How to multiply two vectors:

 $\vec{u} \cdot \vec{v}$ In any dimension: dot product.

How to multiply two vectors:

 $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number.

How to multiply two vectors:

 $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u}\times\vec{v}~$ In 3 dimensions: cross product.

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u} \times \vec{v}$ In 3 dimensions: cross product. Answer is a vector.

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u} \times \vec{v}$ In 3 dimensions: cross product. Answer is a vector. Memorize.

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u}\times\vec{v}~$ In 3 dimensions: cross product. Answer is a vector. Memorize.

Dot product

Let \vec{a} and \vec{b} be vectors of the same dimension.

If $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$,

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u}\times\vec{v}~$ In 3 dimensions: cross product. Answer is a vector. Memorize.

Dot product

Let \vec{a} and \vec{b} be vectors of the same dimension.

If $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, then $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u}\times\vec{v}~$ In 3 dimensions: cross product. Answer is a vector. Memorize.

Dot product

Let \vec{a} and \vec{b} be vectors of the same dimension.

If $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, then $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

Big deal:

1. $\vec{a} \cdot \vec{a} =$

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u}\times\vec{v}~$ In 3 dimensions: cross product. Answer is a vector. Memorize.

Dot product

Let \vec{a} and \vec{b} be vectors of the same dimension.

If $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, then $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

Big deal:More Properties:1. $\vec{a} \cdot \vec{a} =$ 2. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u}\times\vec{v}~$ In 3 dimensions: cross product. Answer is a vector. Memorize.

Dot product

Let \vec{a} and \vec{b} be vectors of the same dimension.

If $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, then $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

Big deal:

More Properties:

- 1. $\vec{a} \cdot \vec{a} =$ 2. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
 - 3. $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u}\times\vec{v}~$ In 3 dimensions: cross product. Answer is a vector. Memorize.

Dot product Let \vec{a} and \vec{b} be vectors of the same dimension. If $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$.

Big deal:

More Properties:

1. $\vec{a} \cdot \vec{a} =$

2. $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{a}}$ 3. $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} + \vec{\mathbf{c}}) = \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{a}} \cdot \vec{\mathbf{c}}$ 4. $(c\vec{\mathbf{a}}) \cdot \vec{\mathbf{b}} = c(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$

How to multiply two vectors:

- $\vec{u} \cdot \vec{v}$ In any dimension: dot product. Answer is a number. Easy.
- $\vec{u}\times\vec{v}~$ In 3 dimensions: cross product. Answer is a vector. Memorize.

Dot product Let \vec{a} and \vec{b} be vectors of the same dimension. If $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$.

Big deal:

More Properties:

1. $\vec{a} \cdot \vec{a} =$

2. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ 3. $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ 4. $(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b})$ 5. $\vec{0} \cdot \vec{a} = _$

Key idea: Use the dot product to find the angle between vectors.

Key idea: Use the dot product to find the angle between vectors.

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta$$
 OR $\cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}$.

Key idea: Use the dot product to find the angle between vectors.

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta$$
 OR $\cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}.$

Why?

Key idea: Use the dot product to find the angle between vectors.

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta$$
 OR $\cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}.$

Why? Law of cosines!!

Key idea: Use the dot product to find the angle between vectors.

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta \quad \text{OR} \quad \cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}.$$
Why? Law of cosines!! $|\vec{\mathbf{a}} - \vec{\mathbf{b}}|^2 = |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 - 2|\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta$

Key idea: Use the dot product to find the angle between vectors.

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta \quad \text{OR} \quad \cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}.$$
Why? Law of cosines!! $|\vec{\mathbf{a}} - \vec{\mathbf{b}}|^2 = |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 - 2|\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta$

Example. What is the angle between $\vec{a} = \langle 2, 2, -1 \rangle$ and $\vec{b} = \langle 5, -3, 2 \rangle$? *Answer:*

Key idea: Use the dot product to find the angle between vectors.

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta \quad \text{OR} \quad \cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}.$$
Why? Law of cosines!! $|\vec{\mathbf{a}} - \vec{\mathbf{b}}|^2 = |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 - 2|\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta$

Example. What is the angle between $\vec{a} = \langle 2, 2, -1 \rangle$ and $\vec{b} = \langle 5, -3, 2 \rangle$? *Answer:*

$$\cos^{-1}\left(\frac{2}{3\sqrt{38}}\right)\approx 1.46~\text{rad}\approx 84^{\circ}.$$

Key idea: Use the dot product to find the angle between vectors.

