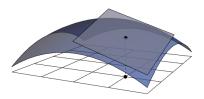
Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction.

 $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction.

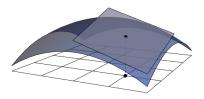


Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction.

 $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction.

Question: How fast is f(x, y) changing in **some other direction**?



Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction.

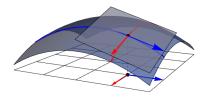
 $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction.

Question: How fast is f(x, y) changing in some other direction? What does that even mean?

Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. Toward $\vec{i} = (1, 0)$ $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction. Toward $\vec{j} = (0, 1)$

Question: How fast is f(x, y) changing in some other direction? What does that even mean?

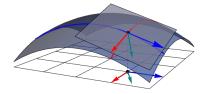


Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. Toward $\vec{i} = (1, 0)$ $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction. Toward $\vec{j} = (0, 1)$

Question: How fast is f(x, y) changing in some other direction? What does that even mean?

Question: What is the rate of change of f toward unit vector $\vec{\mathbf{u}} = (a, b) = (\cos \theta, \sin \theta)$?

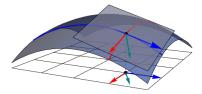


Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. Toward $\vec{i} = (1, 0)$ $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction. Toward $\vec{j} = (0, 1)$

Question: How fast is f(x, y) changing in some other direction? What does that even mean?

Question: What is the rate of change of f toward unit vector $\vec{\mathbf{u}} = (a, b) = (\cos \theta, \sin \theta)$?



Definition: The directional derivative of f in the direction of $\vec{\mathbf{u}}$ is

$$D_{\vec{\mathbf{u}}}f(x,y) = f_{\mathbf{x}}(x,y) \, a + f_{\mathbf{y}}(x,y) \, b.$$

Example. Find $D_{\vec{\mathbf{u}}}f$ if $f(x,y)=x^3-3xy+4y^2$ and $\vec{\mathbf{u}}$ is the unit vector in the xy-plane at angle $\theta=\pi/6$.

Example. Find $D_{\vec{\mathbf{u}}}f$ if $f(x,y)=x^3-3xy+4y^2$ and $\vec{\mathbf{u}}$ is the unit vector in the xy-plane at angle $\theta=\pi/6$.

Answer: First, find the vector $\vec{\mathbf{u}} =$

Example. Find $D_{\vec{\mathbf{u}}}f$ if $f(x,y)=x^3-3xy+4y^2$ and $\vec{\mathbf{u}}$ is the unit vector in the xy-plane at angle $\theta=\pi/6$.

Answer: First, find the vector $\vec{\mathbf{u}} = \mathbf{N}$ Next, find the partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$$

Example. Find $D_{\vec{\mathbf{u}}}f$ if $f(x,y)=x^3-3xy+4y^2$ and $\vec{\mathbf{u}}$ is the unit vector in the xy-plane at angle $\theta=\pi/6$.

Answer: First, find the vector $\vec{\mathbf{u}} =$ Next, find the partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Find $D_{\vec{\mathbf{u}}}f$ if $f(x,y)=x^3-3xy+4y^2$ and $\vec{\mathbf{u}}$ is the unit vector in the xy-plane at angle $\theta=\pi/6$.

Answer: First, find the vector $\vec{\mathbf{u}} =$ Next, find the partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Calculate $D_{\vec{u}}f(1,2)$ and interpret this answer.

Example. Find $D_{\vec{\mathbf{u}}}f$ if $f(x,y)=x^3-3xy+4y^2$ and $\vec{\mathbf{u}}$ is the unit vector in the xy-plane at angle $\theta=\pi/6$.

Answer: First, find the vector $\vec{\mathbf{u}} =$ Next, find the partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Calculate $D_{\vec{u}}f(1,2)$ and interpret this answer.

$$D_{\vec{u}}f(1,2) = (3 \cdot 1 - 3 \cdot 2)\frac{\sqrt{3}}{2} + (-3 \cdot 1 + 8 \cdot 2)\frac{1}{2}$$
$$= \frac{13 - 2\sqrt{3}}{2} \approx 3.9$$

Example. Find $D_{\vec{\mathbf{u}}}f$ if $f(x,y)=x^3-3xy+4y^2$ and $\vec{\mathbf{u}}$ is the unit vector in the xy-plane at angle $\theta=\pi/6$.

