More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$ \qquad
We can also take higher derivatives.

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$ \qquad
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$ \qquad
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}
$$

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$ \qquad
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=
$$

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$ \qquad
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y) .
$$

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y)
$$

A big deal: Partial Differential Equations

- Laplace's Equation: $\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0$ is a PDE.

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y) .
$$

A big deal: Partial Differential Equations

- Laplace's Equation: $\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0$ is a PDE.
- Solutions (fcns u that satisfy) give formulas related to distribution of heat on a surface, how fluids \& electricity flow.

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y)
$$

A big deal: Partial Differential Equations

- Laplace's Equation: $\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0$ is a PDE.
- Solutions (fcns u that satisfy) give formulas related to distribution of heat on a surface, how fluids \& electricity flow.
- Wave Equation: $\frac{\partial^{2}}{\partial t^{2}} u(x, t)=a \frac{\partial^{2}}{\partial x^{2}} u(x, t)$ is a PDE.

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y)
$$

A big deal: Partial Differential Equations

- Laplace's Equation: $\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0$ is a PDE.
- Solutions (fcns u that satisfy) give formulas related to distribution of heat on a surface, how fluids \& electricity flow.
- Wave Equation: $\frac{\partial^{2}}{\partial t^{2}} u(x, t)=a \frac{\partial^{2}}{\partial x^{2}} u(x, t)$ is a PDE.
- Solutions describe the position of waves as a function of time.

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

$$
f_{x}=
$$

$$
f_{y}=
$$

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2} .
$$

$$
\begin{array}{ll}
f_{x}= & f_{y}= \\
f_{x x}= & f_{y x}= \\
f_{x y}= & f_{y y}=
\end{array}
$$

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2} .
$$

$$
\begin{array}{ll}
f_{x}= & f_{y}= \\
f_{x x}= & f_{y x}= \\
f_{x y}= & f_{y y}=
\end{array}
$$

Notice:

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

$$
\begin{array}{ll}
f_{x}= & f_{y}= \\
f_{x x}= & f_{y x}= \\
f_{x y}= & f_{y y}=
\end{array}
$$

Notice:
Clairaut's Theorem (mid 1700's)
Suppose $f(x, y)$ is defined on a disk D containing (a, b). If $f_{x y}$ and $f_{y x}$ are continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$.

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

$$
\begin{array}{ll}
f_{x}= & f_{y}= \\
f_{x x}= & f_{y x}= \\
f_{x y}= & f_{y y}=
\end{array}
$$

Notice:
Clairaut's Theorem (mid 1700's)
Suppose $f(x, y)$ is defined on a disk D containing (a, b).
If $f_{x y}$ and $f_{y x}$ are continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$.
Consequence: Order partial derivatives however you want.

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

$$
\begin{array}{ll}
f_{x}= & f_{y}= \\
f_{x x}= & f_{y x}= \\
f_{x y}= & f_{y y}=
\end{array}
$$

Notice:
Clairaut's Theorem (mid 1700's)
Suppose $f(x, y)$ is defined on a disk D containing (a, b).
If $f_{x y}$ and $f_{y x}$ are continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$.
Consequence: Order partial derivatives however you want.

$$
f_{x y z z}=f_{z x y z}=f_{z y z x}=\cdots
$$

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \quad \text { at } \quad x=a
$$

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \quad \text { at } \quad x=a
$$

slope of tangent line to the curve

$$
y=f(x)
$$

at $x=a$.

Interpretation of partial derivatives

Function of one variable

slope of tangent line to the curve

$$
y=f(x)
$$

at $x=a$.
"What is the rate of change of $f(x)$ as x changes?"

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \quad \text { at } \quad x=a
$$

Function of several variables

$\frac{\partial}{\partial x} f(x, y) \quad$ at $\quad(x, y)=(a, b)$
slope of tangent line to the curve

$$
y=f(x)
$$

at $x=a$.
"What is the rate of change of $f(x)$ as x changes?"

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \quad \text { at } \quad x=a
$$

slope of tangent line to the curve

$$
y=f(x)
$$

at $x=a$.
"What is the rate of change of $f(x)$ as x changes?"

Function of several variables

$$
\frac{\partial}{\partial x} f(x, y) \quad \text { at } \quad(x, y)=(a, b)
$$

slope of tangent line to the curve on the surface $z=f(x, y)$ where sliced by the vertical plane $y=b$ at $x=a$.

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \quad \text { at } \quad x=a
$$

slope of tangent line to the curve

$$
y=f(x)
$$

at $x=a$.
"What is the rate of change of $f(x)$ as x changes?"

Function of several variables

$$
\frac{\partial}{\partial x} f(x, y) \quad \text { at } \quad(x, y)=(a, b)
$$

slope of tangent line to the curve on the surface $z=f(x, y)$ where sliced by the vertical plane $y=b$ at $x=a$.
"If y is fixed, what is the rate of change of $f(x, y)$ as x changes?"

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of
tangent lines along the surface. They lie in the tangent plane.

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.
They lie in the tangent plane.
"When we zoom into a smooth surface, the surface looks like a plane."

