This works with more variables too.

$$\frac{\partial}{\partial z} \left(e^{xy} \ln z \right) =$$
 _____ and $\frac{\partial}{\partial x} \left(e^{xy} \ln z \right) =$ _____

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) =$$
 _____ and $\frac{\partial}{\partial x} (e^{xy} \ln z) =$ _____

We can also take higher derivatives.

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) = \underline{\qquad}$$
 and $\frac{\partial}{\partial x} (e^{xy} \ln z) = \underline{\qquad}$

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) = \underline{\qquad}$$
 and $\frac{\partial}{\partial x} (e^{xy} \ln z) = \underline{\qquad}$

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy}$$

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) =$$
_____ and $\frac{\partial}{\partial x} (e^{xy} \ln z) =$ _____

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y =$$

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) = \underline{\qquad} \text{ and } \frac{\partial}{\partial x} (e^{xy} \ln z) = \underline{\qquad}$$

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y).$$

This works with more variables too.

$$\frac{\partial}{\partial z} \left(e^{xy} \ln z \right) =$$
 _____ and $\frac{\partial}{\partial x} \left(e^{xy} \ln z \right) =$ _____

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y).$$

A big deal: Partial Differential Equations

▶ Laplace's Equation: $\frac{\partial^2}{\partial x^2}u(x,y) + \frac{\partial^2}{\partial y^2}u(x,y) = 0$ is a PDE.

This works with more variables too.

$$\frac{\partial}{\partial z} \left(e^{xy} \ln z \right) = \underline{\hspace{1cm}}$$
 and $\frac{\partial}{\partial x} \left(e^{xy} \ln z \right) = \underline{\hspace{1cm}}$

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y).$$

A big deal: Partial Differential Equations

- ► Laplace's Equation: $\frac{\partial^2}{\partial x^2} u(x,y) + \frac{\partial^2}{\partial y^2} u(x,y) = 0$ is a PDE.
 - ▶ Solutions (fcns *u* that satisfy) give formulas related to distribution of heat on a surface, how fluids & electricity flow.

This works with more variables too.

$$\frac{\partial}{\partial z} \left(e^{xy} \ln z \right) =$$
 _____ and $\frac{\partial}{\partial x} \left(e^{xy} \ln z \right) =$ _____

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y).$$

A big deal: Partial Differential Equations

- ▶ Laplace's Equation: $\frac{\partial^2}{\partial x^2}u(x,y) + \frac{\partial^2}{\partial y^2}u(x,y) = 0$ is a PDE.
 - ▶ Solutions (fcns *u* that satisfy) give formulas related to distribution of heat on a surface, how fluids & electricity flow.
- ▶ Wave Equation: $\frac{\partial^2}{\partial t^2}u(x,t) = a\frac{\partial^2}{\partial x^2}u(x,t)$ is a PDE.

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) =$$
 _____ and $\frac{\partial}{\partial x} (e^{xy} \ln z) =$ _____

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y).$$

A big deal: Partial Differential Equations

- ▶ Laplace's Equation: $\frac{\partial^2}{\partial x^2}u(x,y) + \frac{\partial^2}{\partial y^2}u(x,y) = 0$ is a PDE.
 - ▶ Solutions (fcns *u* that satisfy) give formulas related to distribution of heat on a surface, how fluids & electricity flow.
- ▶ Wave Equation: $\frac{\partial^2}{\partial t^2}u(x,t) = a\frac{\partial^2}{\partial x^2}u(x,t)$ is a PDE.
 - ▶ Solutions describe the position of waves as a function of time.

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$$f_{x} = f_{y} =$$

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$f_{x} =$	$f_y =$	
$f_{xx} = f_{xy} =$	$f_{yx} = f_{yy} =$	

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$f_{yx} = f_{yy} =$

Notice:

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$f_{x} =$	$f_y =$	
$f_{xx} = f_{xy} =$	$f_{yx} = f_{yy} =$	

Notice:

Clairaut's Theorem (mid 1700's)

Suppose f(x,y) is defined on a disk D containing (a,b).

If f_{xy} and f_{yx} are continuous on D, then $f_{xy}(a,b) = f_{yx}(a,b)$.

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$f_{x} =$	$f_y =$	
$f_{xx} = f_{xy} =$	$f_{yx} = f_{yy} =$	

Notice: _____

Clairaut's Theorem (mid 1700's)

Suppose f(x, y) is defined on a disk D containing (a, b). If f_{xy} and f_{yx} are continuous on D, then $f_{xy}(a, b) = f_{yx}(a, b)$.