Answer: First, find the vector $\vec{\mathbf{u}} =$ Next, find the partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Calculate $D_{\vec{u}}f(1,2)$ and interpret this answer.

$$D_{\vec{u}}f(1,2) = (3 \cdot 1 - 3 \cdot 2)\frac{\sqrt{3}}{2} + (-3 \cdot 1 + 8 \cdot 2)\frac{1}{2}$$
$$= \frac{13 - 2\sqrt{3}}{2} \approx 3.9$$

Interpretation: One unit step in the $\vec{\mathbf{u}}$ direction increases f(x, y) by approximately 3.9 units.

Notice that $D_{\vec{\mathbf{u}}}f = f_{\times}a + f_{y}b$.

Notice that $D_{\vec{u}}f = f_x a + f_y b$. Rewrite as: $D_{\vec{u}}f = \langle f_x, f_y \rangle \cdot \langle a, b \rangle$.

Notice that $D_{\vec{\mathbf{u}}}f = f_{\mathbf{x}}a + f_{\mathbf{y}}b$.

Rewrite as: $D_{\vec{\mathbf{u}}}f = \langle f_x, f_y \rangle \cdot \langle a, b \rangle$.

Definition: The vector $\langle f_x, f_y \rangle = f_x \vec{\mathbf{i}} + f_y \vec{\mathbf{j}}$ is called the **gradient** of f. We write ∇f or grad f.

Notice that $D_{\vec{\mathbf{u}}}f = f_{\mathbf{x}}a + f_{\mathbf{y}}b$.

Rewrite as: $D_{\vec{\mathbf{u}}}f = \langle f_x, f_y \rangle \cdot \langle a, b \rangle$.

Definition: The vector $\langle f_x, f_y \rangle = f_x \vec{\mathbf{i}} + f_y \vec{\mathbf{j}}$ is called the **gradient** of f. We write ∇f or grad f.

So an alternate way to write $D_{\vec{u}}f(x,y)$ is $\nabla f(x,y) \cdot \vec{u}$.

Notice that $D_{\vec{u}}f = f_x a + f_y b$.

Rewrite as: $D_{\vec{\mathbf{u}}}f = \langle f_x, f_y \rangle \cdot \langle a, b \rangle$.

Definition: The vector $\langle f_x, f_y \rangle = f_x \vec{\mathbf{i}} + f_y \vec{\mathbf{j}}$ is called the **gradient** of f. We write ∇f or grad f.

So an alternate way to write $D_{\vec{u}}f(x,y)$ is $\nabla f(x,y) \cdot \vec{u}$.

The gradient is also defined for functions of more than two variables. For example, for a function of three variables, f(x, y, z),

$$abla f = \langle f_x, f_y, f_z \rangle = f_x \, \vec{\mathbf{i}} + f_y \, \vec{\mathbf{j}} + f_z \, \vec{\mathbf{k}}$$
and $D_{\vec{\mathbf{u}}} f = \nabla f \cdot \vec{\mathbf{u}}$

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1, 3, 0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1,3,0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1,3,0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

ightharpoonup Find a unit vector in the direction of $\vec{\mathbf{v}}$.

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1,3,0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

- ightharpoonup Find a unit vector in the direction of $\vec{\mathbf{v}}$.
- Find ∇f , plug in (1,3,0).

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1,3,0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

- ightharpoonup Find a unit vector in the direction of $\vec{\mathbf{v}}$.
- Find ∇f , plug in (1,3,0).
- ▶ Take the dot product.

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1,3,0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

- ightharpoonup Find a unit vector in the direction of $\vec{\mathbf{v}}$.
- ▶ Find ∇f , plug in (1,3,0).
- ► Take the dot product.

Therefore $D_{\vec{\mathbf{u}}}f(1,3,0) =$

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1,3,0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

- ightharpoonup Find a unit vector in the direction of $\vec{\mathbf{v}}$.
- Find ∇f , plug in (1,3,0).
- ► Take the dot product.