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta \quad \text{OR} \quad \cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}.$$
Why? Law of cosines!! $|\vec{\mathbf{a}} - \vec{\mathbf{b}}|^2 = |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 - 2|\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \theta$

Example. What is the angle between $\vec{a} = \langle 2, 2, -1 \rangle$ and $\vec{b} = \langle 5, -3, 2 \rangle$? *Answer:*

$$\cos^{-1}\left(\frac{2}{3\sqrt{38}}\right)\approx 1.46~\text{rad}\approx 84^\circ.$$

Question: What happens when two vectors are orthogonal? **Key idea:** Two vectors are orthogonal if and only if _____

Dot products let you project one vector onto another. **Answers:** "How far does vector $\vec{\mathbf{b}}$ go in vector $\vec{\mathbf{a}}$'s direction?"

Dot products let you project one vector onto another. **Answers:** "How far does vector $\vec{\mathbf{b}}$ go in vector $\vec{\mathbf{a}}$'s direction?" **First:** Calculate the length of the projection.

Draw the triangle.

We see
$$\frac{|\operatorname{proj}_{\vec{a}}\vec{b}|}{|\vec{b}|} = \cos\theta =$$
______,

Dot products let you project one vector onto another. **Answers:** "How far does vector $\vec{\mathbf{b}}$ go in vector $\vec{\mathbf{a}}$'s direction?"

First: Calculate the length of the projection.

Draw the triangle.

We see $\frac{|\text{proj}_{\vec{a}}\vec{b}|}{|\vec{b}|} = \cos \theta =$ _____, So its length is $|\text{proj}_{\vec{a}}\vec{b}| = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}.$

Dot products let you project one vector onto another.

Answers: "How far does vector $\vec{\mathbf{b}}$ go in vector $\vec{\mathbf{a}}$'s direction?"

First: Calculate the length of the projection.

Draw the triangle.

We see $\frac{|\text{proj}_{\vec{a}}\vec{b}|}{|\vec{b}|} = \cos \theta =$ _____, So its length is $|\text{proj}_{\vec{a}}\vec{b}| = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}$. Next: What is the direction of the projection?

The unit vector in \vec{a} 's direction is _____.

Dot products let you project one vector onto another.

Answers: "How far does vector $\vec{\mathbf{b}}$ go in vector $\vec{\mathbf{a}}$'s direction?"

First: Calculate the length of the projection.

Draw the triangle.

We see $\frac{|\operatorname{proj}_{\vec{a}}\vec{b}|}{|\vec{b}|} = \cos\theta =$ _____,

So its length is $\left| \text{proj}_{\vec{a}} \vec{b} \right| = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$.

Next: What is the direction of the projection?

The unit vector in \vec{a} 's direction is _____.

Therefore

$$\mathsf{proj}_{\vec{a}}\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \cdot \frac{\vec{a}}{|\vec{a}|} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}\vec{a}$$

Cross products — §10.4

Cross Products

3D Only!!!!

Given vectors $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, the cross product:

 $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \langle a_2 b_3 - a_3 b_2 , a_3 b_1 - a_1 b_3 , a_1 b_2 - a_2 b_1 \rangle$

3D Only!!!!

Given vectors $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, the cross product:

$$ec{\mathbf{a}} imes ec{\mathbf{b}} = \langle a_2 b_3 - a_3 b_2 \;,\; a_3 b_1 - a_1 b_3 \;,\; a_1 b_2 - a_2 b_1
angle$$

is orthogonal to both \vec{a} and \vec{b}

3D Only!!!!

Given vectors $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, the cross product:

 $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \langle a_2 b_3 - a_3 b_2 , a_3 b_1 - a_1 b_3 , a_1 b_2 - a_2 b_1 \rangle$

is orthogonal to both \vec{a} and \vec{b} and has length

 $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin \theta.$

3D Only!!!!

Given vectors $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, the cross product:

 $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \langle a_2 b_3 - a_3 b_2 \ , \ a_3 b_1 - a_1 b_3 \ , \ a_1 b_2 - a_2 b_1 \rangle$

is orthogonal to both \vec{a} and \vec{b} and has length

 $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin \theta.$

This is equal to the area of the parallelogram determined by \vec{a} and \vec{b} .

3D Only!!!!

