1. (20 pts) (QuAQ's) Quick answer questions. Answer the following True or False questions and write at least one sentence to justify your answer.
(a) \mathbf{T} or \mathbf{F} : The vectors $\mathbf{T}(t)$ and $\mathbf{N}(t)$ are perpendicular for all values of t.
(b) \mathbf{T} or \mathbf{F} : The domain of the function $g(x, y)=\sqrt{4-x^{2}-y^{2}}$ is a sphere.
(c) \mathbf{T} or \mathbf{F} : The level curves of the function $h(x, y)=(x-y)^{2}$ are lines.
(d) \mathbf{T} or \mathbf{F} : Suppose that for a function $f(x, y)$,

$$
\lim _{(x, 0) \rightarrow(0,0)} f(x, y)=\lim _{(0, y) \rightarrow(0,0)} f(x, y)=L
$$

(In other words, the limits taken along the x-axis and the y-axis exist and are equal.) We conclude that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists.
2. (5 pts) For the function $F(x, y, z)=2 x^{2}+2 y^{2}-2 z+6$,
(a) Calculate at least three level surfaces.
(b) Describe in words these level surfaces (using quadric surface terminology).
(c) And try your best to draw these level surfaces.
3. (10 pts) For the curve defined by the vector function $\mathbf{r}(t)=\langle\sin (2 t), \sin (3 t),-1\rangle$,
(a) Find $\mathbf{r}^{\prime}(t)$ and $\mathbf{T}(t)$.
(b) Find the tangent line to the curve when $t=\pi / 2$.
4. (20 pts) Consider the function $f(x, y)=2 \sqrt{x} \cdot y^{2}$.
(a) Find the tangent plane to the graph of f above the point $(1,-1)$.
(b) Find the gradient vector $\nabla f(x, y)$.
(c) Find the directional derivative $D_{\mathbf{u}} f(1,-1)$ in the direction $3 \mathbf{i}-4 \mathbf{j}$.
(d) Give a real world interpretation of what the number that is your answer in part (c) means.

