Coordinates, Now with More Dimensions....

2D Coordinates

Variables: x (indep), y (dep)

Axes: x-axis $\perp y$ -axis

Coordinates of a point: (a, b)Go a units in x-direction, b in y. Projection onto x-axis: (a, 0)(drop a line \bot from point to x-axis.) Distance from origin: $\sqrt{a^2 + b^2}$

First quadrant:

All points (a, b) with $a \ge 0$, $b \ge 0$.

3D Coordinates

Variables: x, y (indep), z (dep)

Axes: x-axis $\perp y$ -axis $\perp z$ -axis

(

(right hand rule)

Coordinates of a point: (a, b, c)

Go a units in x-dir, b in y, c in z.

Projection onto xy-plane: (a, b, 0)

(drop a line \perp from point to xy-plane)

Distance from origin: $\sqrt{a^2 + b^2 + c^2}$

First octant:

All points (a, b, c) with $a, b, c \ge 0$

Continued Comparison

2D Equations

Lines:

x = 2 defines a vertical line.

All points (2, b) for any b

y = 3 defines a horizontal line.

All points (a, 3) for any a

Circles:

All points distance r from (h, k):

$$x^2 + y^2 = r^2$$

$$(x - h)^2 + (y - k)^2 = r^2$$

3D Equations

Planes:

x=2 is a plane parallel to the yz-plane.

All points (2, b, c) for any b, c.

x = y defines a plane too.

All points (a, a, c) for any a, c.

Spheres:

All points distance r from (h, k, ℓ) :

$$x^2 + y^2 + z^2 = r^2$$

$$(x-h)^2 + (y-k)^2 + (z-\ell)^2 = r^2$$

Think Pair Share: What region in \mathbb{R}^3 do these inequalities give?

$$1 \le x^2 + y^2 + z^2 \le 9$$
 & $x \ge 0$

Vectors

Definition: A **vector** is a quantity that has both magnitude and direction, often represented by an arrow. We'll use either \mathbf{v} , \vec{v} , or $\vec{\mathbf{v}}$.

- ▶ Think of them as a generalization of a single number.
- ► They do not have a fixed position.
- ► Can have any number of dimensions.

What can we do with vectors?

We can add vectors.

Place the tail of $\vec{\mathbf{v}}$ at the head of $\vec{\mathbf{u}}$.

Define $\vec{\mathbf{u}} + \vec{\mathbf{v}}$ to be the vector starting at the tail of $\vec{\mathbf{u}}$ and ending at the head of $\vec{\mathbf{v}}$.

Properties:
$$\vec{\mathbf{u}} + \vec{\mathbf{0}} = \vec{\mathbf{u}}$$

 $\vec{\mathbf{u}} + \vec{\mathbf{v}} = \vec{\mathbf{v}} + \vec{\mathbf{u}}$. (Parallelogram!)

We can stretch vectors

by a constant factor (a scalar).

Zero Properties:

$$0 \cdot \vec{\mathbf{v}} = \vec{\mathbf{0}}$$
 and $c \cdot \vec{\mathbf{0}} = \vec{\mathbf{0}}$

So we can subtract vectors,

because
$$\vec{\mathbf{u}} - \vec{\mathbf{v}} = \vec{\mathbf{u}} + (-1)\vec{\mathbf{v}}$$
.

Distributive laws:

$$(a+b) \cdot \vec{\mathbf{v}} = a \cdot \vec{\mathbf{v}} + b \cdot \vec{\mathbf{v}}$$

 $c \cdot (\vec{\mathbf{u}} + \vec{\mathbf{v}}) = c \cdot \vec{\mathbf{u}} + c \cdot \vec{\mathbf{v}}$

Vectors — §10.2

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- $ightharpoonup \vec{\mathbf{u}} = \langle 1, 4, 3 \rangle$, then $|\vec{\mathbf{u}}| =$
- $ightharpoonup ec{\mathbf{v}} = \langle 0, -1, -3 \rangle$, then $|\vec{\mathbf{v}}| =$

Three special vectors: $\vec{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{j}} = \langle 0, 1, 0 \rangle$, $\vec{\mathbf{k}} = \langle 0, 0, 1 \rangle$.

► Alternate form: $\vec{\mathbf{u}} = \vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

- $\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle 1 + 0, 4 + (-1), 3 + (-3) \rangle = \langle 1, 3, 0 \rangle$
- $ightharpoonup \pi \vec{\mathbf{u}} = \pi \langle 1, 4, 3 \rangle = \langle \pi, 4\pi, 3\pi \rangle$ Stretch it!

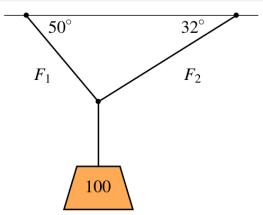
Magnitude is a synonym for **length**, written $|\vec{\mathbf{v}}|$ or $|\vec{\mathbf{v}}|$.

You may need to find the unit vector in the same direction as $\vec{\bf u}$.

- ightharpoonup Find the length of $\vec{\mathbf{u}}$ and divide by it!
- **Example.** Unit vector of $\langle 2, -1, -2 \rangle$ is

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?



Answer: The forces must be in equilibrium. This means that the sum of all the forces equals $\vec{0}$.

- ▶ Set up a coordinate system centered at the rope meeting place.
- ► Find the force vector on each rope.
 - ▶ The weight down gives $\dot{\mathbf{W}} = \langle 0, -100 \rangle$.
 - ▶ The first force $\vec{\mathbf{F}}_1 = F_1 \langle ____ \rangle$ (magnitude · direction)
 - ▶ The second force $\vec{\mathbf{F}}_2 = F_2\langle$
- Use equilibrium to get a system of equations, solve.
- $-\cos 50$ $F_1 + \cos 32$ $F_2 = 0$ and $\sin 50$ $F_1 + \sin 32$ $F_2 100 = 0$ Solving gives $F_1 \approx 85$ lb and $F_2 \approx 65$ lb.