Given vectors $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, the cross product:

 $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \langle a_2 b_3 - a_3 b_2 , a_3 b_1 - a_1 b_3 , a_1 b_2 - a_2 b_1 \rangle$

is orthogonal to both \vec{a} and \vec{b} and has length

 $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin \theta.$

This is equal to the area of the parallelogram determined by \vec{a} and \vec{b} .

Use the right hand rule to determine the direction of $\vec{a} \times \vec{b}$.

▶ Use your *right hand* to swing from \vec{a} to \vec{b} . Your thumb points in the direction of $\vec{a} \times \vec{b}$.

3D Only!!!!

Given vectors $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, the cross product:

 $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \langle a_2 b_3 - a_3 b_2 , a_3 b_1 - a_1 b_3 , a_1 b_2 - a_2 b_1 \rangle$

is orthogonal to both \vec{a} and \vec{b} and has length

 $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin \theta.$

This is equal to the area of the parallelogram determined by \vec{a} and \vec{b} .

Use the right hand rule to determine the direction of $\vec{a} \times \vec{b}$.

▶ Use your *right hand* to swing from \vec{a} to \vec{b} . Your thumb points in the direction of $\vec{a} \times \vec{b}$.

(What do you get?)

Remembering $\langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$

Use the determinant of a 3×3 matrix.

$$\begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Example. Find $(2,3,2) \times (1,0,6)$, and show that it is \perp to each.

$$\vec{a} \times \vec{a} = \vec{0} \vec{a} \times \vec{b} = -\vec{b} \times \vec{a} \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

$$\vec{a} \times \vec{a} = \vec{0}$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

Proofs by component manipulation $\vec{a} \times (\vec{b} + \vec{c}) =$

$$\vec{a} \times \vec{a} = \vec{0}$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

Proofs by component manipulation $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} + \vec{\mathbf{c}}) =$ $= \langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle \times (\langle \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3 \rangle + \langle \mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3 \rangle)$

Proofs by component manipulation $\vec{a} \times (\vec{b} + \vec{c}) =$ $= \langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle \times (\langle \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3 \rangle + \langle \mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3 \rangle)$ $= \langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle \times \langle \mathbf{b}_1 + \mathbf{c}_1, \mathbf{b}_2 + \mathbf{c}_2, \mathbf{b}_3 + \mathbf{c}_3 \rangle$

$$\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = (\vec{\mathbf{a}} \cdot \vec{\mathbf{c}})\vec{\mathbf{b}} - (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})\vec{\mathbf{c}}$$

Proofs by component manipulation

$$\vec{a} \times \vec{a} = \vec{0}$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$\vec{a} \times (\vec{b} + \vec{c}) =$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

Proofs by component manipulation

$$\vec{a} \times \vec{a} = \vec{0}$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$\vec{a} \times (\vec{b} + \vec{c}) =$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{c}) + \vec{c} +$$

Proofs by component manipulation

$$\vec{a} \times \vec{a} = \vec{0}$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$\vec{a} \times (\vec{b} + \vec{c}) =$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

Proofs by component manipulation

$$\vec{a} \times \vec{a} = \vec{0}$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$\vec{a} = (\vec{a}_1, a_2, a_3) \times ((\vec{b}_1, b_2, b_3) + (c_1, c_2, c_3))$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \cdot (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

$$\vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

Proofs by component manipulation

$$\vec{a} \times \vec{a} = \vec{0}$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$\vec{a} \times (\vec{b} + \vec{c}) =$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{c}) + \vec{c} = \vec{c} \cdot \vec{c} + \vec{c$$

The quantity $|\vec{a} \cdot (\vec{b} \times \vec{c})|$ is called the scalar triple product, and calculates the volume of the *parallelepiped* determined by the vectors \vec{a} , \vec{b} , and \vec{c} .

Physics

Application: Work

If a force applied in a direction (vector \vec{F}) causes a displacement in a direction (vector \vec{D}), then the work exerted is $W = \vec{F} \cdot \vec{D}$.

Physics

Application: Work

If a force applied in a direction (vector \vec{F}) causes a displacement in a direction (vector \vec{D}), then the work exerted is $W = \vec{F} \cdot \vec{D}$.

Application: Torque

If a force applied in a direction (vector \vec{F}) is applied to a lever, where the radius vector \vec{r} is from the pivot to the place where the force is applied, then a turning force called **torque** $\vec{\tau}$ is generated. A formula is calculated by: $\vec{\tau} = \vec{r} \times \vec{F}$