Consequence: Order partial derivatives however you want.

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$f_{X} =$	$f_y =$	
$f_{xx} = f_{xy} =$	$f_{yx} = f_{yy} =$	

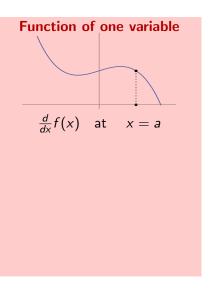
Notice: ____

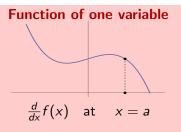
Clairaut's Theorem (mid 1700's)

Suppose f(x, y) is defined on a disk D containing (a, b). If f_{xy} and f_{yx} are continuous on D, then $f_{xy}(a, b) = f_{yx}(a, b)$.

Consequence: Order partial derivatives however you want.

$$f_{xyzz} = f_{zxyz} = f_{zyzx} = \cdots$$

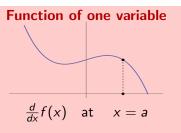




slope of tangent line to the curve

$$y = f(x)$$

at x = a.



slope of tangent line to the curve

$$y = f(x)$$

at x = a.

"What is the rate of change of f(x) as x changes?"

Function of one variable $\frac{d}{dx}f(x) \quad \text{at} \quad x = a$

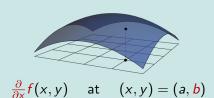
slope of tangent line to the curve

$$y = f(x)$$

at x = a.

"What is the rate of change of f(x) as x changes?"

Function of several variables



Function of one variable $\frac{d}{dx}f(x) \quad \text{at} \quad x = a$

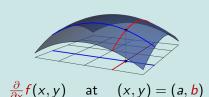
slope of tangent line to the curve

$$y = f(x)$$

at x = a.

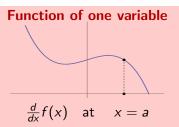
"What is the rate of change of f(x) as x changes?"

Function of several variables



slope of tangent line to the curve on the surface z = f(x, y) where sliced by the vertical plane y = bat x = a. Partial Derivatives — §11.3

Interpretation of partial derivatives



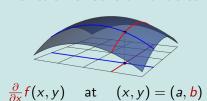
slope of tangent line to the curve

$$y = f(x)$$

at x = a.

"What is the rate of change of f(x) as x changes?"

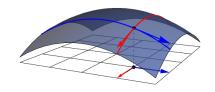
Function of several variables



slope of tangent line to the curve on the surface z = f(x, y) where sliced by the vertical plane y = b at x = a.

"If y is fixed, what is the rate of change of f(x, y) as x changes?"

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

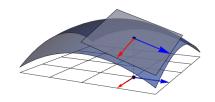


Tangent Planes — §11.4

Tangenty

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

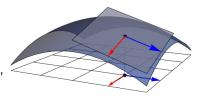
They lie in the **tangent plane**.



 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

They lie in the **tangent plane**.

"When we zoom into a smooth surface, the surface looks like a plane."



 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

They lie in the **tangent plane**.

"When we zoom into a smooth surface, the surface looks like a plane."

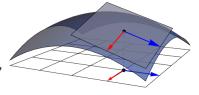
rface, $(x_0, y_0, f(x_0, y_0)),$

For any curve on the surface through $(x_0, y_0, f(x_0, y_0))$, the tangent line to the curve would be in this plane too.

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

They lie in the **tangent plane**.

"When we zoom into a smooth surface, the surface looks like a plane."



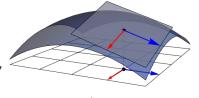
For any curve on the surface through $(x_0, y_0, f(x_0, y_0))$, the tangent line to the curve would be in this plane too.

Key Idea: When the tangent plane to the surface is a good approximation for the the graph when (x, y) is near (a, b), we say that f is **differentiable** at (a, b).

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

They lie in the **tangent plane**.

"When we zoom into a smooth surface, the surface looks like a plane."



For any curve on the surface through $(x_0, y_0, f(x_0, y_0))$, the tangent line to the curve would be in this plane too.

Key Idea: When the tangent plane to the surface is a good approximation for the the graph when (x, y) is near (a, b), we say that f is **differentiable** at (a, b).