Therefore $D_{\vec{u}}f(1,3,0) =$

Question: Given a function f(x, y) and a point (x_0, y_0) ,

in which direction is the function increasing the fastest?

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the fastest?

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the fastest?

And how fast is the function increasing in that direction?

```
Question: Given a function f(x, y) and a point (x_0, y_0), (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the fastest?

And how fast is the function increasing in that direction?

Answer: At a rate of |\nabla f(x_0, y_0)|, in the direction of \nabla f(x_0, y_0)!!
```

```
Question: Given a function f(x, y) and a point (x_0, y_0), (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the fastest?

And how fast is the function increasing in that direction?

Answer: At a rate of |\nabla f(x_0, y_0)|, in the direction of \nabla f(x_0, y_0)!!
```

But why?!?

```
Question: Given a function f(x, y) and a point (x_0, y_0), (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the fastest?

And how fast is the function increasing in that direction?

Answer: At a rate of |\nabla f(x_0, y_0)|, in the direction of \nabla f(x_0, y_0)!!

But why?!?

D_{\vec{\mathbf{u}}} f = \nabla f \cdot \vec{\mathbf{u}} = |\nabla f| |\vec{\mathbf{u}}| \cos(\theta)

= |\nabla f| \cos(\theta)
```

```
Question: Given a function f(x, y) and a point (x_0, y_0), (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the fastest? And how fast is the function increasing in that direction?
```

Answer: At a rate of $|\nabla f(x_0, y_0)|$, in the direction of $\nabla f(x_0, y_0)$!!

But why?!?
$$D_{\vec{\mathbf{u}}}f = \nabla f \cdot \vec{\mathbf{u}} = |\nabla f| |\vec{\mathbf{u}}| \cos(\theta)$$
$$= |\nabla f| \cos(\theta)$$

Question: For what angle θ is this maximized? And what is the max? Answer:

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the fastest? And how fast is the function increasing in that direction?

Answer: At a rate of $|\nabla f(x_0, y_0)|$, in the direction of $\nabla f(x_0, y_0)!!$

But why?!?
$$D_{\vec{\mathbf{u}}}f = \nabla f \cdot \vec{\mathbf{u}} = |\nabla f| |\vec{\mathbf{u}}| \cos(\theta)$$
$$= |\nabla f| \cos(\theta)$$

Question: For what angle θ is this maximized? And what is the max? *Answer:*

Consequence: ∇f represents the direction of fastest increase of f.

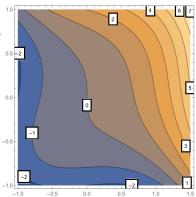
 ∇f represents the direction of fastest increase of f.

We can understand this graphically through the contour map.

 ∇f represents the direction of fastest increase of f.

We can understand this graphically through the contour map.

▶ At (x_0, y_0) , the vector $\nabla f(x_0, y_0)$ is perpendicular to the level curves of f.



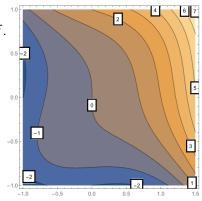
 ∇f represents the direction of fastest increase of f.

We can understand this graphically through the contour map.

At (x_0, y_0) , the vector $\nabla f(x_0, y_0)$ is perpendicular to the level curves of f.

Why?

- ▶ Along a level curve, *f* is constant.
- ► The fastest change should be perpendicular to the level curve.



 ∇f represents the direction of fastest increase of f.

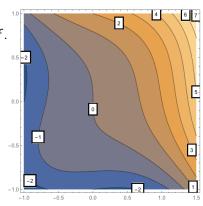
We can understand this graphically through the contour map.

At (x_0, y_0) , the vector $\nabla f(x_0, y_0)$ is perpendicular to the level curves of f.

Why?

- ▶ Along a level curve, *f* is constant.
- ► The fastest change should be perpendicular to the level curve.
- ♥ Connecting along this path gives ♥
 - ♥ the path of steepest ascent. ♥

Chloe says "hi".



