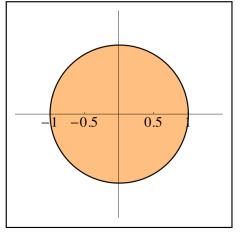
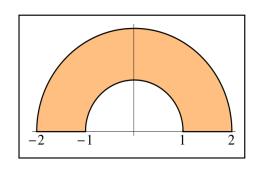
Some regions demand polar coordinates

Some regions are best described in polar coordinates:



Parts of circles



Parts of annuli

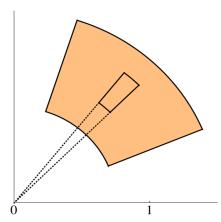
These are called polar rectangles because they have the form

$$\left\{ \begin{array}{l} a \leq r \leq b \\ \alpha \leq \theta \leq \beta \end{array} \right\} \text{ for constants } \left\{ \begin{array}{l} a, b \\ \alpha, \beta \end{array} \right\}$$

Polar coordinates

Goal: Convert a double integral involving x's and y's into a double integral involving r's and θ 's.

Important: Using "polar slices" introduces a complication.



In this picture, dA is **not** $dr d\theta$.

The radial component is ____ and the circular component is ____. This means dA = ____. (How to remember?)

Consequence: To calculate $\iint_D f(x, y) dA$, when D is best described in polar coordinates, calculate

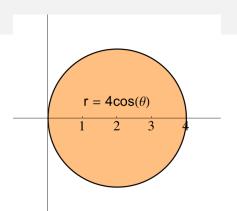
$$\iint_D f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

Polar coordinate example

Example. Find the area inside $r = 4\cos\theta$ from $\theta = \frac{\pi}{4}$ to $\frac{\pi}{2}$.

This region is defined as
$$\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$$
 and ____ $\le r \le$ ____.

We use $A = \iint dA$:



 \bigstar Along the way, we had $\int_{\alpha}^{\beta} \frac{r^2}{2} d\theta$

Application: Density (p. 692/723)

Example. The density of a point on a semicircular lamina of radius *a* is proportional to the distance from the center of the circle. Find the mass of the lamina.

Solution. Draw a picture!

Setup: Let the lamina be the upper half of the circle $x^2 + y^2 = a^2$, which is a polar rectangle:

The density function can be written:

$$\rho(x,y) = K\sqrt{x^2 + y^2}$$

The total mass is $m = \iint_D \rho(x, y) dA$

$$\cdots = \int_{\theta=0}^{\theta=\pi} K \frac{a^3}{3} d\theta = \left[K \frac{a^3}{3} \theta \right]_{\theta=0}^{\theta=\pi} = \frac{\pi K a^3}{3}.$$

Changing from (x, y) to (r, θ)

Example. Calculate
$$\int_0^3 \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} (x^3 + xy^2) dy dx$$
 $\left(\begin{array}{c} \text{hint for } \\ \text{polar!} \end{array}\right)$

Solution. Draw a picture!

Notice that this is the polar rectangle

$$0 \le r \le 3$$
 and $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

Rewrite the integral as

$$\iint_{D} (r^{3} \cos^{3} \theta + r^{3} \cos \theta \sin^{2} \theta) r dr d\theta$$

$$= \iint_{D} r^{4} \cos \theta (\cos^{2} \theta + \sin^{2} \theta) dr d\theta = \iint_{D} r^{4} \cos \theta dr d\theta$$

$$= \left(\int_{r=0}^{r=3} r^{4} dr \right) \cdot \left(\int_{\theta=-\pi/2}^{\theta=\pi/2} \cos \theta d\theta \right)$$

$$= \left[\frac{r^{5}}{5} \right]_{r=0}^{r=3} \cdot \left[\sin \theta \right]_{\theta=-\pi/2}^{\theta=\pi/2} = \left(\frac{3^{5}}{5} - 0 \right) \cdot \left(1 - (-1) \right) = \frac{2 \cdot 3^{5}}{5}$$

Volume example

Example. Find the volume of the solid under the paraboloid $z = x^2 + y^2$, above the xy-plane, and inside the cylinder $(x - 1)^2 + y^2 = 1$.

Plan of attack: Draw a picture!

- ▶ Notice circley thingees. Think: Possible Polar Problem.
- Convert the given information to polar equations using

$$(x, y) = (r \cos \theta, r \sin \theta)$$
:

$$(x-1)^2 + y^2 = 1 \rightsquigarrow (r\cos\theta - 1)^2 + (r\sin\theta)^2 = 1 \rightsquigarrow r = 2\cos\theta.$$
$$(x^2 + y^2) \rightsquigarrow r^2.$$

Set up the polar integral.

So
$$\iint_D (x^2 + y^2) dA = \iint_D r^2 r dr d\theta$$
.

Integrate.....