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.
They lie in the tangent plane.
"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, the tangent line to the curve would be in this plane too.

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.
They lie in the tangent plane.
"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, the tangent line to the curve would be in this plane too.

Key Idea: When the tangent plane to the surface is a good approximation for the the graph when (x, y) is near (a, b), we say that f is differentiable at (a, b).

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.
They lie in the tangent plane.
"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, the tangent line to the curve would be in this plane too.

Key Idea: When the tangent plane to the surface is a good approximation for the the graph when (x, y) is near (a, b), we say that f is differentiable at (a, b).

Theorem. If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Planey

The equation of this tangent plane is easy.

(point-slope)

$$
\left(z-z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Planey

The equation of this tangent plane is easy.

(point-slope)

$$
\left(z-z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Example. What is the eqn of the tangent plane to $z=x e^{x y}$ at $(1,0)$?

Planey

The equation of this tangent plane is easy.

(point-slope)

$$
\left(z-z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Example. What is the eqn of the tangent plane to $z=x e^{x y}$ at $(1,0)$?
Game Plan:

1. Find the partial derivatives, evaluate at $(1,0)$.
(Find slopes)

Planey

The equation of this tangent plane is easy.

$$
\left(z-z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Example. What is the eqn of the tangent plane to $z=x e^{x y}$ at $(1,0)$? Game Plan:

1. Find the partial derivatives, evaluate at $(1,0)$.
(Find slopes)
2. Determine the point on the surface.

Planey

The equation of this tangent plane is easy.

(point-slope)

$$
\left(z-z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Example. What is the eqn of the tangent plane to $z=x e^{x y}$ at $(1,0)$? Game Plan:

1. Find the partial derivatives, evaluate at $(1,0)$.
(Find slopes)
2. Determine the point on the surface.
(Find point)
3. Write down equation of plane.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.
$T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.
Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.
$T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.
Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near
The tangent plane there is $T(x, y)=x+y$.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near
The tangent plane there is $T(x, y)=x+y$.
So: $f(1.1,-0.1) \approx T(1.1,-0.1)=$ \qquad

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near
The tangent plane there is $T(x, y)=x+y$.
So: $f(1.1,-0.1) \approx T(1.1,-0.1)=$ \qquad .

Note: $f(1.1,-0.1)=1.1 e^{-0.11} \approx .985$.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near \qquad .
The tangent plane there is $T(x, y)=x+y$.
So: $f(1.1,-0.1) \approx T(1.1,-0.1)=$ \qquad .

Note: $f(1.1,-0.1)=1.1 e^{-0.11} \approx .985$.
In more dimensions: Suppose $f(\overrightarrow{\mathbf{v}})=f(w, x, y, z)$.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near \qquad
The tangent plane there is $T(x, y)=x+y$.
So: $f(1.1,-0.1) \approx T(1.1,-0.1)=$ \qquad .

Note: $f(1.1,-0.1)=1.1 e^{-0.11} \approx .985$.
In more dimensions: Suppose $f(\overrightarrow{\mathbf{v}})=f(w, x, y, z)$.
A linear approximation near $\overrightarrow{\mathbf{v}}_{0}=\left(w_{0}, x_{0}, y_{0}, z_{0}\right)$ would be $f(\overrightarrow{\mathbf{v}})-f\left(\overrightarrow{\mathbf{v}}_{0}\right) \approx f_{w}\left(\overrightarrow{\mathbf{v}}_{0}\right)\left(w-w_{0}\right)+f_{x}\left(\overrightarrow{\mathbf{v}}_{0}\right)\left(x-x_{0}\right)+f_{y}\left(\overrightarrow{\mathbf{v}}_{0}\right)\left(y-y_{0}\right)+f_{z}\left(\overrightarrow{\mathbf{v}}_{0}\right)\left(z-z_{0}\right)$

Differentials

Differentials are the other way to understand linear approximations.

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$d z$ is a approximation for how much z actually changes.

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$d z$ is a approximation for how much z actually changes.
Example. If $z=x^{2}+3 x y-y^{2}$, find $d z$.

$$
d z=
$$

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$d z$ is a approximation for how much z actually changes.
Example. If $z=x^{2}+3 x y-y^{2}$, find $d z$.

$$
d z=
$$

Conclusion: If x changes from $2 \rightarrow 2.05, d x=$ \qquad
If y changes from $3 \rightarrow 2.96, d y=$ \qquad .

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$d z$ is a approximation for how much z actually changes.
Example. If $z=x^{2}+3 x y-y^{2}$, find $d z$.

$$
d z=
$$

Conclusion: If x changes from $2 \rightarrow 2.05, d x=$ \qquad
If y changes from $3 \rightarrow 2.96, d y=$ \qquad .
We would expect z to change by \qquad .

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$d z$ is a approximation for how much z actually changes.
Example. If $z=x^{2}+3 x y-y^{2}$, find $d z$.

$$
d z=
$$

Conclusion: If x changes from $2 \rightarrow 2.05, d x=$ \qquad
If y changes from $3 \rightarrow 2.96, d y=$ \qquad .
We would expect z to change by \qquad .

The true change is .6449 .

