coordinates

Polar coordinates are an alternate way to think about points in 2D.

Conversions:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned} \longleftrightarrow \quad r^{2}=x^{2}+y^{2} .
$$

Polar coordinates

Polar coordinates are an alternate way to think about points in 2D.

Conversions:

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta
\end{gathered} \longleftrightarrow \quad \begin{gathered}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin					
\cos					
\tan					

Polar coordinates

Polar coordinates are an alternate way to think about points in 2D.

Conversions:

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta
\end{gathered} \longleftrightarrow \quad \begin{gathered}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin					
\cos					
\tan					

Need to know

Changing coordinates:

$$
(r, \theta)=\left(2,-\frac{2 \pi}{3}\right) \text { then }(x, y)=
$$

Polar coordinates

Polar coordinates are an alternate way to think about points in 2D.

Conversions:

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta
\end{gathered} \longleftrightarrow \quad \begin{gathered}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin					
\cos					
\tan					

Need to know

Changing coordinates:

$$
\begin{aligned}
& (r, \theta)=\left(2,-\frac{2 \pi}{3}\right) \text { then }(x, y)= \\
& (x, y)=(-1,1) \text { then }(r, \theta)=
\end{aligned}
$$

Polar coordinates

Polar coordinates are an alternate way to think about points in 2D.

Conversions:

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta
\end{gathered} \longleftrightarrow \quad \begin{gathered}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin					
\cos					
\tan					

Need to know

Changing coordinates:
$(r, \theta)=\left(2,-\frac{2 \pi}{3}\right)$ then $(x, y)=$ $(x, y)=(-1,1)$ then $(r, \theta)=$
Identifying polar equations:
$\theta=1$
$r=2$

Polar coordinates

Polar coordinates are an alternate way to think about points in 2D.

Conversions:

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta
\end{gathered} \longleftrightarrow \quad \begin{gathered}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin					
\cos					
\tan					

Need to know

Changing coordinates:

$$
\begin{aligned}
& (r, \theta)=\left(2,-\frac{2 \pi}{3}\right) \text { then }(x, y)= \\
& (x, y)=(-1,1) \text { then }(r, \theta)=
\end{aligned}
$$

Identifying polar equations:
$\theta=1$
$r=2$
$r=2 \cos \theta$

Polar coordinates

Polar coordinates are an alternate way to think about points in 2D.

Conversions:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned} \longleftrightarrow \quad \begin{array}{r}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{array}
$$

	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin					
\cos					
\tan					

Need to know

Changing coordinates:

$$
\begin{aligned}
& (r, \theta)=\left(2,-\frac{2 \pi}{3}\right) \text { then }(x, y)= \\
& (x, y)=(-1,1) \text { then }(r, \theta)=
\end{aligned}
$$

Identifying polar equations:

$$
\begin{array}{ll}
\theta=1 & r=2 \\
r=2 \cos \theta &
\end{array}
$$

$$
r=\cos 2 \theta
$$

$$
r=1+\sin \theta
$$

Polar coordinates

Polar coordinates are an alternate way to think about points in 2D.

Conversions:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned} \longleftrightarrow \quad \begin{gathered}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin					
\cos					
\tan					

Need to know

Changing coordinates:
$(r, \theta)=\left(2,-\frac{2 \pi}{3}\right)$ then $(x, y)=$
$(x, y)=(-1,1)$ then $(r, \theta)=$
Identifying polar equations:
$\theta=1$
$r=2$
$r=2 \cos \theta$
$r=\cos 2 \theta$

$$
r=1+\sin \theta
$$

Using your calculator: Switch to Polar mode: MODE $\downarrow \downarrow \downarrow$ POL (Enter).

Polar coordinates

Polar coordinates are an alternate way to think about points in 2D.

Conversions:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned} \longleftrightarrow \quad \begin{gathered}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin					
\cos					
\tan					

Need to know

Changing coordinates:
$(r, \theta)=\left(2,-\frac{2 \pi}{3}\right)$ then $(x, y)=$
$(x, y)=(-1,1)$ then $(r, \theta)=$
Identifying polar equations:
$\theta=1$
$r=2$
$r=2 \cos \theta$
$r=\cos 2 \theta$

$$
r=1+\sin \theta
$$

Using your calculator:
Switch to Polar mode:
MODE $\downarrow \downarrow \downarrow$ POL (Enter).
Also: desmos .com or Mathematica

Tangents to polar curves

Given a polar curve $r=f(\theta)$, we want to know $\frac{d y}{d x}$. Just as before, think of y as a function of x. Then $\frac{d y}{d \theta}=$

Tangents to polar curves

Given a polar curve $r=f(\theta)$, we want to know $\frac{d y}{d x}$. Just as before, think of y as a function of x. Then $\frac{d y}{d \theta}=\frac{d y}{d x} \cdot \frac{d x}{d \theta}$,

Tangents to polar curves

Given a polar curve $r=f(\theta)$, we want to know $\frac{d y}{d x}$. Just as before, think of y as a function of x. Then $\frac{d y}{d \theta}=\frac{d y}{d x} \cdot \frac{d x}{d \theta}$, We conclude: $\frac{d y}{d x}=\frac{\frac{d}{d \theta} y}{\frac{d}{d \theta} x}$

Tangents to polar curves

Given a polar curve $r=f(\theta)$, we want to know $\frac{d y}{d x}$. Just as before, think of y as a function of x. Then $\frac{d y}{d \theta}=\frac{d y}{d x} \cdot \frac{d x}{d \theta}$,
We conclude: $\frac{d y}{d x}=\frac{\frac{d}{d \theta} y}{\frac{d}{d \theta} x}=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)}$

Tangents to polar curves

Given a polar curve $r=f(\theta)$, we want to know $\frac{d y}{d x}$. Just as before, think of y as a function of x. Then $\frac{d y}{d \theta}=\frac{d y}{d x} \cdot \frac{d x}{d \theta}$,
We conclude: $\frac{d y}{d x}=\frac{\frac{d}{d \theta} y}{\frac{d}{d \theta} x}=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)}=\frac{\left(r \cos \theta+\sin \theta \frac{d r}{d \theta}\right)}{\left(r \sin \theta+\cos \theta \frac{d r}{d \theta}\right)}$

Tangents to polar curves

Given a polar curve $r=f(\theta)$, we want to know $\frac{d y}{d x}$. Just as before, think of y as a function of x. Then $\frac{d y}{d \theta}=\frac{d y}{d x} \cdot \frac{d x}{d \theta}$,
We conclude: $\frac{d y}{d x}=\frac{\frac{d}{d \theta} y}{\frac{d}{d \theta} x}=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)}=\frac{\left(r \cos \theta+\sin \theta \frac{d r}{d \theta}\right)}{\left(r \sin \theta+\cos \theta \frac{d r}{d \theta}\right)}$ if

Tangents to polar curves

Given a polar curve $r=f(\theta)$, we want to know $\frac{d y}{d x}$. Just as before, think of y as a function of x. Then $\frac{d y}{d \theta}=\frac{d y}{d x} \cdot \frac{d x}{d \theta}$, We conclude: $\frac{d y}{d x}=\frac{\frac{d}{d \theta} y}{\frac{d}{d \theta} x}=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)}=\frac{\left(r \cos \theta+\sin \theta \frac{d r}{d \theta}\right)}{\left(r \sin \theta+\cos \theta \frac{d r}{d \theta}\right)}$ if

Example. Find the slope of the tangent line to the curve $r=2 \sin \theta$ at cartesian coordinates $(x, y)=(2,0)$.

