Arc length

The arc length of a vector function is calculated by:

$$\int dL = \int_{t=a}^{t=b} \sqrt{\frac{dx^2}{dt}^2 + \frac{dy^2}{dt}^2 + \frac{dz^2}{dt}^2} dt = \int_{t=a}^{t=b} |\vec{\mathbf{r}}'(t)| dt$$

The arc length function is $s(t) = \int_{u=a}^{u=t} |\vec{\mathbf{r}}'(u)| du$.

▶ We use *u* to parametrize the curve instead of *t*.

 \triangleright s(t) is a function of t telling the distance traveled since a.

Example. Determine the distance that a particle travels from its initial position (1,0,0) to any point on the curve

$$\vec{\mathbf{r}}(t) = \cos t \, \vec{\mathbf{i}} + \sin t \, \vec{\mathbf{j}} + t \, \vec{\mathbf{k}}.$$

Answer: We are looking for s(t) starting at t =____.

$$s(t) = \int_{u=0}^{u=t} \sqrt{\underline{\qquad}} du =$$

The distance travelled from time 0 to time t is s(t) =_____.

Reparametrization with respect to arc length

You may want to reparametrize your curve so that

one unit in your parameter \leftrightarrow one unit in distance To do this, we need to replace t by s. Since we have s as a function of t, we need the inverse function!

In our example, $s = \sqrt{2}t$, so $t = \frac{s}{\sqrt{2}}$. Substituting,

$$\vec{\mathbf{r}}(s) = \cos \frac{s}{\sqrt{2}} \vec{\mathbf{i}} + \sin \frac{s}{\sqrt{2}} \vec{\mathbf{j}} + \frac{s}{\sqrt{2}} \vec{\mathbf{k}}.$$

Frenet Frame

There are many different parametrizations of any one curve. The vectors $\vec{\mathbf{r}}(t)$, $\vec{\mathbf{v}}(t)$, $\vec{\mathbf{a}}(t)$ depend on the parameter. But the curve itself has intrinsic properties. **At every point:**

Three natural vectors make up the Frenet frame, or TNB frame.

 $\vec{\mathsf{T}}$ The direction of the tangent vector. $\vec{\mathsf{T}}(t) = \frac{\vec{\mathsf{r}}'(t)}{|\vec{\mathsf{r}}'(t)|}$.

- \vec{N} The direction in which the curve is turning. $\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|}$.
- \vec{B} The third vector that completes \perp basis. $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$

A number that tells how bendy or twisty the curve is.

Definition: The curvature $\kappa(t)$ of a curve ("kappa") tells how quickly \vec{T} is changing with respect to distance traveled.

$$\kappa = \left| \frac{d\vec{\mathbf{T}}}{ds} \right| \stackrel{\text{chain rule}}{=} \left| \frac{\frac{d\vec{\mathbf{T}}}{dt}}{\frac{ds}{dt}} \right| = \frac{|\vec{\mathbf{T}}'(t)|}{|\vec{\mathbf{r}}'(t)|} \stackrel{\text{algebra}}{=} \frac{|\vec{\mathbf{r}}'(t) \times \vec{\mathbf{r}}''(t)|}{|\vec{\mathbf{r}}'(t)|^3}.$$

The circle that lies along the curve has radius $1/\kappa$. (!)

Curvature

Example. Determine the vectors of the Frenet frame and the curvature of the curve $\vec{\mathbf{r}}(t) = \langle \cos t, \sin t, t \rangle$.

Frenet frame: We need $\vec{\mathbf{r}}'(t) = \langle -\sin t, \cos t, 1 \rangle$ and $|\vec{\mathbf{r}}'(t)| =$ Then $\vec{\mathbf{T}}(t) = \frac{\vec{\mathbf{r}}'(t)}{|\vec{\mathbf{r}}'(t)|} = \langle \frac{-\sin t}{\sqrt{2}}, \frac{\cos t}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$, From this we find that $\vec{\mathbf{T}}'(t) = \langle \frac{-\cos t}{\sqrt{2}}, \frac{-\sin t}{\sqrt{2}}, 0 \rangle$, so $|\vec{\mathbf{T}}'(t)| =$ Then $\vec{\mathbf{N}}(t) = \frac{\vec{\mathbf{T}}'(t)}{|\vec{\mathbf{T}}'(t)|} = \langle -\cos t, -\sin t, 0 \rangle$. Now $\vec{\mathbf{B}}(t) = \vec{\mathbf{T}}(t) \times \vec{\mathbf{N}}(t) = \frac{1}{\sqrt{2}} \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ -\sin t & \cos t & 1 \\ -\cos t & -\sin t & 0 \end{vmatrix} =$ The curvature $\kappa(t) = \frac{|\vec{\mathbf{T}}'(t)|}{|\vec{\mathbf{r}}'(t)|} =$

Question: Should $\kappa(t)$ be a constant?

Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand \vec{a} in terms of the Frenet frame: How much of the acceleration is toward \vec{T} , \vec{N} , and \vec{B} ? Differentiate $\vec{v}(t) = v(t)\vec{T}(t)$. (magnitude (speed) times unit direction) $\vec{a} = v'\vec{T} + v\vec{T}' = v'\vec{T} + v(|\vec{T}'|\vec{N}) = v'\vec{T} + \kappa v^2\vec{N}$.

► All acceleration is toward $\vec{\mathbf{T}}$ and $\vec{\mathbf{N}}$. (Not to $\vec{\mathbf{B}}$.) a_{T} Toward $\vec{\mathbf{T}}$: $a_{T} = v'$ is rate of change of speed. a_{N} Toward $\vec{\mathbf{N}}$: $a_{N} = \kappa v^{2}$. Curvature times speed squared! Solve for a_{T} , a_{N} in terms of $\vec{\mathbf{r}}(t)$. First, $\vec{\mathbf{v}} \cdot \vec{\mathbf{a}} = v\vec{\mathbf{T}} \cdot (v'\vec{\mathbf{T}} + \kappa v^{2}\vec{\mathbf{N}}) = vv'\vec{\mathbf{T}} \cdot \vec{\mathbf{T}} + \kappa v^{3}\vec{\mathbf{T}} \cdot \vec{\mathbf{N}} = vv'$ So $a_{T} = v' = \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{a}}}{v} = \frac{\vec{\mathbf{r}}'(t) \cdot \vec{\mathbf{r}}''(t)}{|\vec{\mathbf{r}}'(t)|}$ and $a_{N} = \kappa v^{2} = \frac{|\vec{\mathbf{r}}'(t) \times \vec{\mathbf{r}}''(t)|}{|\vec{\mathbf{r}}'(t)|}$ Nice symmetry! Example. Find tang'l, normal comp's of acceleration for $\vec{\mathbf{r}} = \langle t, 2t, t^{2} \rangle$.