Drawing simple 3-D surfaces

Definition: Cylinders are surfaces where all slices are the same.

Example. $z = x^2$. $\longleftarrow y$ is NOT in this equation; y can be anything. For any choice of y = k (parallel to _____-plane), the surface looks like a parabola opening toward the positive z-axis. It is a parabolic cylinder.

Example. $y^2 + z^2 = 1$. $\longleftarrow x$ is not in this equation. For any choice of x = k, the surface looks like a unit circle.

Quadric surfaces

Definition: A quadric surface is defined by an equation of the form:

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$$

They are the analog of conic sections in two dimensions.

Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Strategy: Take slices in each coordinate direction, piece the slices together to understand the surface. $\begin{cases} x = \text{constant } k \\ y = \text{constant } k \\ z = \text{constant } k \end{cases}$

$$\begin{cases} x = \text{constant } k \\ y = \text{constant } k \\ z = \text{constant } k \end{cases}$$

Example.
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$
.

When
$$z = 0$$
, $x^2 + \frac{y^2}{9} = 1$ is an ellipse.

$$(-2 \le k \le 2)$$

When
$$z = k$$
, $x^2 + \frac{y^2}{9} = 1 - \frac{k^2}{4}$ is an ellipse when $1 - \frac{k^2}{4} \ge 0$.

When
$$x = k$$
, $\frac{y^2}{9} + \frac{z^2}{4} = 1 - k^2$ is an ellipse

When
$$y = k$$
, $x^2 + \frac{z^2}{4} = 1 - \frac{k^2}{9}$ is an ellipse

Every slice is an ellipse \rightsquigarrow surface is an ellipsoid.

Example. $z = y^2 - x^2$

$$x = k$$

Slices
$$x = k$$
 $y = k$ $z = k$

$$z = k$$

$$z = y^2 - k^2$$

Eqn Format
$$z = y^2 - k^2$$
 $z = k^2 - x^2$ $k = y^2 - x^2$

$$k = y^2 - x^2$$

Conic section

Sketches

Assemble together:

Need to know

▶ There are six different families of quadric surfaces.

Ellipsoid (Sphere)

$$+\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$$

Elliptic paraboloid

$$\frac{\mathbf{z}}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Hyperbolic paraboloid

$$\frac{\mathbf{Z}}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Cone

$$+\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=0$$

Hyperboloid of one sheet

$$+\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$$

Hyperboloid of two sheets

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

- Matching equations to surfaces.
- ▶ More variety than conic sections but same building blocks.
- How to find slices, assemble to a rough sketch.

Online Resources:

https://www.youtube.com/watch?v=LBiiOEiD3Yk

http://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx