- 1. (20 pts) (QuAQ's) Quick answer questions. Answer the following True or False questions and write at least one sentence to justify your answer.
 - (a) **T** or **F**: The vectors $\mathbf{T}(t)$ and $\mathbf{N}(t)$ are perpendicular for all values of t.
 - (b) **T** or **F**: The domain of the function $g(x, y) = \sqrt{4 x^2 y^2}$ is a sphere.
 - (c) **T** or **F**: The level curves of the function $h(x, y) = (x y)^2$ are lines.
 - (d) **T** or **F**: Suppose that for a function f(x, y),

$$\lim_{(x,0)\to(0,0)} f(x,y) = \lim_{(0,y)\to(0,0)} f(x,y) = L.$$

(In other words, the limits taken along the x-axis and the y-axis exist and are equal.) We conclude that $\lim_{(x,y)\to(0,0)} f(x,y)$ exists.

- 2. (5 pts) For the function $F(x, y, z) = 2x^2 + 2y^2 2z + 6$,
 - (a) **Calculate** at least three level surfaces.
 - (b) **Describe** in words these level surfaces (using quadric surface terminology).
 - (c) And try your best to **draw** these level surfaces.
- 3. (10 pts) For the curve defined by the vector function $\mathbf{r}(t) = \langle \sin(2t), \sin(3t), -1 \rangle$,
 - (a) Find $\mathbf{r}'(t)$ and $\mathbf{T}(t)$.
 - (b) Find the tangent line to the curve when $t = \pi/2$.
- 4. (20 pts) Consider the function $f(x, y) = 2\sqrt{x} \cdot y^2$.
 - (a) Find the tangent plane to the graph of f above the point (1, -1).
 - (b) Find the gradient vector $\nabla f(x, y)$.
 - (c) Find the directional derivative $D_{\mathbf{u}}f(1,-1)$ in the direction $3\mathbf{i} 4\mathbf{j}$.
 - (d) Give a real world interpretation of what the number that is your answer in part (c) means.