Theorem. If the partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Tangent Planes — §11.4

Planey

The equation of this tangent plane is easy. (point-slope)

$$(z-z_0)=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$$

Tangent Planes — §11.4

Planey

The equation of this tangent plane is easy. (point-slope) $(z - z_0) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

Example. What is the eqn of the tangent plane to $z = xe^{xy}$ at (1,0)?

Tangent Planes — $\S11.4$

Planey

The equation of this tangent plane is easy. (point-slope) $(z - z_0) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

Example. What is the eqn of the tangent plane to $z = xe^{xy}$ at (1,0)?

Game Plan:

1. Find the partial derivatives, evaluate at (1,0). (Find slopes)

Planey

The equation of this tangent plane is easy. (point-slope)

$$(z-z_0)=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$$

Example. What is the eqn of the tangent plane to $z = xe^{xy}$ at (1,0)?

Game Plan:

1. Find the partial derivatives, evaluate at (1,0). (Find slopes)

2. Determine the point on the surface. (Find point)

Planey

The equation of this tangent plane is easy.

(point-slope)

$$(z-z_0)=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$$

Example. What is the eqn of the tangent plane to $z = xe^{xy}$ at (1,0)?

Game Plan:

1. Find the partial derivatives, evaluate at (1,0). (Find slopes)

2. Determine the point on the surface.

(Find point)

3. Write down equation of plane.

(Point-slope formula)

Tangent Planes — §11.4

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.

Tangent Planes — $\S11.4$

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near

The tangent plane there is T(x,y) = x + y.

Key idea: Use tangent plane as linear approximation to the function.

T(x,y) gives a "good enough" value for f(x,y) near (x_0,y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near

The tangent plane there is T(x, y) = x + y.

So: $f(1.1, -0.1) \approx T(1.1, -0.1) =$ _____

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near ______.

The tangent plane there is T(x, y) = x + y.

So: $f(1.1, -0.1) \approx T(1.1, -0.1) =$ ______.

Note: $f(1.1, -0.1) = 1.1e^{-0.11} \approx .985$.

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near _____.

The tangent plane there is T(x, y) = x + y.

So: $f(1.1, -0.1) \approx T(1.1, -0.1) =$ _____.

Note: $f(1.1, -0.1) = 1.1e^{-0.11} \approx .985$.

In more dimensions: Suppose $f(\vec{\mathbf{v}}) = f(w, x, y, z)$.

Key idea: Use tangent plane as linear approximation to the function.

T(x,y) gives a "good enough" value for f(x,y) near (x_0,y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near _____.

The tangent plane there is T(x, y) = x + y.

So: $f(1.1, -0.1) \approx T(1.1, -0.1) =$ _____.

Note: $f(1.1, -0.1) = 1.1e^{-0.11} \approx .985$.

In more dimensions: Suppose $f(\vec{\mathbf{v}}) = f(w, x, y, z)$.

A linear approximation near $\vec{\mathbf{v}}_0 = (w_0, x_0, y_0, z_0)$ would be

$$f(\vec{\mathbf{v}}) - f(\vec{\mathbf{v}}_0) \approx f_w(\vec{\mathbf{v}}_0)(w - w_0) + f_x(\vec{\mathbf{v}}_0)(x - x_0) + f_y(\vec{\mathbf{v}}_0)(y - y_0) + f_z(\vec{\mathbf{v}}_0)(z - z_0)$$

Differentials are the other way to understand linear approximations.

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

dz is a approximation for how much z actually changes.

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

dz is a approximation for how much z actually changes.

Example. If
$$z = x^2 + 3xy - y^2$$
, find dz . $dz =$

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

dz is a approximation for how much z actually changes.

Example. If
$$z = x^2 + 3xy - y^2$$
, find dz .
 $dz =$

Conclusion: If x changes from
$$2 \rightarrow 2.05$$
, $dx =$ _______.

If y changes from $3 \rightarrow 2.96$, $dy =$ ______.

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

dz is a approximation for how much z actually changes.

Example. If
$$z = x^2 + 3xy - y^2$$
, find dz .
 $dz =$

Conclusion: If x changes from $2 \rightarrow 2.05$, dx = ______. If y changes from $3 \rightarrow 2.96$, dy = ______. We would expect z to change by ______.

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

dz is a approximation for how much z actually changes.

Example. If
$$z = x^2 + 3xy - y^2$$
, find dz .
 $dz =$

Conclusion: If x changes from $2 \rightarrow 2.05$, dx =_______.

If y changes from $3 \rightarrow 2.96$, dy =_______.

We would expect z to change by _______.

The true change is .6449.