Local Extrema

Functions of one variable

f(x) has a **local maximum** at x = aif for all points x near a, $f(x) \le f(a)$. f(x) has a **local minimum** at x = aif for all points x near a, $f(x) \ge f(a)$. (What about global/absolute?)

If f(x) has a local max or local min at x = a, then:

f'(a) = 0 or f'(a) does not exist.

A point *a* where this is true is called a **critical point**.

However, If f'(a) = 0 or f'(a) DNE then this does not imply that x = a is a local max or min.

Functions of multiple variables

f(x, y) has a **local maximum** at (a, b)if for all points nearby, $f(x, y) \le f(a, b)$. f(x, y) has a **local minimum** at (a, b)if for all points nearby, $f(x, y) \ge f(a, b)$. (What about global/absolute?)

If f(x, y) has a local max or local min at (x, y) = (a, b), then:

 $f_x(a, b) = 0$ and $f_y(a, b) = 0$ (or DNE)

A point (a, b) where this is true is called a **critical point**.

However, If $(f_x \text{ and } f_y) = 0$ or DNE then this does not imply that (x, y) = (a, b) is a local max or min.

Determining local extrema

Important vocabulary:

- A maximum or minimum: means
- A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

If the second partial derivatives of f(x, y) are continuous around (a, b)And if $f_x(a, b) = 0$ and $f_y(a, b) = 0$, then define D(a, b):

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - \left(f_{xy}(a,b)\right)^2 = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

If D > 0 and f_{xx} > 0, then (a, b) is a local minimum.
 If D > 0 and f_{xx} < 0, then (a, b) is a local maximum.
 If D < 0, then (a, b) is a saddle point of f.
 If D = 0, the test is inconclusive.

Extreme Examples

Example. Find the local extrema and saddle points of

$$f(x, y) = x^4 + y^4 - 4xy + 1.$$

► Critical points:

For each: Find D(a, b), classify.

Absolute (global) Extrema

Functions of one variable Extreme Value Theorem: If *f* is continuous on a closed interval, then *f* attains an absolute max and absolute min somewhere on this interval.

Functions of multiple variables

Extreme Value Theorem:

If f is continuous on a ______ set in \mathbb{R}^2 , then f attains an absolute max and absolute min somewhere on this set.

Strategy for absolute extrema:

Check for interior critical points

- ► Find all critical points.
- ► Which are inside the set?
- Evaluate function there.

Find boundary extreme values

- Parametrize the boundary. pieces? (Including endpoints!)
 1-Var fcn
- ► Find critical points of 1-Var fcn.
- Evaluate function there & endpts.

Largest, smallest function values determine absolute extrema on set.

Optimization is just finding maxima and minima

Example. Find the global extrema of $f(x, y) = x^2 - 2xy + 2y$ on the rectangle $0 \le x \le 3$ and $0 \le y \le 2$.

► Draw a picture of set.

 $\begin{array}{c|c} \bullet & \text{Check for critical points on interior.} \\ & 0 = f_x = 2x - 2y \\ & 0 = f_y = -2x + 2 \end{array} \end{array} \xrightarrow{\begin{subarray}{c} x = y \\ & x = 1 \end{array}} \xrightarrow{\begin{subarray}{c} (1,1) \text{ is crit. pt.} \\ & f(1,1) = ____ \end{array}}$

► Find extreme values along boundary. (Piecewise-defined!) $\begin{array}{ll}
f(x,0) = & & & & & & & & \\
f(x,0) = & & & & & & & & \\
f(3,y) = 9 - 4y & & & & & & & & \\
f(3,y) = 9 - 4y & & & & & & & & \\
f(x,2) = x^2 - 4y + 4 & & & & & & & \\
f(x,2) = x^2 - 4y + 4 & & & & & & \\
f(0,y) = 2y & & & & & & & & \\
\end{array}$ The set of the set of

Determine largest & smallest.

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from 12 m^2 of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize V =_____, subject to

Solving for z gives
$$z = \frac{12 - xy}{2x + 2y}$$
. Inserting, $V = xy(\frac{12 - xy}{2x + 2y})$.
To find an optimum value, solve for $\frac{\partial V}{\partial x} = 0$ and $\frac{\partial V}{\partial x} = 0$.
 $\frac{\partial V}{\partial x} = 0 \rightsquigarrow$
 $\frac{\partial V}{\partial y} = 0 \rightsquigarrow$

Solving these simultaneous equations, $12 - 2xy = x^2 = y^2 \Rightarrow x = \pm y$. Because this is real world, _____, so we solve $12 - 3x^2 = 0$: _____. This problem must have an absolute maximum, which must occur at a critical point. (Why?) Therefore (x, y, z) = (2, 2, 1) is the absolute maximum, and the maximum volume is xyz = 4.