Lines in 2D Coordinates

Two common formats:

Lines in 2D Coordinates

Two common formats:

$$y = mx + b$$
 (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

Lines in 2D Coordinates

Two common formats:

$$y = mx + b$$
 (slope-intercept) or $(y - y_0) = m(x - x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Lines in 2D Coordinates

Two common formats:

$$y = mx + b$$
 (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Each t gives a point (x, y, z) on L.

Lines in 2D Coordinates

Two common formats:

$$y = mx + b$$
 (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

$$\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$$

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Each t gives a point (x, y, z) on L.

Lines in 2D Coordinates

Two common formats:

$$y = mx + b$$
 (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

$$\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$$

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Each t gives a point (x, y, z) on L.

Reading componentwise, same as:

$$\begin{cases} x(t) = x_0 + at \\ y(t) = y_0 + bt \\ z(t) = z_0 + ct \end{cases}$$

Lines in 2D Coordinates

Two common formats:

$$y = mx + b$$
 (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

$$\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$$

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Each t gives a point (x, y, z) on L.

Reading componentwise, same as:

$$\begin{cases} x(t) = x_0 + at \\ y(t) = y_0 + bt \\ z(t) = z_0 + ct \end{cases}$$

Key idea: Read off direction vector $\vec{\mathbf{v}}$ from coeffs of t.

Lines in 2D Coordinates

Two common formats:

$$y = mx + b$$
 (slope-intercept) or $(y-y_0) = m(x-x_0)$ (pt-slope)

Given a point and a direction, you know the equation of the line.

$$\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$$

Two Lines

In three dimensions, two lines can

- ▶ be parallel
- ▶ intersect
- ▶ be skew

Lines in 3D Coordinates

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

Each t gives a point (x, y, z) on L.

Reading componentwise, same as:

$$\begin{cases} x(t) = x_0 + at \\ y(t) = y_0 + bt \\ z(t) = z_0 + ct \end{cases}$$

Key idea: Read off direction vector $\vec{\mathbf{v}}$ from coeffs of t.

Example. Find the equation of the line that passes through A = (2, 4, -3) and B = (3, -1, 1).

Example. Find the equation of the line that passes through A = (2, 4, -3) and B = (3, -1, 1).

Answer: To find the equation of a line, we need

▶ One Point.

Example. Find the equation of the line that passes through A = (2, 4, -3) and B = (3, -1, 1).

Answer: To find the equation of a line, we need

- ▶ One Point.
- ▶ One Direction.

Example. Find the equation of the line that passes through A = (2, 4, -3) and B = (3, -1, 1).

Answer: To find the equation of a line, we need

- ▶ One Point.
- One Direction.

Example. Where does this line pass through the xy-plane?

Example. Find the equation of the line that passes through A = (2, 4, -3) and B = (3, -1, 1).

Answer: To find the equation of a line, we need

- ▶ One Point.
- ▶ One Direction.

Example. Where does this line pass through the xy-plane?

Answer: In other words, ___

Example. Show that the following lines are skew.

$$\mathsf{Romeo}: \langle 1+t, -2+3t, 4-t \rangle$$

Juliet :
$$\langle 2s, 3+s, -3+4s \rangle$$

Example. Show that the following lines are skew.

Romeo :
$$\langle 1+t, -2+3t, 4-t \rangle$$

Juliet : $\langle 2s, 3+s, -3+4s \rangle$

Answer: We will show:

- ► They are not **parallel**.
- ► They do not **intersect**.

Example. Show that the following lines are skew.

Romeo :
$$\langle 1+t, -2+3t, 4-t \rangle$$

Juliet : $\langle 2s, 3+s, -3+4s \rangle$

Answer: We will show:

- ▶ They are not **parallel**. (They would have the same _____.)
- ► They do not **intersect**.

Example. Show that the following lines are skew.

$$\mathsf{Romeo}: \langle 1+t, -2+3t, 4-t \rangle \\ \mathsf{Juliet}: \langle 2s, 3+s, -3+4s \rangle$$

Answer: We will show:

- ▶ They are not **parallel**. (They would have the same _____.)
- ▶ They do not **intersect.** (There would be a point _____.)

Question:

Does a plane have a direction?

Question:

Does a plane have a direction?

There is one vector to the plane, the $\underline{\hspace{1cm}}$ \vec{n} .

Question:

Does a plane have a direction?

There is one vector _____ to the plane, the _____ $\vec{n}.$

Note: $\vec{\mathbf{n}}$ defines *infinitely many* planes. We also need a point.

Question:

Does a plane have a direction?

There is one vector _____ to the plane, the ____ \vec{n} .

Note: \vec{n} defines *infinitely many* planes. We also need a point.

A plane is defined by a normal vector $\vec{\bf n}$ and a point $\vec{\bf r}_0 = (x_0, y_0, z_0)$.

For any point \vec{r} on the plane, $\vec{r}-\vec{r}_0$ is perpendicular to \vec{n} .

Question:

Does a plane have a direction?

There is one vector to the plane, the $\underline{\hspace{1cm}}$ \vec{n} .

Note: \vec{n} defines *infinitely many* planes. We also need a point.

A **plane** is defined by a normal vector $\vec{\bf n}$ and a point $\vec{\bf r}_0 = (x_0, y_0, z_0)$. For any point $\vec{\bf r}$ on the plane, $\vec{\bf r} - \vec{\bf r}_0$ is perpendicular to $\vec{\bf n}$. So the equation of a plane is

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{r}} - \vec{\mathbf{r}}_0) = 0.$$

Question:

Does a plane have a direction?

