
Double Integrals — §12.1 92

Riemann Sum Comparison

Riemann sum to approximate area

Subdivide [a, b] into n intervals I .

Interval width: ∆xi = xi − xi−1.

Choose sample point x∗i in each I

The
Riemann

sum

n∑
i=1

f (x∗i )∆xi

approximates area under curve.

Integral is limit of Riemann sums.∫ b

a
f (x) dx = lim

max ∆xi→0

n∑
i=1

f (x∗i )∆xi
(If exists)

Riemann Sum to approximate volume
(Today: Rectangles [a, b]× [c , d ].)

Subdivide [a, b] into m intervals.
Subdivide [c , d ] into n intervals.

Each subrect. [xi−1, xi ]× [yj−1, yj ]
has area ∆Aij = ∆xi∆yj .

The
Riemann

sum

m∑
i=1

n∑
j=1

f (x∗i , y
∗
i )∆Aij

approximates volume under surface.

The double integral is limit of R.S.∫∫
R

f (x , y) dA = lim
max ∆xi→0

∆yi→0

R.S.
(If exists)
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Notes and an example

I If f is continuous, the limit always exists!

I The volume under the surface is approximated by adding up
the volumes of a bunch of rectangular prisms.

Example. Estimate the volume that lies above the square
R = [0, 2]× [0, 2] and below the surface z = 16− x2 − 2y2 by
calculating a Riemann sum with four terms.

Answer: The region R can be divided into four squares,
each with area ∆A = .

Choose a sample point in each region.
(Ex: Upper right corner.)

Volume ≈ f (1, 1)∆A11 + f (1, 2)∆A12 + f (2, 1)∆A21 + f (2, 2)∆A22

=
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Calculating double integrals

We never calculate a double integral by taking limits of Riemann sums.

Instead, we use the method of iterated integrals:

Calculate the volume by adding slices together.
For a fixed x , we can find the area of an
(infinitesimal) slice of f (x , y) by integrating
over y . Then we can integrate these areas
over all slices to give the volume.

Area of slice: A(x) =

∫ y=d

y=c
f (x , y) dy [Think of x as constant.]

Volume: V =

∫ x=b

x=a
A(x) dx =

∫ x=b

x=a

[ ∫ y=d

y=c
f (x , y) dy

]
dx .

We write

∫ b

a

∫ d

c
f (x , y) dy dx .

The order of the dy and dx tells you which to integrate first.
Work from the inside out.
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Fubini’s Theorem

If f is continuous on the rectangle R = [a, b]× [c , d ] then∫∫
R
f (x , y) dA =

∫ b

a

∫ d

c
f (x , y) dy dx =

∫ d

c

∫ b

a
f (x , y) dx dy

Also true in general if

I f is bounded on R

I f discontinuous only on a finite number of smooth curves

I the iterated integrals exist

Intuition: In our picture, we could have sliced the volume by fixing
y instead of x .

Take away message: When f is nice, we can choose the order of
integration to make our life easier.
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Double integrals

Example. Find
∫∫

R y sin(xy) dA where R = [1, 2]× [0, π].

Is it easier to integrate with respect to .

Properties of double integrals
When f (x , y) is a product of (a fcn of x) and (a fcn of y) over a
rectangle [a, b]× [c , d ], then the double integral decomposes nicely:∫∫

R
g(x)h(y) dA =

[ ∫ b

a
g(x) dx

]
·
[ ∫ d

c
h(y) dy

]
For general regions R: (not necessarily rectangles)

I
∫∫

R(f + g) dA =
∫∫

R f dA +
∫∫

R g dA

I
∫∫

R cf dA = c
∫∫

R f dA

I If f (x , y) ≥ g(x , y) for all (x , y) ∈ R, then
∫∫

R f dA ≥
∫∫

g dA.
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∫∫

R y sin(xy) dA where R = [1, 2]× [0, π].

Is it easier to integrate with respect to .

Properties of double integrals
When f (x , y) is a product of (a fcn of x) and (a fcn of y) over a
rectangle [a, b]× [c , d ], then the double integral decomposes nicely:∫∫

R
g(x)h(y) dA =

[ ∫ b

a
g(x) dx

]
·
[ ∫ d

c
h(y) dy

]
For general regions R: (not necessarily rectangles)

I
∫∫

R(f + g) dA =
∫∫

R f dA +
∫∫

R g dA

I
∫∫

R cf dA = c
∫∫

R f dA

I If f (x , y) ≥ g(x , y) for all (x , y) ∈ R, then
∫∫

R f dA ≥
∫∫

g dA.
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