What else can we do with vectors?

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u} \times \vec{v}$ In 3 dimensions: cross product. Answer is a vector. Memorize.

Dot product

Let $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ be vectors of the same dimension. If $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, then $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

Big deal:

More Properties:

1. $\vec{a} \cdot \vec{a} =$

2.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

3. $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
4. $(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b})$
5. $\vec{0} \cdot \vec{a} =$ ____

Dot products and angles

Key idea: Use the dot product to find the angle between vectors.

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta \quad \text{OR} \quad \cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}.$$
Why? Law of cosines!! $|\vec{\mathbf{a}} - \vec{\mathbf{b}}|^2 = |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 - 2|\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta$

Example. What is the angle between $\vec{a} = \langle 2, 2, -1 \rangle$ and $\vec{b} = \langle 5, -3, 2 \rangle$? *Answer:*

$$\cos^{-1}\left(\frac{2}{3\sqrt{38}}\right)\approx 1.46~\text{rad}\approx 84^\circ.$$

Question: What happens when two vectors are orthogonal? **Key idea:** Two vectors are orthogonal if and only if _____

Projecting

Dot products let you project one vector onto another.

Answers: "How far does vector $\vec{\mathbf{b}}$ go in vector $\vec{\mathbf{a}}$'s direction?"

First: Calculate the length of the projection.

Draw the triangle.

We see $\frac{|\operatorname{proj}_{\vec{a}}\vec{b}|}{|\vec{b}|} = \cos\theta =$ _____,

So its length is $|\operatorname{proj}_{\vec{a}}\vec{b}| = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}$.

Next: What is the direction of the projection?

The unit vector in \vec{a} 's direction is _____.

Therefore

$$\text{proj}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}\cdot\frac{\vec{a}}{|\vec{a}|} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2}\vec{a}$$

Cross Products **3D Only!!!!**

Given vectors $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, the cross product:

 $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \langle a_2 b_3 - a_3 b_2 , a_3 b_1 - a_1 b_3 , a_1 b_2 - a_2 b_1 \rangle$

is orthogonal to both \vec{a} and \vec{b} and has length

 $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin \theta.$

This is equal to the area of the parallelogram determined by \vec{a} and \vec{b} .

Use the right hand rule to determine the direction of $\vec{a} \times \vec{b}$.

► Use your *right hand* to swing from \vec{a} to \vec{b} . Your thumb points in the direction of $\vec{a} \times \vec{b}$.

(What do you get?)

Remembering $\langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$

Use the determinant of a 3×3 matrix.

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Example. Find $(2,3,2) \times (1,0,6)$, and show that it is \perp to each.

Properties of \times

Proofs by component manipulation

$$\vec{a} \times \vec{a} = \vec{0}$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$= \langle a_1, a_2, a_3 \rangle \times (\langle b_1, b_2, b_3 \rangle + \langle c_1, c_2, c_3 \rangle)$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$= \langle a_1, a_2, a_3 \rangle \times \langle b_1 + c_1, b_2 + c_2, b_3 + c_3 \rangle$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$= \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle +$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

$$= \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

The quantity $|\vec{a} \cdot (\vec{b} \times \vec{c})|$ is called the scalar triple product, and calculates the volume of the *parallelepiped* determined by the vectors \vec{a} , \vec{b} , and \vec{c} .

Physics

Application: Work

If a force applied in a direction (vector \vec{F}) causes a displacement in a direction (vector \vec{D}), then the work exerted is $W = \vec{F} \cdot \vec{D}$.

Application: Torque

If a force applied in a direction (vector \vec{F}) is applied to a lever, where the radius vector \vec{r} is from the pivot to the place where the force is applied, then a turning force called **torque** $\vec{\tau}$ is generated. A formula is calculated by: $\vec{\tau} = \vec{r} \times \vec{F}$