There is one vector _____ to the plane, the ____ \vec{n} .

Note: \vec{n} defines *infinitely many* planes. We also need a point.

A plane is defined by a normal vector $\vec{\bf n}$ and a point $\vec{\bf r}_0 = (x_0, y_0, z_0)$. For any point $\vec{\bf r}$ on the plane, $\vec{\bf r} - \vec{\bf r}_0$ is perpendicular to $\vec{\bf n}$. So the equation of a plane is

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{r}} - \vec{\mathbf{r}}_0) = 0.$$

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax + by + cz = d$$

Question:

Does a plane

have a direction?

There is one vector _____ to the plane, the ____ \vec{n} .

Note: \vec{n} defines *infinitely many* planes. We also need a point.

A plane is defined by a normal vector $\vec{\bf n}$ and a point $\vec{\bf r}_0 = (x_0, y_0, z_0)$. For any point $\vec{\bf r}$ on the plane, $\vec{\bf r} - \vec{\bf r}_0$ is perpendicular to $\vec{\bf n}$. So the equation of a plane is

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{r}} - \vec{\mathbf{r}}_0) = 0.$$

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax + by + cz = d$$

Key idea: Read off normal vector $\vec{\mathbf{n}}$ from coeffs of x, y, z.

Example. What is the angle between the planes

$$x + y + z = 1$$
 and $x - 2y + 3z = 1$?

Example. What is the angle between the planes

$$x + y + z = 1$$
 and $x - 2y + 3z = 1$?

Answer: When we need to find an angle, use _____

Example. What is the angle between the planes

$$x + y + z = 1$$
 and $x - 2y + 3z = 1$?

Answer: When we need to find an angle, use .

$$\theta = \cos^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}$$

Example. What is the angle between the planes

$$x + y + z = 1$$
 and $x - 2y + 3z = 1$?

Answer: When we need to find an angle, use .

$$\theta = \cos^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}$$

Example. What is the equation of the intersection line?

Example. What is the angle between the planes

$$x + y + z = 1$$
 and $x - 2y + 3z = 1$?

Answer: When we need to find an angle, use .

$$\theta = \cos^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}$$

Example. What is the equation of the intersection line?

Answer: For the equation of a line, we need ______

Example. Find the distance from (1,0,-1) to 2x + 3y - 5z + 10 = 0.

Example. Find the distance from (1,0,-1) to 2x + 3y - 5z + 10 = 0.

Answer: The normal vector to the plane is . .

Example. Find the distance from (1,0,-1) to 2x + 3y - 5z + 10 = 0.

Answer: The normal vector to the plane is _____. We conclude that the shortest distance from $P_0 = (1,0,-1)$ to the plane is along the line

Example. Find the distance from (1,0,-1) to 2x + 3y - 5z + 10 = 0.

Answer: The normal vector to the plane is _____. We conclude that the shortest distance from $P_0 = (1,0,-1)$ to the plane is along the line _____.

Where does this hit the plane?

Example. Find the distance from (1,0,-1) to 2x + 3y - 5z + 10 = 0.

Answer: The normal vector to the plane is _____.

We conclude that the shortest distance from $P_0=(1,0,-1)$ to the plane is along the line

Where does this hit the plane?

Use the equation of the line and the plane:

$$2x + 3y - 5z + 10 = 0 \implies 2(1 + 2t) + 3(0 + 3t) - 5(-1 - 5t) + 10 = 0$$

Example. Find the distance from (1,0,-1) to 2x + 3y - 5z + 10 = 0.

Answer: The normal vector to the plane is _____. We conclude that the shortest distance from $P_0 = (1, 0, -1)$

to the plane is along the line ______.

Where does this hit the plane?

Use the equation of the line and the plane:

$$2x + 3y - 5z + 10 = 0 \implies 2(1 + 2t) + 3(0 + 3t) - 5(-1 - 5t) + 10 = 0$$

Simplifying, the point P_1 where the line hits the plane is when $t = \frac{-17}{38}$.

Example. Find the distance from (1,0,-1) to 2x + 3y - 5z + 10 = 0.

Answer: The normal vector to the plane is ______.

We conclude that the shortest distance from $P_0 = (1, 0, -1)$ to the plane is along the line

Where does this hit the plane?

Use the equation of the line and the plane:

$$2x + 3y - 5z + 10 = 0 \implies 2(1 + 2t) + 3(0 + 3t) - 5(-1 - 5t) + 10 = 0$$

Simplifying, the point P_1 where the line hits the plane is when $t=\frac{-17}{38}$.

$$\vec{P}_1 - \vec{P}_0 = \frac{-17}{38} \langle 2, 3, -5 \rangle$$
, so

Example. Find the distance from (1,0,-1) to 2x + 3y - 5z + 10 = 0.

Answer: The normal vector to the plane is ______.

We conclude that the shortest distance from $P_0 = (1, 0, -1)$ to the plane is along the line

Where does this hit the plane?

Use the equation of the line and the plane:

$$2x + 3y - 5z + 10 = 0 \implies 2(1 + 2t) + 3(0 + 3t) - 5(-1 - 5t) + 10 = 0$$

Simplifying, the point P_1 where the line hits the plane is when $t = \frac{-17}{38}$.

$$\vec{P}_1 - \vec{P}_0 = \frac{-17}{38} \langle 2, 3, -5 \rangle$$
, so $|\vec{P}_1 - \vec{P}_0| = \frac{17}{38} \sqrt{2^2 + 3^2 + (-5)^2} = \frac{17}{\sqrt{38}}$.