Functions of two variables A level curve f(x, y) = c

Functions of three variables A level surface F(x, y, z) = c

Functions of two variables

A level curve f(x, y) = c

 $\nabla f \longleftrightarrow$ fastest increase

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow$ fastest increase

Functions of two variables

A *level curve* f(x, y) = c $\nabla f \longleftrightarrow \text{fastest increase}$

So: ∇f is \perp

to level curve at (x_0, y_0)

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow$ fastest increase so ∇F is \bot

to level surface at (x_0, y_0, z_0)

Functions of two variables

A level curve f(x, y) = c $\nabla f \longleftrightarrow \text{fastest increase}$

So: ∇f is \perp (to tangent line)

to level curve at (x_0, y_0)

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow$ fastest increase so ∇F is \bot (to tangent plane) to level surface at (x_0, y_0, z_0)

Functions of two variables

A level curve f(x, y) = c

 $\nabla f \longleftrightarrow$ fastest increase

So: ∇f is \perp (to tangent line) to level curve at (x_0, y_0)

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow$ fastest increase so ∇F is \bot (to tangent plane) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the **normal vector** to the level surface at (x_0, y_0, z_0) .

Functions of two variables

A level curve f(x, y) = c

 $\nabla f \longleftrightarrow$ fastest increase

So: ∇f is \perp (to tangent line) to level curve at (x_0, y_0)

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow$ fastest increase so ∇F is \bot (to tangent plane) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the **normal vector** to the level surface at (x_0, y_0, z_0) .

This means: The equation of THE tangent plane to THE level surface passing through the point (x_0, y_0, z_0) is

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Functions of two variables

A level curve f(x, y) = c

 $\nabla f \longleftrightarrow$ fastest increase So: ∇f is \bot (to tangent line) to level curve at (x_0, y_0)

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow$ fastest increase so ∇F is \bot (to tangent plane) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the **normal vector** to the level surface at (x_0, y_0, z_0) .

This means: The equation of THE tangent plane to THE level surface passing through the point (x_0, y_0, z_0) is

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Also: For any curve $\vec{\mathbf{r}}(t) = (x(t), y(t), z(t))$ on the level surface,

$$F(x(t), y(t), z(t)) = k$$

Functions of two variables

A level curve f(x, y) = c

 $\nabla f \longleftrightarrow$ fastest increase So: ∇f is \bot (to tangent line) to level curve at (x_0, y_0)

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow$ fastest increase so ∇F is \bot (to tangent plane) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the **normal vector** to the level surface at (x_0, y_0, z_0) .

This means: The equation of THE tangent plane to THE level surface passing through the point (x_0, y_0, z_0) is

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Also: For any curve $\vec{\mathbf{r}}(t) = (x(t), y(t), z(t))$ on the level surface,

$$F(x(t),y(t),z(t)) = k \quad \stackrel{\text{chain}}{\Longrightarrow} \quad \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt} = 0,$$

Functions of two variables

A level curve f(x, y) = c \longleftrightarrow fastest increase

 $\nabla f \longleftrightarrow$ fastest increase So: ∇f is \bot (to tangent line) to level curve at (x_0, y_0)

Functions of three variables

A level surface F(x, y, z) = c

so ∇F is \perp (to tangent plane) to level surface at (x_0, y_0, z_0)

 $\nabla F \longleftrightarrow$ fastest increase

 $\nabla F(x_0, y_0, z_0)$ is the **normal vector** to the level surface at (x_0, y_0, z_0) .

This means: The equation of THE tangent plane to THE level surface passing through the point (x_0, y_0, z_0) is

$$F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(y-y_0)+F_z(x_0,y_0,z_0)(z-z_0)=0.$$

Also: For any curve $\vec{\mathbf{r}}(t) = (x(t), y(t), z(t))$ on the level surface,

$$F\big(x(t),y(t),z(t)\big)=k\quad \stackrel{\text{chain}}{\Longrightarrow}\quad \frac{\partial F}{\partial x}\frac{dx}{dt}+\frac{\partial F}{\partial y}\frac{dy}{dt}+\frac{\partial F}{\partial z}\frac{dz}{dt}=0,$$

which means $\nabla F \perp \vec{\mathbf{r}}'(t) = 0$.